Introduction to the Program

Learn This program as Latest Information to identify physiological and pathological from the point of view patterns, as well as their correlation with age, level of wakefulness/sleep, consciousness, pharmacological interference and clinical significance” 

In recent years, the academic state of the art in Neurophysiology has multiplied exponentially thanks to numerous scientific research and technological advances. An example of this is the use of botulinum toxin for therapeutic infiltrations to relieve pain in patients with chronic pain. Therefore, it also highlights the application of non-invasive and invasive brain modulation procedures. Medical professionals dedicated to this area need constant updating and, paradoxically, they do not find teaching programs on the market that satisfy their theoretical and practical interests equally.

This is the first time that this TECH Hybrid Master's Degree has been offered to the physician, offering the latest developments in Neurophysiological Diagnosis and Treatment. The program goes beyond its market counterparts and consists of two distinct stages. The first one will facilitate the assimilation of ambitious from a 100% online and interactive learning platform. The neurologist will complete this educational phase in 1,500 hours and will be advised by a prestigious and demanding faculty.

In a second didactic moment, the graduate will spend 3 weeks in a face-to-face clinical practice in first level hospitals. From this institution, he will be able to apply in a practical way the subjects received in the previous stage in real patients with different neurological pathologies. In addition, they will be supervised by an assistant tutor who will be in charge of helping them in their progress and involving them in comprehensive assistance dynamics. Throughout this period, the physician will exchange with experts of distinguished trajectory within this health care sector and will be able to turn to them to clarify doubts and concepts of interest. In turn, you won't have to settle for local or regional training options. Thanks to the wide network of agreements and partners at TECH's disposal, the neurologist may choose to complete this intensive stay in hospitals located in different continents.

Thanks to TECH, you will delve into the latest diagnostic procedures and indications for brain stimulation of patients with epilepsy." 

This Hybrid Master's Degree in Update on Neurophysiological Diagnosis and Treatment contains the most complete and up-to-date scientific program on the market. The most important features include: 

  • Development of more than 100 clinical cases presented by of the neurophysiology professionals with a highly qualified in Diagnosis and brain pathologies Psychotherapeutic treatment Psychopharmacological treatment. 
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice. 
  • Patient assessment and monitoring based on upper and lower limb nerve response according to the latest international recommendations on the subject 
  • Algorithm-, based interactive learning system for decision-making in the presented clinical situations. 
  • All of this will be complemented by theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments. 
  • Content that is accessible from any fixed or portable device with an Internet connection. 
  • Furthermore, you will be able to carry out a clinical internship in one of the best hospital centers

The 3-week intensive stay included in this degree can be carried out in prestigious centers located in different latitudes of the planet"

In this proposed Master's program, of a professionalizing nature and blended learning modality, the program is aimed to up-to-date neurologists who wish to achieve a higher degree of qualification with respect to the handling of new equipment and techniques in this medical area. The contents are based on the latest scientific evidence, and oriented in a didactic way to integrate theoretical knowledge into medical practice, giving the professional the opportunity to have much more innovative work tools that facilitate the successful intervention of patients with various complexities. 

Thanks to their multimedia content developed with the latest educational technology, they will allow the Medicine professional to obtain situated and contextual learning, i.e. a simulated environment that will provide immersive learning programmed to train in real situations. This program is designed around Problem-Based Learning, whereby the physician must try to solve the different professional practice situations that arise during the course. For this purpose, students will be assisted by an innovative interactive video system created by renowned and experienced experts. 

This Hybrid Master's Degree will make you an expert in identifying pathologies such as Myasthenia Gravis, from electromyography and nerve conduction studies"

Enroll in TECH and you will learn more about how to prevent neuralgia or numbness in arms or legs through invasive neuromodulation"

Syllabus

This study program will lead the professional through several recently updated topics within the area of Neurophysiological Diagnosis and Treatment. In particular, he will delve into Brain Electrogenesis and its advantages for the detection of early epilepsies in the neonate or infant. Likewise, he will also go in depth on botulinum toxin infiltration with guidance and other techniques for therapeutic purposes. In turn, you will examine the latest trends in invasive and non-invasive Nueromodulation. For this learning, the doctor will rely on revolutionary teaching methods such as Relearning, which enhances the rapid and flexible assimilation of the most complex content. 

hybrid learning neurophysiological diagnosis treatment TECH Global University

During 1,500 hours, you will acquire the most up-to-date theoretical knowledge in the field of Neurophysiology thanks to this innovative degree" 

Module 1. Brain Electrogenesis: Recording and Analysis Techniques Electroencephalogram Development

