Introduction to the Program

You are just one step away from being part of the digital revolution that is transforming the entertainment industry forever. Join TECH now” 

##IMAGE##

In traditional games, developers control the internal markets; however, with the Blockchain, transactions and ownership of assets are distributed among participants. As a result, a more open marketplace has resulted, without intermediaries, where players can exchange goods with each other. Moreover, thanks to these technologies, a more autonomous and fluid in-game economy has been created. This decentralization, on the other hand, opens new doors to the creation of dynamic markets, where prices and transactions do not depend on a central authority, but on the free market of the players.  

Cryptocurrencies and tokens have driven economic opportunities in regions with limited access to traditional financial services. Players can participate in virtual economies without the need for bank accounts, facilitating financial inclusion and enabling revenue generation through video games. This has led to new forms of employment and global economic interaction. In addition, the interoperability that Blockchain and NFTs offer allows assets to be moved between games, creating a broader and more flexible ecosystem for players. However, managing this expanding sector requires expertise in both technology and its business application. For this reason, TECH has developed a comprehensive program that delves into the development of public blockchains and their application in the Gaming industry. This intensive, theoretical and practical course focuses on advanced tools to create secure and successful projects, combining Blockchain programming with crypto-gaming economics.

In this way, in just months of intensive learning, the students of this Advanced master’s degree will be able to update their knowledge through the most effective learning method in the university landscape: the Relearning. This approach adapts to the learning pace of each student, since the content is available 24 hours a day and is accessible from any device with an Internet connection. 

This Advanced master’s degree is your ticket to turn your passion for video games into your dream, innovative and profitable career” 

This Advanced master’s degree in Blockchain Economics and NFT in Video Games contains the most complete and up-to-date educational program on the market. Its most notable features are:

  • The development of case studies presented by experts in Blockchain Economics and NFT in Video Games 
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where self-assessment can be used to improve learning 
  • Its special emphasis on innovative methodologies in Blockchain Economics and NFT in Video Games 
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

Lead the virtual world learning with the most updated and enriching didactic methodology in the current academic panorama” 

It includes in its teaching staff professionals belonging to the field of Blockchain Economics and NFT in Video Games, who pour into this program the experience of their work, in addition to recognized specialists from reference companies and prestigious universities. 

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive learning experience designed to prepare for real-life situations. 

This program is designed around Problem-Based Learning, whereby the student must try to solve the different professional practice situations that arise throughout the program. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts.  

Invest in yourself and build the best professional future with TECH, the world's largest online university"

##IMAGE##

Through a 100% online methodology you will begin to master the most important technological knowledge from anywhere in the world"

Syllabus

The Advanced master’s degree in Blockchain Economics and NFTs in Video Games curriculum is designed as a comprehensive academic opportunity to acquire an advanced specialization. During the program, students will explore everything from the fundamentals of Blockchain technology and the principles of NFTs to their application in the creation and management of digital economies. The modules cover topics such as architecture design, the use of popular platforms for the creation of NFTs and other key content. In addition, aspects such as cybersecurity and emerging industry trends will be delved into, allowing students to develop essential skills. 

##IMAGE##

TECH offers you more than an Advanced master’s degree, it's your chance to be part of a global transformation in technology and art” 

Module 1. Development with Public Blockchain: Ethereum, Stellar and Polkadot 

1.1. Ethereum. Public Blockchain 

1.1.1. Ethereum 
1.1.2. EVM and GAS 
1.1.3. Etherescan 

1.2. Running Ethereum: Solidity 

1.2.1. Solidity 
1.2.2. Remix 
1.2.3. Compilation and Execution 

1.3. Ethereum Framework: Brownie 

1.3.1. Brownie 
1.3.2. Ganache 
1.3.3. Brownie Deployment 

1.4. Testing Smart Contracts 

1.4.1. Test Driven Development (TDD) 
1.4.2. Pytest 
1.4.3. Smart Contracts 

1.5. Web Connection 

1.5.1. Metamask 
1.5.2. web3.js 
1.5.3. Ether.js 

1.6. Real Project: Fungible Token 

1.6.1. ERC20 
1.6.2. Creating Our Token 
1.6.3. Deployment and Validation 

1.7. Stellar Blockchain 

1.7.1. Stellar Blockchain 
1.7.2. Ecosystem 
1.7.3. Compared to Ethereum 

1.8. Programming in Stellar 

1.8.1. Horizon 
1.8.2. Stellar SDK 
1.8.3. Fungible Token Project 

1.9. Polkadot Project 

1.9.1. Polkadot Project 
1.9.2. Ecosystem 
1.9.3. Interaction with Ethereum and Other Blockchain 

1.10. Programming Polkadot 

1.10.1. Substrate 
1.10.2. Creating Parachain on Substrate 
1.10.3. Polkadot Integration 

Module 2. Blockchain Technology. Cryptography and Security  

2.1. Cryptography in Blockchain 
2.2. A Hash in Blockchain 
2.3. Private Sharing Multi-Hasing (PSM Hash) 
2.4. Digital Signatures in Blockchain 
2.5. Key Management. Wallets 
2.6. Encryption 
2.7. On-Chain and Off-Chain Data 
2.8. Security and Smart Contracts 