1.1. Biophysical Fundamentals of EEG Recording 

1.1.1. Context 
1.1.2. Brief Mathematical Revision 

1.1.2.1. Vector Analysis 
1.1.2.2. Determinants and Matrices 

1.1.3. Brief Introduction to Electromagnetism 

1.1.3.1. The Concepts of Field and Potential 
1.1.3.2. Maxwell's Equations 

1.1.4. Cerebral Electrical Fields 

1.2. Technical and Analytical Fundamentals of EEG 

1.2.1. Context 
1.2.2. Analogue-to-Digital Conversion (ADC) 
1.2.3. Filters 
1.2.4. Digital Signal Analysis 

1.2.4.1. Spectral Analysis 
1.2.4.2. Wavelet Analysis 

1.2.5. Determining Interaction between Two Signals 

1.3. Protocols and Standards for EEG and Video-EEG, Triggering Maneuvers: Artifact Detection 

1.3.1. EEG and Video-EEG 

1.3.1.1. Recording Conditions 
1.3.1.2. Electrodes 
1.3.1.3. By-Passes and Assemblies 
1.3.1.4. Records 

1.3.2. Video-EEG 

1.3.2.1. Technical Aspects 
1.3.2.2. Indications 

1.3.3. Routine Stimulation Maneuvers 

1.3.3.1. Ocular Opening and Closure 
1.3.3.2. Pulmonary Hyperventilation 
1.3.3.3. Intermittent Luminous Stimulation 

1.3.4. Other Non-Standard Activation Methods 

1.3.4.1. Other Visual Activation Procedures 
1.3.4.2. Activation by Sleep 
1.3.4.3. Other Activation Methods 

1.3.5. Introduction to Artefacts and Their Relevance 

1.3.5.1. General Detection Principles 
1.3.5.2. Common Artifacts 
1.3.5.3. Artifact Removal 

1.3.6. Key Concepts 

1.4. Normal Adult EEG 

1.4.1. Normal Wakefulness EEG 

1.4.1.1. Alpha Rhythm 
1.4.1.2. Beta Rhythm 
1.4.1.3. Mu Rhythm 
1.4.1.4. Lambda Waves 
1.4.1.5. Low-Voltage Work 
1.4.1.6. Theta Activity 

1.4.2. Normal Sleep EEG 

1.4.2.1. NREM Sleep 
1.4.2.2. REM Sleep 

1.4.3. Normality Variants/Patterns of Uncertain Significance 

1.5. Child EEG, Development and Maturation I 

1.5.1. Technical Considerations 
1.5.2. Age-Specific EEG Characteristics 

1.5.2.1. Continuity 
1.5.2.2. Bilateral Hemispheric Synchrony 
1.5.2.3. Voltage 
1.5.2.4. Variability 
1.5.2.5. Reactivity 
1.5.2.6. Age-Specific Waves 

1.5.2.6.1. Beta-Delta Complex 
1.5.2.6.2. Temporary Theta and Alpha Wave Bursts 
1.5.2.6.3. Frontal Sharp Waves 

1.5.3. EEG in Wakefulness and Sleep 

1.5.3.1. Wakefulness 
1.5.3.2. NREM Sleep 
1.5.3.3. REM Sleep 
1.5.3.4. Indeterminate and Transitional Sleep 
1.5.3.5. Stimuli Reactivity 

1.5.4. Special Patterns/Normality Variants 

1.5.4.1. Bifrontal Delta Activity 
1.5.4.2. Temporal Sharp Waves 

1.5.5. Key Concepts 

1.6. Child EEG, Development and Maturation II: Physiological EEG from Infancy to Adolescence 

1.6.1. Technical Considerations 
1.6.2. EEG in Infants from 2 to 12 Months Old 
1.6.3. EEG in Early Infancy from 12 to 36 Months Old 
1.6.4. EEG in Preschool Age from 3 to 5 Years Old 
1.6.5. EEG in Older Children from 6 to 12 Years Old 
1.6.6. EEG in Adolescents from 13 to 20 Years Old 
1.6.7. Key Concepts 

1.7. Slow Abnormalities: Description and Significance 

1.7.1. Focal Slow Abnormalities 

1.7.1.1. Summary 
1.7.1.2. Pattern Description 
1.7.1.3. Clinical Significance of Slow Focal Waves 
1.7.1.4. Disorders Responsible for Slow Focal Waves 

1.7.2. Asynchronous Generalized Slow Abnormalities 

1.7.2.1. Summary 
1.7.2.2. Pattern Description 
1.7.2.3. Clinical Significance of Asynchronous Generalized Waves 
1.7.2.4. Disorders Responsible for Asynchronous Generalized Waves 

1.7.3. Synchronous Generalized Slow Waves 

1.7.3.1. Summary 
1.7.3.2. Pattern Description 
1.7.3.3. Clinical Significance of Asynchronous Generalized Waves 
1.7.3.4. Disorders Responsible for Asynchronous Generalized Waves 