Module 3. Corporate Blockchain Development: Hyperledger Besu 

3.1. Besu Configuration 

3.1.1. Key Configuration Parameters in Production Environments 
3.1.2. Finetuning for Connected Services 
3.1.3. Good Configuration Practices 

3.2. Blockchain Configuration 

3.2.1. Key Configuration Parameters for PoA 
3.2.2. Key Configuration Parameters for PoW 
3.2.3. Genesis Block Configurations 

3.3. Securing Besu 

3.3.1. Secure the RPC with TLS 
3.3.2. RPC Securitization with NGINX 
3.3.3. Securitization by Means of a Node Scheme 

3.4. Besu in High Availability 

3.4.1. Node Redundancy 
3.4.2. Balancers for Transactions 
3.4.3. Transaction Pool over Messaging Queue 

3.5. Offchain Tools 

3.5.1. Privacy - Tessera 
3.5.2. Identidad - Alastria ID 
3.5.3. Data Indexing - Subgraph 

3.6. Applications Developed on Besu 

3.6.1. ERC20 Token-Based Applications 
3.6.2. ERC 721 Token-Based Applications 
3.6.3. ERC 1155 Token-Based Applications 

3.7. Besu Deployment and Automation 

3.7.1. Besu over Docker 
3.7.2. Besu over Kubernetes 
3.7.3. Besu in Blockchain as a Service 

3.8. Besu Interoperability with Other Clients 

3.8.1. Interoperability with Geth 
3.8.2. Interoperability with Open Ethereum 
3.8.3. Interoperability with Other DLTs 

3.9. Plugins for Besu 

3.9.1. Most Common Plugins 
3.9.2. Plugin Development 
3.9.3. Installation of Plugins 

3.10. Configuration of Development Environments 

3.10.1. Creation of a Developing Environment 
3.10.2. Creation of a Customer Integration Environment 
3.10.3. Creating a Pre-Production Environment for Load Testing 

Module 4. Corporate Blockchain Development: Hyperledger Fabric 

4.1. Hyperledger 

4.1.1. Hyperledger Ecosystem 
4.1.2. Hyperledger Tools 
4.1.3. Hyperledger Frameworks 

4.2. Hyperledger Fabric – Components of Its Architecture. State of the Art 

4.2.1. State of the Art of Hyperledger Fabric 
4.2.2. Nodes 
4.2.3. Orderers 
4.2.4. CouchDB and LevelDB 
4.2.5. CA 

4.3. Hyperledger Fabric-Components of Its Architecture. Process of a Transaction 

4.3.1. Process of a Transaction 
4.3.2. Chain Codes 
4.3.3. MSP 

4.4. Enabling Technologies 

4.4.1. Go 
4.4.2. Docker 
4.4.3. Docker Compose 
4.4.4. Other Technologies 

4.5. Pre-Requisite Installation and Environment Preparation 

4.5.1. Server Preparation 
4.5.2. Download Prerequisites 
4.5.3. Download from Official Hyperledger Repository 

4.6. First Deployment 

4.6.1. Automatic Test-Network Deployment 
4.6.2. Guided Test-Network Deployment 
4.6.3. Review of Deployed Components 

4.7. Second Deployment 

4.7.1. Deployment of Private Data Collection 
4.7.2. Integration against a Fabric Network 
4.7.3. Other Projects 

4.8. Chain Codes 

4.8.1. Structure of a Chaincode 
4.8.2. Deployment and Upgrade of Chaincodes 
4.8.3. Other Important Chaincode Functions 

4.9. Connection to Other Hyperledger Tools (Caliper and Explorer) 

4.9.1. Hyperledger Explorer Installation 
4.9.2. Hyperledger Caliper Installation 
4.9.3. Other Important Tools 

4.10. Certification 

4.10.1. Types of Official Certifications 
4.10.2. Preparation for CHFA 
4.10.3. Developer vs. Administrator Profiles 

Module 5. Sovereign Identity Based on Blockchain 

5.1. Digital Identity 

5.1.1. Personal Data 
5.1.2. Social Networks 
5.1.3. Control Over Data 
5.1.4. Authentication 
5.1.5. Identification 

5.2. Blockchain Identity 

5.2.1. Digital Signature 
5.2.2. Public Networks 
5.2.3. Permitted Networks 

5.3. Sovereign Digital Identity 

5.3.1. Requirements 
5.3.2. Components 
5.3.3. Applications 

5.4. Decentralized Identifiers (DIDs) 

5.4.1. Layout 
5.4.2. DID Methods 
5.4.3. DID Documents 

5.5. Verifiable Credentials 

5.5.1. Components 
5.5.2. Flows 
5.5.3. Security and Privacy 
5.5.4. Blockchain to Register Verifiable Credentials 

5.6. Blockchain Technologies for Digital Identity 

5.6.1. Hyperledger Indy 
5.6.2. Sovrin 
5.6.3. uPort 
5.6.4. IDAlastria 

5.7. European Blockchain and Identity Initiatives 

5.7.1. eIDAS 
5.7.2. EBSI 
5.7.3. ESSIF 

5.8. Digital Identity of Things (IoT)

5.8.1. IoT Interactions 
5.8.2. Semantic Interoperability
5.8.3. Data Security

5.9. Digital Identity of the Processes

5.9.1. Date: 
5.9.2. Codes 
5.9.3. Interfaces 

5.10. Blockchain Digital Identity Use Cases 

5.10.1. Health 
5.10.2. Educational 
5.10.3. Logistics 
5.10.4. Public Administration 

Module 6. Blockchain and Its New Applications: DeFi and NFT 

6.1. Financial Culture 

6.1.1. Evolution of Money 
6.1.2. FIAT Money vs. Decentralized Money 
6.1.3. Digital Banking vs. Open Finance 

6.2. Ethereum 

6.2.1. Technology 
6.2.2. Decentralized Money 
6.2.3. Stable Coins 

6.3. Other Technologies 

6.3.1. Binance Smart Chain 
6.3.2. Polygon 
6.3.3. Solana 

6.4. DeFi (Decentralized Finance) 

6.4.1. DeFi 
6.4.2. Challenges 
6.4.3. Open Finance vs. DeFi 

6.5. Information Tools 

6.5.1. Metamask and Decentralized Wallets 
6.5.2. CoinMarketCap 
6.5.3. DefiPulse 

6.6. Stable Coins 

6.6.1. Protocol Maker 
6.6.2. USDC, USDT, BUSD 
6.6.3. Forms of Collateralization and Risks 

6.7. Exchanges and Decentralized Exchanges and Platforms (DEX) 

6.7.1. Uniswap 
6.7.2. SushiSwap 
6.7.3. AAVe 
6.7.4. dYdX / Synthetix 

6.8. NFT Ecosystem (Non-Fungible Tokens) 

6.8.1. The NFT 
6.8.2. Typology 
6.8.3. Features 

6.9. Capitulation of Industries 

6.9.1. Design Industry 
6.9.2. Fan Token Industry 
6.9.3. Project Financing 

6.10. NFT Markets 

6.10.1. Opensea 
6.10.2. Rarible 
6.10.3. Customized Platforms 

Module 7. Blockchain. Legal Implications 

7.1. Bitcoin 

7.1.1. Bitcoin 
7.1.2. Whitepaper Analysis 
7.1.3. Operation of the Proof of Work 

7.2. Ethereum 

7.2.1. Ethereum. Origins 
7.2.2. Proof of Stake Operation 
7.2.3. DAO Case 

7.3. Current Status of the Blockchain 

7.3.1. Growth of Cases 
7.3.2. Blockchain Adoption by Large Companies 

7.4. MiCA (Market in Cryptoassets) 

7.4.1. Birth of the Standard 
7.4.2. Legal Implications (Obligations, Obligated Parties, etc.) 
7.4.3. Summary of the Standard 