1.7.4. Conclusions 

1.8. Focal and Generalized Intercritical Epileptiform Abnormalities 

1.8.1. General Considerations 
1.8.2. Identification Criteria 
1.8.3. Localization Criteria 
1.8.4. Intercritical Epileptiform Abnormalities and Their Interpretation 

1.8.4.1. Spikes and Sharp Waves 
1.8.4.2. Benign Focal Epileptiform Discharges 
1.8.4.3. Wave-Spike 

1.8.4.3.1. Slow Wave-Spike 
1.8.4.3.2. 3 Hz Wave-Spike 
1.8.4.3.3. Polyspike or Polyspike-Wave 

1.8.4.4. Hypsarrhythmia 
1.8.4.5. Focal Intercritical Abnormalities in Generalized Epilepsies 

1.8.5. Summary/Key points 

1.9. Ictal EEG: Seizure Types and Electroclinical Correlates 

1.9.1. Generalized Onset Seizures 

1.9.1.1. Motor Onset 
1.9.1.2. Non-Motor Onset 

1.9.2. Focal Onset Seizures 

1.9.2.1. State of Consciousness 
1.9.2.2. Motor/Non-Motor Onset 
1.9.2.3. Focal Presenting Progression to Bilateral Tonic-Clonic 
1.9.2.4. Hemispheric Lateralization 
1.9.2.5. Lobar Localization 

1.9.3. Unknown Onset Seizures 

1.9.3.1. Motor/Non-Motor 
1.9.3.2. Not Classified 

1.9.4. Key Concepts 

1.10. Quantified EEG 

1.10.1. Historical Clinical Practice Use of Quantified EEG 
1.10.2. Quantified EEG Application Methods 

1.10.2.1. Types of Quantified EEG 

1.10.2.1.1. Power Spectrum 
1.10.2.1.2. Synchronization Measurements 

1.10.3. Quantified EEG in Current Clinical Practice 

1.10.3.1. Encephalopathies Classification 
1.10.3.2. Epileptic seizures Detection 
1.10.3.3. Advantages of Continuous EEG Monitoring 

1.10.4. Key Concepts

Module 2. Electroencephalogram (EEG) in Electroclinical Syndromes and Neurocritical Patients: Neurophysiological Precision Techniques in the Diagnosis and Treatment of Epilepsy

2.1. Electroclinical syndromes in Neonates and Infants 

2.1.1. Neonatal Period 

2.1.1.1. Ohtahara Syndrome 
2.1.1.2. Early Myoclonic Encephalopathy 
2.1.1.3. Neonatal Self-Limited Seizures: Self-Limited Familial Neonatal Epilepsy 
2.1.1.4. Neonatal-Onset Structural Focal Epilepsy 

2.1.2. Infant Period 

2.1.2.1. West Syndrome 
2.1.2.2. Dravet Syndrome 
2.1.2.3. Febrile Seizures Plus and Genetic Epilepsy with Febrile Seizures Plus 
2.1.2.4. Myoclonic Epilepsy in Infants 
2.1.2.5. Familial and Non-Familial Self-Limited Infant Epilepsy 
2.1.2.6. Infant Epilepsy with Migratory Focal Seizures 
2.1.2.7. Myoclonic Status Myoclonicus in Non-Progressive Encephalopathies 
2.1.2.8. Epilepsy in Chromosomal Disorders 

2.2. Electroclinical Syndromes in Childhood 

2.2.1. Role of EEG and Video-EEG in the Diagnosis and Classification of Epileptic Syndromes with Onset between 3 and 12 Years of Age 

2.2.1.1. Background and Current Clinical Practice 
2.2.1.2. Methodological Design and Recording Protocols 
2.2.1.3. Interpretation, Diagnostic Value of Findings, Reporting 
2.2.1.4. Integration of EEG in Syndrome-Ethiology Taxonomy 

2.2.2. Genetic Generalized Epilepsies (Idiopathic, GGE) 

2.2.2.1. Typical EEG Characteristics of EGI and Methodological Principles 
2.2.2.2. Infant Absence Epilepsy 
2.2.2.3. Juvenile Absence Epilepsy 
2.2.2.4. Other GGE Phenotypes (3-12 Years Old) 
2.2.2.5. Epilepsies with Reflex Seizures 

2.2.3. Genetic Focal Epilepsies (Idiopathic, GFE) 

2.2.3.1. Typical EEG Characteristics of EFI and Methodological Principles 
2.2.3.2. Idiopathic Focal Epilepsy with Centro-Temporal Spikes 
2.2.3.3. Panayiotopoulos Syndrome 
2.2.3.4. Other GFE Phenotypes (3-12 Years Old) 