7.5. Prevention of Money Laundering 

7.5.1. Fifth Directive and its Transposition 
7.5.2. Obligated Parties 
7.5.3. Intrinsic Obligations 

7.6. Tokens 

7.6.1. Tokens 
7.6.2. Types 
7.6.3. Applicable Regulations in Each Case 

7.7. ICO/STO/IEO: Corporate Financing Systems 

7.7.1. Types of Financing 
7.7.2. Applicable Regulations 
7.7.3. Success Stories 

7.8. NFT (Non-Fungible Tokens) 

7.8.1. NFT 
7.8.2. Applicable Regulations 
7.8.3. Use Cases and Success (Play to Earn) 

7.9. Taxation and Cryptoassets 

7.9.1. Taxation 
7.9.2. Income from Work 
7.9.3. Income from Economic Activities 

7.10. Other Applicable Regulations 

7.10.1. General Data Protection Regulation 
7.10.2. DORA (Cybersecurity) 
7.10.3. EIDAS Regulations 

Module 8. Blockchain Architecture Design 

8.1. Blockchain Architecture Design 

8.1.1. Architecture 
8.1.2. Infrastructure Architecture 
8.1.3. Software Architecture 
8.1.4. Integration Deployment 

8.2. Types of Networks 

8.2.1. Public Networks 
8.2.2. Private Networks 
8.2.3. Permitted Networks 
8.2.4. Differences 

8.3. Participant Analysis 

8.3.1. Company Identification 
8.3.2. Customer Identification 
8.3.3. Consumer Identification 
8.3.4. Interaction Between Parties 

8.4. Proof-of-Concept Design 

8.4.1. Functional Analysis 
8.4.2. Implementation Phases 

8.5. Infrastructure Requirements 

8.5.1. Cloud 
8.5.2. Physical 
8.5.3. Hybrid 

8.6. Security Requirements 

8.6.1. Certification 
8.6.2. HSM 
8.6.3. Encryption 

8.7. Communications Requirements 

8.7.1. Network Speed Requirements 
8.7.2. I/O Requirements 
8.7.3. Transaction Requirements Per Second 
8.7.4. Affecting Requirements with the Network Infrastructure 

8.8. Software Testing, Performance and Stress Testing 

8.8.1. Unit Testing in Development and Pre-Production Environments 
8.8.2. Infrastructure Performance Testing 
8.8.3. Pre-Production Testing 
8.8.4. Production Testing 
8.8.5. Version Control 

8.9. Operation and Maintenance 

8.9.1. Support: Alerts 
8.9.2. New Versions of Infrastructure Components 
8.9.3. Risk Analysis 
8.9.4. Incidents and Changes 

8.10. Continuity and Resilience 

8.10.1. Disaster Recovery 
8.10.2. Backup 
8.10.3. New Participants 

Module 9. Blockchain Applied to Logistics 

9.1. Operational AS IS Mapping and Possible Gaps 

9.1.1. Identification of Manually Executed Processes 
9.1.2. Identification of Participants and Their Particularities 
9.1.3. Case Studies and Operational Gaps 
9.1.4. Presentation and Mapping Executive Staff  

9.2. Map of Current Systems 

9.2.1. Current Systems 
9.2.2. Master Data and Information Flow 
9.2.4. Governance Model 

9.3. Application of Blockchain to Logistics 

9.3.1. Blockchain Applied to Logistics 
9.3.2. Traceability-Based Architectures for Business Processes 
9.3.3. Critical Success Factors in Implementation 
9.3.4. Practical Advice 

9.4. TO BE Model 

9.4.1. Operational Definition for Supply Chain Control 
9.4.2. Structure and Responsibilities of the Systems Plan 
9.4.3. Critical Success Factors in Implementation 

9.5. Construction of the Business Case 

9.5.1. Cost Structure 
9.5.2. Projected Benefits 
9.5.3. Approval and Acceptance of the Plan by the Owners 

9.6. Creation of Proof of Concept (POC) 

9.6.1. Importance of a POC for New Technologies 
9.6.2. Key Aspects 
9.6.3. Examples of POCs with Low Cost and Effort 

9.7. Project Management 

9.7.1. Agile Methodology 
9.7.2. Decision of Methodologies Among All Participants 
9.7.3. Strategic Development and Deployment Plan 

9.8. Integration of Systems: Opportunities and Needs 

9.8.1. Structure and Development of the Systems Planning 
9.8.2. Data Master Model 
9.8.3. Roles and Responsibilities 
9.8.4. Integrated Management and Monitoring Model 

9.9. Development and Implementation with Supply Chain Team 

9.9.1. Active Participation of the Customer (Business) 
9.9.2. Systemic and Operational Risk Analysis 
9.9.3. Event Key: Test Models and Post-Production Support 

9.10. Change Management: Follow-Up and Updating 

9.10.1. Management Implications 
9.10.2. Rollout Plan and Training Program 
9.10.3. KPI Tracking and Management Models 

Module 10. Blockchain and Business 

10.1. Applying Technology throughout the Company 

10.1.1. Applying Blockchain 
10.1.2. Blockchain Benefits 
10.1.3. Common Implementation Mistakes 

10.2. Blockchain Implementation Cycle 

10.2.1. From P2P to Distributed Systems 
10.2.2. Key Aspects for Proper Implementation 
10.2.3. Improving Current Implementations 