2.2.4. Non-Idiopathic Focal Epilepsies (FE): Lobar Syndromes 

2.2.4.1. Typical EEG Characteristics of EF and Methodological Principles 
2.2.4.2. Frontal Lobe Epilepsy 
2.2.4.3. Temporal Lobe Epilepsy 
2.2.4.4. Posterior Cortex Epilepsy 
2.2.4.5. Other Localizations (Insula, Cingulate, Hemispheric Lesions) 

2.2.5. Epileptic Encephalopathies (EE) and Related Syndromes (3-12 Years Old) 

2.2.5.1. Typical EEG Characteristics of EE and Methodological Principles 
2.2.5.2. Lennox-Gastaut Syndrome 
2.2.5.3. Encephalopathy with Electrical Sleep Electrical Status Sickness (ESES) and Landau-Kleffner Syndrome 
2.2.5.4. Epilepsy with Myoclonus-Atonic Seizures (Doose Syndrome) 
2.2.5.5. Epilepsy with Myoclonic Absences 

2.3. Electroclinical Syndromes in Adolescents and Adults 

2.3.1. Role of EEG in the Diagnosis of Epileptic Syndromes in Adolescents and Adults 
2.3.2. Genetic Generalized Epilepsy in Adolescents and Adults 

2.3.2.1. Juvenile Myoclonic Epilepsy 
2.3.2.2. Juvenile Absence Epilepsy 
2.3.2.3. Epilepsy with Generalized Tonic-Clonic Seizures 
2.3.2.4. Other EGI Phenotypes in Adolescents and Adults 

2.3.3. Non-Idiopathic Focal Epilepsy in Adolescents and Adults: Lobar Syndromes 

2.3.3.1. Frontal Lobe 
2.3.3.2. Temporal Lobe 
2.3.3.3. Other Locations 

2.3.4. Other Non-Age-Specific Epileptic Syndromes 
2.3.5. Epilepsy in the Elderly 

2.4. ICU EEG Nomenclature 

2.4.1. Minimum Requirements for Reporting in Neurocritical Patients 
2.4.2. Background Tracing 
2.4.3. Sporadic Onset Epileptiform Discharges 
2.4.4. Rhythmic and/or Periodic Patterns 
2.4.5. Electrical and Electro-Clinical Seizures 
2.4.6. Brief Potentially Ictal Rhythmic Discharges (BIRDs) 
2.4.7. Ictal-Interictal Continuum 
2.4.8. Other Terminology 

2.5. EEG in Altered Level of Consciousness, Coma, and Brain Death 

2.5.1. EEG Findings in Encephalopathy 
2.5.2. EEG Findings in Coma 
2.5.3. Brain Electrical Inactivity 
2.5.4. Evoked Potentials in Conjunction with EEG in Patients with Altered Level of Consciousness 

2.6. Status Epilepticus I 

2.6.1. Context 

2.6.1.1. “Time is the Brain” 
2.6.1.2. Pathophysiology 

2.6.2. Definition and Timing 
2.6.3. Classification. Diagnistic Axes 

2.6.3.1. Axis I: Semiology 
2.6.3.2. Axis II: Etiology 
2.6.3.3. Axis III: EEG Correlate 
2.6.3.4. Axis IV: Age 

2.7. Status Epilepticus II 

2.7.1. Non-Convulsive Status Epilepticus: Definition 
2.7.2. Semiology 

2.7.2.1. Non-Convulsive Status in Comatose Patients 
2.7.2.2. Non-Convulsive Status in Non-Comatose Patients 

2.7.2.2.1. Dyscognitive Status: Altered Level of Consciousness (or Dialeptic) and Aphasic 
2.7.2.2.2. Continuous Aura 
2.7.2.2.3. Autonomic Status 

2.7.3. EEG Criteria to Determine Non-Convulsive Status (Salzburg Criteria) 

2.8. Continuous EEG/Video-EEG Monitoring in the ICU 

2.8.1. Usefulness and Conditions 
2.8.2. Recommended Indications and Duration 

2.8.2.1. Adult and Pediatric Population 
2.8.2.2. Neonates 

2.8.3. Clinical Tools 
2.8.4. New Devices 

2.9. Epilepsy Surgery 

2.9.1. Preoperative Video-EEG 

2.9.1.1. Superficial 
2.9.1.2. Invasive 
2.9.1.3. Semi-Invasive 

2.9.2. Intraoperative Monitoring. 

2.10. High-Density Electroencephalogram: Generator Localization and Source Analysis 

2.10.1. Signal Acquisition 

2.10.1.1. General Aspects 
2.10.1.2. Type, Localization and Number of Electrodes 
2.10.1.3. The Importance of References 

2.10.2. Digitalizing Electrode Localization 
2.10.3. Debugging, Artifacts and Signal Cleaning 
2.10.4. Blind Source Separation 
2.10.5. Brain Dipoles 
2.10.6. Brain Maps 

2.10.6.1. Adaptive Spatial Filters 

2.10.7. Skull and Brain Modeling 

2.10.7.1. Spherical Models 
2.10.7.2. Surface Element Model 

2.10.8. Finite Element Model 
2.10.9. Generator Localization: Inverse Problem 

2.10.9.1. Single Current Dipole Model 
October 02, 2010) Imaging Methods 

Module 3. Evoked Potentials

3.1. Fundamentals of Evoked Potentials 

3.1.1. Fundamental Concepts 
3.1.2. Types of Evoked Potentials 
3.1.3. Techniques and Requirements 
3.1.4. Clinical Applications 

3.2. Neurophysiological Study of the Eye and the Visual Pathway I 

3.2.1. Electroretinogram 

3.2.1.1. Flash ERG 
3.2.1.2. Pattern ERG (Checkerboard) 
3.2.1.3. Ganzfeld ERG 
3.2.1.4. Multifocal ERG 

3.2.2. Electrooculogram 

3.3. Neurophysiological Study of the Eye and the Visual Pathway II 

3.3.1. Visual Evoked Potentials 

3.3.1.1. Pattern Stimulation 

3.3.1.1.1. Complete Field Study 
3.3.1.1.2. Hemifield Studies: Quadrants 

3.3.1.2. LED-Glasses Stimulation 
3.3.1.3. Other techniques: Multifocal PEV 

3.4. Auditory Pathway 

3.4.1. Anatomophysiology of the Auditory Pathways 
3.4.2. Brainstem Auditory Evoked Potentials 

3.4.2.1. Short Latency 
3.4.2.2. Medium Latency 
3.4.2.3. Long Latency 

3.4.3. Other Techniques 

3.4.3.1. Otoacoustic Emissions 

3.4.3.1.1. Transient Evoked 
3.4.3.1.2. Distortion Products 

3.4.3.2. Electrocochleography 
3.4.3.3. Steady State Auditory Evoked Potentials 

3.4.3.3.1. PEAee 
3.4.3.3.2. PEAee-MF 

3.4.3.4. Audiometry 

3.4.3.4.1. Pure Tone Audiometry: Liminal Tonal Audiometry 
3.4.3.4.2. Bone Conduction Audiometry 

3.5. Vestibular System 

3.5.1. Vestibular System and the Visual and Proprioceptive Systems 
3.5.2. Nystagmus 

3.5.2.1. Vestibular Tests 

3.5.2.1.1. Videonystagmography (VNG) 

3.5.2.1.1.1. Oculomotor System Tests 
3.5.2.1.1.2. Postural and Positional Tests 
3.5.2.1.1.3. Caloric Tests 
3.5.2.1.1.4. Additional VNG Tests 

3.5.3. Peripheral and Central Vertigo 

3.5.3.1. Diagnostic Tests 

3.5.3.1.1. Electronystagmography 
3.5.3.1.2. vHIT 
3.5.3.1.3. Posturography 
3.5.3.1.4. Vestibular Myogenic Evoked Potentials 

3.5.3.2. HINTS Protocol 
3.5.3.3. Benign Paroxysmal Positional Vertigo (BPPV) 

3.6. Somatosensory Potentials 

3.6.1. Anatomophysiological Recall 
3.6.2. Technique: Practical Procedures 
3.6.3. Interpretation 
3.6.4. Clinical Applications 
3.6.5. Dermatomal Somatosensory Evoked Potentials 

3.7. Motor Evoked Potentials 

3.7.1. Electric Stimulation 
3.7.2. Transcranial Magnetic Stimulation 
3.7.3. Diagnostic Applications 

3.8. Evoked Potentials in the ICU 

3.8.1. Introduction 
3.8.2. Most Used Potentials in the ICU 

3.8.2.1. Somatosensory Evoked Potentials (SSEP) 
3.8.2.2. Truncal Auditory Evoked Potentials (TAEP) 
3.8.2.3. Visual Evoked Potentials (VEP) 
3.8.2.4. Long-Latency Evoked Potentials-Mismatch Negativity 

3.8.3. Assessing the Use of EPs in Coma Patients or Suffering Altered Consciousness in the ICU 
3.8.4. Evoked Potentials in the ICU 