10.3. Blockchain vs. Traditional Technologies. Basics 

10.3.1. APIs Data and Flows 
10.3.2. Tokenization as a Cornerstone for Projects
10.3.3. Incentives 

10.4. Selecting Blockchain Type 

10.4.1. Public Blockchain 
10.4.2. Private Blockchain 
10.4.3. Consortiums 

10.5. Blockchain and the Public Sector 

10.5.1. Blockchain in the Public Sector 
10.5.2. Central Bank Digital Currency (CBDC) 
10.5.3. Conclusions 

10.6. Blockchain and the Financial Sector. Start 

10.6.1. CBDC and Finance 
10.6.2. Native Digital Assets 
10.6.3. Where It Does Not Fit 

10.7. Blockchain and the Pharmaceutical Sector 

10.7.1. Searching for Meaning in the Field 
10.7.2. Logistics or Pharma 
10.7.3. Application 

10.8. Pseudo Private Blockchains. Consortiums: Meaning of Consortiums 

10.8.1. Reliable Environments 
10.8.2. Analysis and Delving Deeper 
10.8.3. Valid Implementations 

10.9. Blockchain. Use Case in Europe: EBSI 

10.9.1. EBSI (European Blockchain Services Infraestructure) 
10.9.2. The Business Model 
10.9.3. Future 

10.10. The Future of Blockchain 

10.10.1. Trilemma 
10.10.2. Automation 
10.10.3. Conclusions 

Module 11. Blockchain  

11.1. Blockchain  

11.1.1. Blockchain  
11.1.2. The New Blockchain Economy  
11.1.3. Decentralization as the Foundation of the Blockchain Economy  

11.2. Blockchain Technologies  

11.2.1. Bitcoin Blockchain  
11.2.2. Validation Process, Computational Power  
11.2.3. Hash  

11.3. Types of Blockchain  

11.3.1. Public Chain  
11.3.2. Private Chain  
11.3.3. Hybrid or Federated Chain  

11.4. Types of Networks 

11.4.1. Centralized Network  
11.4.2. Distributed Network  
11.4.3. Decentralized Network  

11.5. Smart Contracts  

11.5.1. Smart Contracts  
11.5.2. Process of Generating a Smart Contract  
11.5.3. Examples and Applications of Smart Contract  