3.8.4.1. Olfactory Evoked Potentials 
3.8.4.2. Cardiac Beat Evoked Potentials 
3.8.4.3. Others 

3.9. Cognitive Potentials 

3.9.1. Definition of Cognitive Potentials 
3.9.2. Types of Cognitive Potentials: General Information 
3.9.3. Measurement Parameters for Cognitive Potentials 
3.9.4. Mismatch Negativity: Introduction. Recording and Evaluation Generators Clinical Applications 
3.9.5. P300: Introduction Recording and Evaluation Generators Clinical Applications 
3.9.6. N400: Introduction Recording and Evaluation Generators Clinical Applications 
3.9.7. Other Cognitive Potentials in Research 
3.9.8. Conclusions 
3.10. Evoked Potentials in Pediatric Patients

Module 4. Neurophysiological Techniques in the Diagnosis of Neuromuscular Diseases

4.1. Anatomy and Physiology of the Peripheral Nervous System 
4.2. Sensory and Motor Nerve Conduction Studies 
4.3. Reflexology and Late Responses 

4.3.1. F Wave 
4.3.2. A Wave 
4.3.3. H Reflex 
4.3.4. T Reflex 

4.4. Technical and Quality Considerations in Neuromuscular Electrodiagnosis: Procedural Errors Precautions 
4.5. Neurophysiological Assessment of Neuromuscular Junction Function 

4.5.1. Repetitive Nerve Stimulation 
4.5.2. Jitter Study Using Single-Fiber Needles and Concentric Needles 

4.5.2.1. Voluntary Contraction 
4.5.2.2. Axonal Stimulation 

4.6. Principles of Electromyography: Electromyographic Response in Normal Motor Units Insertion Activity Motor Plate Activity Motor Unit Potential Pathological Muscle Activity 
4.7. Techniques for Quantitative Estimation of Motor Units 

4.7.1. MUNE 
4.7.2. MUNIX 
4.7.3. MUSIX 

4.8. Neurophysiological Study of the Facial and Trigeminal Nerves 
4.9. Neurophysiological Evaluation of the Respiratory System 

4.9.1. Laryngeal Nerves and Muscles 
4.9.2. Phrenic Nerve and Diaphragm Muscle 

4.10. Neuromuscular Ultrasound 

4.10.1. Basic Neural Semiology and Physical Basis Adapted to Ultrasound Study 
4.10.2. Normal Anatomy and Ultrasound Correlation 

4.10.2.1. Upper Limbs 
4.10.2.2. Lower Extremities 

4.10.3. Ultrasound Scanning: Peripheral Nerves 

4.10.3.1. Upper Limbs 
4.10.3.2. Lower Extremities 

4.10.4. Ultrasound Diagnosis: Focal Neuropathies 

4.10.4.1. Upper Limbs 
4.10.4.2. Lower Extremities 

4.10.5. Advanced Imaging 
4.10.6. Percutaneous Interventional Techniques 

Module 5. Electroneuromyography (ENMG) Protocols in the Diagnosis of Neuromuscular Diseases   

5.1. Neurophysiological Study in Pathology of the Cervical Roots and Brachial Plexus 
5.2. Neurophysiological Study in Pathology of Roots and Lumbosacral Plexus 
5.3. Neurophysiological Examination of Upper Limb Nerve Pathology Mononeuropathies and Focal Lesions 

5.3.1. Median Nerve 
5.3.2. Ulnar Nerve 
5.3.3. Radial Nerve 
5.3.4. Shoulder Girdle Nerves 
5.3.5. Others 

5.4. Neurophysiological Examination of Lower Limb Nerve Pathology Mononeuropathies and Focal Lesions 

5.4.1. Sciatic (Ischiadic) Nerve 
5.4.2. Femoral Nerve 
5.4.3. Obturator Nerve 
5.4.4. Others 

5.5. Neurophysiological Examination of Polyneuropathies 
5.6. Neurophysiological Examination of Myopathies Muscular Dystrophies, Myotonias and Channelopathies 
5.7. Neurophysiological Assessment of Motor Neuron Diseases 
5.8. Clinical-Neurophysiological Correlation of Neuromuscular Transmission Disorders 

5.8.1. Myasthenia Gravis 
5.8.2. Lamber-Eaton Syndrome 
5.8.3. Botulism 
5.8.4. Others 

5.9. Neurophysiological Study of Tremor and Other Movement Disorders 
5.10. Neurophysiological Assessment of Neuromuscular Pathology in Pediatrics 

Module 6. Intraoperative Neurophysiological Monitoring

6.1. Neurophysiological Techniques Applied to MIO: Monitoring and Mapping 

6.1.1. Monitoring Techniques 

6.1.1.1. Motor Evoked Potentials 

6.1.1.1.1. Transcraneal 

6.1.1.1.1.1. Muscular Recording 
6.1.1.1.1.2. Epidural Recording: D Wave 

6.1.1.1.2. Direct Cortical Stimulation 

6.1.1.2. Somatosensory Evoked Potentials 
6.1.1.3. Brainstem Auditory Evoked Potentials 
6.1.1.4. Reflexes 
6.1.1.5. Peripheral Nerve, Plexus and Nerve Roots: Electromyography 