11.6. Wallets  

11.6.1. Wallets  
11.6.2. Usefulness and Importance of a Wallet  
11.6.3. Hot & Cold Wallet  

11.7. The Blockchain Economy  

11.7.1. Advantages of the Blockchain Economy  
11.7.2. Risk Level  
11.7.3. Gas Fee  

11.8. Security  

11.8.1. Revolution in Security Systems  
11.8.2. Absolute Transparency  
11.8.3. Attacks to the Blockchain  

11.9. Tokenization  

11.9.1. Tokens  
11.9.2. Tokenization  
11.9.3. Tokenized Models  

Module 12. DeFi  

12.1. DeFi  

12.1.1. DeFi  
12.1.2. Origin  
12.1.3. Criticism  

12.2. Market Decentralization  

12.2.1. Economic Advantages   
12.2.2. Creation of Financial Products  
12.2.3. Loans of DeFi  

12.3. Components DeFi  

12.3.1. Layer 0  
12.3.2. Software Protocol Layer  
12.3.3. Application Layer and Aggregation Layer  

12.4. Decentralized Exchanges  

12.4.1. Exchange of Tokens  
12.4.2. Adding Liquidity  
12.4.3. Eliminating Liquidity  

12.5. DeFi Markets  

12.5.1. MarketDAO  
12.5.2. Argus Prediction Market  
12.5.3. Ampleforth  

12.6. Keys  

12.6.1. Yield Farming  
12.6.2. Liquidity Mining  
12.6.3. Componibility  

12.7. Differences with Other Systems  

12.7.1. Traditional  
12.7.2. Fintech  
12.7.3. Comparison  

12.8. Risk to Consider  

12.8.1. Incomplete Decentralization  
12.8.2. Security  
12.8.3. Usage Errors  

12.9. DeFi Applications  

12.9.1. Lending  
12.9.2. Trading  
12.9.3. Derivatives  

12.10. Projects Under Development  

12.10.1. AAVE  
12.10.2. DydX  
12.10.3. Money on Chain  

Module 13. NFT  

13.1. NFT  

13.1.1. NFTs  
13.1.2. NFT Linkage and Blockchain  
13.1.3. Creation of NFT  

13.2. Creating an NFT  

13.2.1. Design and Content  
13.2.2. Generation  
13.2.3. Metadata and Freeze Metada  

13.3. NFT Sales Options in Gamified Economies  

13.3.1. Direct Sales  
13.3.2. Auction  
13.3.3. Whitelist  

13.4. NFT Market Research  

13.4.1. Opensea  
13.4.2. Immutable Marketplace  
13.4.3. Gemini  

13.5. NFT Monetization Strategies in Gamified Economies   

13.5.1. Value in Use  
13.5.2. Aesthetic Value  
13.5.3. Actual Value  

13.6. NFT Monetization Strategies in Gamified Economies: Mining  

13.6.1. NFT Mining  
13.6.2. Merge  
13.6.3. Burn  

13.7. NFT Monetization Strategies in Gamified Economies: Consumables  

13.7.1. NFT Consumable  
13.7.2. NFT Envelopes  
13.7.3. Quality of NFT 

13.8. Analysis of Gamified Systems Based on NFT   

13.8.1. Alien Worlds  
13.8.2. Gods Unchained  
13.8.3. R-Planet  

13.9. NFT as an Investment and Labor Incentive  

13.9.1. Investment Participation Privileges 
13.9.2. Collections Linked to Specific Dissemination Work  
13.9.3. Sum of Forces  

13.10. Areas of Innovation in Development  

13.10.1. Music at NFT  
13.10.2. NFT Video  
13.10.3. NFT Books  

Module 14. Cryptocurrency Analysis  

14.1. Bitcoin  

14.1.1. Bitcoins  
14.1.2. Bitcoin as a Market Indicator  
14.1.3. Advantages and Disadvantages for Gamified Economies 

14.2. Altcoins  

14.2.1. Main Characteristics and Differences with Respect to Bitcoin  
14.2.2. Market Impact  
14.2.3. Analysis of Binding Projects  

14.3. Ethereum  

14.3.1. Main Features and Operation  
14.3.2. Hosted Projects and Market Impact  
14.3.3. Advantages and Disadvantages for Gamified Economies  

14.4. Binance Coin  

14.4.1. Main Features and Operation  
14.4.2. Hosted Projects and Market Impact  
14.4.3. Advantages and Disadvantages for Gamified Economies  

14.5. Stablecoins  

14.5.1. Features  
14.5.2. Projects in Operation as of Stablecoins   
14.5.3. Uses of Stablecoins in Gamified Economies  

14.6. Main Stablecoins  

14.6.1. USDT  
14.6.2. USDC  
14.6.3. BUSD  

14.7. Trading   

14.7.1. Trading in Gamified Economies  
14.7.2. Balanced Portfolio  
14.7.3. Unbalanced Portfolio  

14.8. Trading: DCA  

14.8.1. DCA  
14.8.2. Positional Trading  
14.8.3. Daytrading  

14.9. Risk  

14.9.1. Price Formation   
14.9.2. Liquidity  
14.9.3. Global Economy 

Module 15. Networks  

15.1. The Revolution of the Smart Contract  

15.1.1. The Birth of the Smart Contract  
15.1.2. Application Hosting  
15.1.3. Security in IT Processes  

15.2. Metamask   

15.2.1. Aspects   
15.2.2. Impact on Accessibility  
15.2.3. Asset Management at Metamask 

15.3. Tron  

15.3.1. Aspects   
15.3.2. Hosted Applications  
15.3.3. Disadvantages and Benefits  

15.4. Ripple  

15.4.1. Aspects   
15.4.2. Hosted Applications  
15.4.3. Disadvantages and Benefits  

15.5. Ethereum  

15.5.1. Aspects   
15.5.2. Hosted Applications  
15.5.3. Disadvantages and Benefits  

15.6. Polygon MATIC  

15.6.1. Aspects   
15.6.2. Hosted Applications  
15.6.3. Disadvantages and Benefits  

15.7. Wax  

15.7.1. Aspects   
15.7.2. Hosted Applications  
15.7.3. Disadvantages and Benefits  

15.8. ADA Cardano  

15.8.1. Aspects   
15.8.2. Hosted Applications  
15.8.3. Disadvantages and Benefits  

15.9. Solana  

15.9.1. Aspects   
15.9.2. Hosted Applications  
15.9.3. Disadvantages and Benefits  

15.10. Projects and Migrations   

15.10.1. Networks Suitable for the Project  
15.10.2. Migration   
15.10.3. Crosschain  

Module 16. Metaverse  

16.1. Metaverse  

16.1.1. Metaverse  
16.1.2. Impact on the World Economy 
16.1.3. Impact on the Development of Gamified Economies  

16.2. Forms of Accessibility  

16.2.1. VR  
16.2.2. Computers  
16.2.3. Mobile Devices  

16.3. Metaverse Types  

16.3.1. Traditional Metaverse  
16.3.2. Centralized Blockchain Metaverse  
16.3.3. Decentralization Blockchain Metaverse  

16.4. Metaverse as a Workspace  

16.4.1. Idea of the Work within the Metaverse  
16.4.2. Creation of Services within the Metaverse  
16.4.3. Critical Points to Consider in Job Generation  