6.1.2. Mapping Techniques 

6.1.2.1. Phase Reversal 

6.1.2.1.1. Central Cortex/Sulcus 
6.1.2.1.2. Medullary/Posterior Cords 

6.1.2.2. Cortical 
6.1.2.3. Sub-Cortical 
6.1.2.4. Nerve, Plexus and Nerve Roots: EMG 

6.2. Electrodes. Influence of Anesthetics Filters and Artifacts 

6.2.1. Types of Stimulation and Recording Electrodes: Characteristics and Indications 
6.2.2. Anesthesia and Monitoring 
6.2.3. Filters 
6.2.4. Artefacts 
6.2.5. Risks. Contraindications 

6.3. Intraoperative Neurophysiologic Monitoring in Supratentorial Process Surgery 

6.3.1. Monitoring and Mapping Indications 
6.3.2. Techniques Used 
6.3.3. Alarm Criteria 

6.4. Intraoperative Neurophysiologic Monitoring in Infratentorial Process Surgery 

6.4.1. Monitoring and Mapping Indications 
6.4.2. Techniques Used 
6.4.3. Alarm Criteria 

6.5. Intraoperative Functional Speech Exploration during Brain Lesionectomies 
6.6. Intraoperative Neurophysiologic Monitoring in Spinal Chord Surgery 

6.6.1. Monitoring and Mapping Indications 
6.6.2. Techniques Used 
6.6.3. Alarm Criteria 

6.7. Intraoperative Neurophysiologic Monitoring in Cervical and Dorsal Spine Surgery 

6.7.1. Monitoring and Mapping Indications 
6.7.2. Techniques Used 
6.7.3. Alarm Criteria 

6.8. Intraoperative Neurophysiologic Monitoring in Lumbar and Sacro Spine Surgery 

6.8.1. Monitoring and Mapping Indications 
6.8.2. Techniques Used 
6.8.3. Alarm Criteria 

6.9. Intraoperative Neurophysiologic Monitoring in Peripheral Nerve and Plexus Surgery 

6.9.1. Monitoring and Mapping Indications 
6.9.2. Techniques Used 
6.9.3. Alarm Criteria 

6.10. Intraoperative Neurophysiologic Monitoring in Vascular Surgery 

6.10.1. Monitoring and Mapping Indications 
6.10.2. Techniques Used 
6.10.3. Alarm Criteria 

Module 7. Autonomic Nervous System: Pain Other Complex Techniques or Other Specialty Partnerships 

7.1. Autonomic Nervous System 

7.1.1. Anatomy 
7.1.2. Physiology 
7.1.3. Neurotransmission 

7.2. Autonomic Dysfunction 

7.2.1. Semiology 
7.2.2. Pathology 

7.2.2.1. Cardiovascular Disorders 
7.2.2.2. Thermoregulation Disorders 
7.2.2.3. Others 

7.2.2.3.1. Autonomic Dysfunction in Neurodegenerative Diseases 
7.2.2.3.2. Urological Dysfunction 

7.3. Neurophysiological Tests for the Study and Assessment of Autonomic Disorders 
7.4. Pain 

7.4.1. Pain Phisiopathogenesis 
7.4.2. Complex Regional Pain: Neuropathic Pain 
7.4.3. Central Sensitization 

7.5. Neurophysiological Techniques for the Evaluation of Painful Processes: Neurophysiological Implications in Diagnosis 

7.5.1. Termotest 
7.5.2. CHEPs 
7.5.3. Laser Evoked Potentials 

7.6. Monitoring Techniques for Special Conditions 

7.6.1. Bispectral Index (BIS) 
7.6.2. ANI/NIPE 
7.6.3. Others 

7.7. Neurophysiological Techniques in Dentistry 

7.7.1. Pathology 
7.7.2. Techniques and Practical Applications 

7.8. Neurophysiological Studies of the Pelvic Floor 

7.8.1. Combined Techniques in Assessing the Neuromuscular Function of the Pelvic Floor 

7.9. Clinical Neurophysiology and Biomechanics I: Gait Biomechanics 

7.9.1. Instrumental Analysis of Kinetic, Kinematic and Electromyographic Patterns 
7.9.2. Muscle Activation Sequence in Gait Phases: Muscle Activation Maps 