16.5. Metaverso as a Space for Socialization  

16.5.1. User Interaction Systems 
16.5.2. Mechanics of Socialization 
16.5.3. Forms of Monetization 

16.6. Metaverse as an Entertainment Space  

16.6.1. Training Spaces in the Metaverse  
16.6.2. Forms of Training Space Management  
16.6.3. Categories of Training Spaces in the Metaverse  

16.7. System for Purchase and Lease of Spaces in the Metaverse  

16.7.1. Lands  
16.7.2. Auctions  
16.7.3. Direct Sales  

16.8. Second Life  

16.8.1. Second Life as a Pioneer in the Metaverse Industry 
16.8.2. Game Mechanics 
16.8.3. Profitability Strategies Employed 

16.9. Decentraland  

16.9.1. Decentraland as the Most Profitable Metaverse on Record 
16.9.2. Game Mechanics 
16.9.3. Profitability Strategies Employed 

16.10. Goals  

16.10.1. Meta: The Company with the Greatest Impact on Developing a Metaverse  
16.10.2. Market Impact 
16.10.3. Project Details 

Module 17. External Platforms  

17.1. DEX  

17.1.1. Features   
17.1.2. Utilities  
17.1.3. Implementation in Gamified Economies 

17.2. Swaps  

17.2.1. Features   
17.2.2. Main Swaps 
17.2.3. Implementation in Gamified Economies 

17.3. Oracles  

17.3.1. Features   
17.3.2. Main Swaps  
17.3.3. Implementation in Gamified Economies  

17.4. Staking  

17.4.1. Liquidity Pool  
17.4.2. Staking  
17.4.3. Farming  

17.5. Blockchain Development Tools   

17.5.1. Geth  
17.5.2. Mist  
17.5.3. Truffe  

17.6. Blockchain Development Tools: Embark  

17.6.1. Embark 
17.6.2. Ganache  
17.6.3. Blockchain Testnet  

17.7. Marketing Studies  

17.7.1. DefiPulse 
17.7.2. Skew 
17.7.3. Trading View

17.8. Tracking  

17.8.1. CoinTracking 
17.8.2. CryptoCompare 
17.8.3. Blackfolio 

17.9. Trading Bots  

17.9.1. Aspects  
17.9.2. SFOX Trading Algorithms  
17.9.3. AlgoTrader  

17.10. Mining Tools  

17.10.1. Aspects   
17.10.2. NiceHash  
17.10.3. What to Mine  

Module 18. Analysis of Variables in Gamified Economies  

18.1. Gamified Economic Variables  

18.1.1. Advantages of Fragmentation   
18.1.2. Similarities with the Real Economy  
18.1.3. Division Criteria 

18.2. Search  

18.2.1. Individual  
18.2.2. By Group  
18.2.3. Global  

18.3. Resources  

18.3.1. By Game - Design  
18.3.2. Tangibles  
18.3.3. Intangibles  

18.4. Entities  

18.4.1. Players  
18.4.2. Single Resource Entities  
18.4.3. Multiple Resource Entities  

18.5. Sources  

18.5.1. Generation Conditions  
18.5.2. Localization  
18.5.3. Production Ratio  

18.6. Exits  

18.6.1. Consumables  
18.6.2. Maintenance Costs  
18.6.3. Time Out  

18.7. Converters  

18.7.1. NPC  
18.7.2. Manufacture  
18.7.3. Special Circumstances 

18.8. Exchange  

18.8.1. Public Markets  
18.8.2. Private Stores  
18.8.3. External Markets  

18.9. Experience  

18.9.1. Acquisition Mechanics  
18.9.2. Apply Experience Mechanics to Economic Variables 
18.9.3. Penalties and Experience Limits 

18.10. Deadlocks  

18.10.1. Resource Cycle 
18.10.2. Linking Economy Variables with Deadlocks  
18.10.3. Applying Deadlocks to Game Mechanics  

Module 19. Gamified Economic Systems  

19.1. Free to Play Systems  

19.1.1. Characterization of Free to Play Economies and Main Monetization Points  
19.1.2. Architectures in Free to Play Economies  
19.1.3. Economical Design   

19.2. Freemium Systems  

19.2.1. Characterization of Freemium Economies and Main Monetization Points 
19.2.2. Play to Earn Economy Architectures  
19.2.3. Economical Design   

19.3. Pay to Play Systems  

19.3.1. Characterization of Pay to Play Economies and Main Monetization Points  
19.3.2. Architectures in Free to Play Economies  
19.3.3. Economical Design  

19.4. PvP-Based Systems 

19.4.1. Characterization of Economies Based on Pay to Play and Main Monetization Points
19.4.2. Architecture in PvP Economies  
19.4.3. Economic Design Workshop 

19.5. Seasons System  

19.5.1. Characterization of Seasons-Based Economies and Main Points of Profitability 
19.5.2. Architecture in Season Economies  
19.5.3. Economical Design   

19.6. Economic Systems in Sandbox or Mmorpg  

19.6.1. Characterization of Sandbox-Based Economies and Main Cost-Effectiveness Points  
19.6.2. Architecture in Sandbox Economies  
19.6.3. Economical Design  

19.7. Trading Card Game System  

19.7.1. Characterization of Trading Card Game-Based Economies and Main Cost-Effectiveness Points 
19.7.2. Architecture in Trading Card Game Economies 
19.7.3. Economic Design Workshop  

19.8. PvE Systems  

19.8.1. Characterization of PvE-Based Economies and Main Cost-Effectiveness Points
19.8.2. Architecture in PvE Economies  
19.8.3. Economic Design Workshop 

19.9. Betting Systems  

19.9.1. Characterization of Bet-Based Economies and Main Monetization Points  
19.9.2. Architecture in Betting Economies  
19.9.3. Economical Design   

19.10. Systems Dependent on External Economies  

19.10.1. Characterization of Dependent Economies and Main Monetization Points  
19.10.2. Architecture in Dependent Economies  
19.10.3. Economical Design  

Module 20. Blockchain Video Game Analysis  

20.1. Star Atlas  

20.1.1. Game Mechanics  
20.1.2. Economic System  
20.1.3. Usability  

20.2. Anillo Exterior  

20.2.1. Game Mechanics  
20.2.2. Economic System  
20.2.3. Usability  

20.3. Axie Infinity  

20.3.1. Game Mechanics  
20.3.2. Economic System  
20.3.3. Usability  

20.4. Splinterlands  

20.4.1. Game Mechanics  
20.4.2. Economic System  
20.4.3. Usability  

20.5. R-Planet  

20.5.1. Game Mechanics  
20.5.2. Economic System  
20.5.3. Usability  

20.6. Ember Sword  

20.6.1. Game Mechanics  
20.6.2. Economic System  
20.6.3. Usability  

20.7. Big Time  

20.7.1. Game Mechanics  
20.7.2. Economic System  
20.7.3. Usability  

20.8. Gods Unchained  

20.8.1. Game Mechanics  
20.8.2. Economic System  
20.8.3. Usability  

20.9. Illuvium  

20.9.1. Game Mechanics  
20.9.2. Economic System  
20.9.3. Usability  

20.10. Upland  

20.10.1. Game Mechanics  
20.10.2. Economic System  
20.10.3. Usability 

##IMAGE##

This is the most comprehensive curriculum with you will learn how to build digital economies that not only entertain, but empower millions of players around the world” 

Advanced Master's Degree in Blockchain Economics and NFT in Video Games

The permanent development of technology and advances in computer systems has given rise for different sectors to undergo transformations. This is the case of video games, as the consolidation and integration of Blockchain and NFT models have revolutionized the environment of players in an experience that not only has recreational purposes, but also economic ones. Faced with an area of continuous growth and changing dynamics, the industry requires the specialized knowledge of IT professionals to manage the technology involved in blockchain, in addition to business application and DeFi services. For this reason, in TECH Global University we developed the Advanced Master's Degree in Blockchain Economics and NFT in Video Games, a program that collects in a complete way the update and deepening in this area of computer science. In this way, you will have at your disposal an academic path with innovative content, and the tools, techniques and strategies that will lead you to master the application of blockchain in the video game industry.

Specialize in Blockchain Economics and NFT in Video Games

At TECH Global University you will be able to reach a new level of knowledge to advance your professional goals. Hand in hand with innovative methodologies, the accompaniment of experts in the area and a specialized curriculum, you will identify the functioning of Blockchain technology, its main features, advantages and disadvantages in the framework of decentralized finance; you will identify the fundamental characteristics of non-fungible tokens; and you will understand the linkage of NFTs with blockchains from applicable strategies to generate and extract value with integration to the global economy and virtual gamification projects. This program is a unique opportunity to sharpen your technical skills and stand out effectively in a highly competitive industry. Becoming a graduate of the university with the largest Faculty of Computer Science in the world is the next step in achieving your career goals.