7.10. Clinical Neurophysiology and Biomechanics II 

7.10.1. Neurophysiological Evaluation of the Foot and Ankle 
7.10.2. Combined Neurophysiological and Ultrasound Studies 

Module 8. Neurobiology and Physiology of Sleep: Methodological Aspects 

8.1. Normal Sleep 

8.1.1. Features 
8.1.2. Changes with Age 
8.1.3. Function 

8.2. Neurobiology and Physiological Changes during the Sleep-Wake Cycle 
8.3. Chronobiology of the sleep-wake cycle 
8.4. Polysomnography I: Technical Aspects and Methodology 
8.5. Polysomnography II: Recording Sensors and Use 
8.6. Polysomnography III: Sleep Structure Quantification and Cardiorespiratory Events 
8.7. Polysomnography IV: Motor Event Quantification 
8.8. Advanced Automatic Signal Analysis 
8.9. Other Polysomnographic Techniques in Sleep-Wakefulness 

8.9.1. Breathing Polygraphy during Sleep 
8.9.2. Multiple Sleep Latency Test 
8.9.3. Maintenance of Wakefulness Test 
8.9.4. Suggested Immobilization Test 

8.10. Actigraphy, Circadian Monitoring and Other Ambulatory Measurements 

Module 9. Clinical-Instrumental Diagnosis of Sleep Disorders

9.1. Insomnia and Excessive Daytime Sleepiness Evaluation 
9.2. Sleep-Wake Circadian Rhythm Disorder Evaluation 
9.3. Breathing Disorder Evaluation during Sleep I 
9.4. Sleep-Disordered Breathing Evaluation during Sleep II 
9.5. NREM and Mixed REM-NREM Parasomnias Evaluation 
9.6. REM Parasomnias Evaluation 
9.7. Wake-Sleep Dissociative States: Status Dissociatus Evaluation 
9.8. Movement Disorder Evaluation during Sleep I 

9.8.1. Restless Leg Syndrome or Willis-Ekbom Disease 
9.8.2. Periodic Limb Movement Syndrome during Sleep 

9.9. Movement Disorder Evaluation during Sleep II 
9.10. Epilepsy Evaluation during Sleep: Sleep in Neurodegenerative Diseases 

Module 10. Neurophysiological Techniques for Therapeutic Purposes: Invasive and Non-Invasive Neuromodulation Botulinum toxin 

10.1. Invasive Brain Stimulation: Physiological Basis 

10.1.1. Definition and Physiological Basis of Invasive Brain Stimulation (ICS) 
10.1.2. Main Indications at the Present Time 

10.2. Direct Cortical and Medullary Stimulation 

10.2.1. Neurophysiological Basis of Direct Cortical Stimulation in Pain Treatments: Indications and Practical Examples 
10.2.2. Neurophysiological Basis of Spinal Cord Electrical Stimulation in the Treatment of Pain. Indications and Practical Examples 

10.3. Neuromodulation in Epilepsy. Brain Stimulation for Diagnosis and Treatment 

10.3.1. Basis and Rationale of Neuromodulation for the Diagnosis of Epilepsy 
10.3.2. Neuromodulation Applied to the Treatment of Epilepsy. Indications and Practical Examples 

10.4. Deep Brain Stimulation (DBS) 

10.4.1. Use of DBS in Parkinson's Disease (PD) 
10.4.2. How Does DBS Work? 
10.4.3. Clinical Indications for DBS in PD and Other Movement Disorders 

10.5. Vagus Nerve Stimulation (VNS) and Hypoglossal Nerve Stimulation (VNS). Stimulating Other Peripheral Nerves (Trigeminal, Tibial, Occipital, Sacral) 

10.5.1. VNS in Treating Epilepsy and Other Indications 
10.5.2. Stimulation of the Hypoglossal Nerve for the Treatment of OSAHS 
10.5.3. Stimulation of Other Peripheral Nerves (Trigeminal, Occipital, Tibial and Sacral) 

10.6. Hearing Implants 

10.6.1. Definition and Fundamentals of Hearing Implants 
10.6.2. Types of Hearing Implants: Cochlear and Brain Stem Implants 

10.7. Non-Invasive Brain Stimulation (NIBS): Physiological Basis 

10.7.1. Physiological Basis of ECNI 
10.7.2. Types of NCTS: Transcranial Electrical Stimulation (TENS) and Transcranial Magnetic Stimulation (TMS). 

10.8.  Noninvasive Brain Stimulation: Indications and Therapeutic Protocols 

10.8.1. Indications for NCDI 
10.8.2. Scientific Evidence and Therapeutic Protocols 

10.9. TENS 

10.9.1. Definition, Mechanism of Action and Modalities 
10.9.2. Indications, Contraindications and Effects 

10.10. Botulinum Toxin Infiltration with Guidance by Neurophysiological Techniques 

10.10.1. Botulinum Toxin Therapeutic and Adverse Effects 
10.10.2. Application of Botulinum Toxin in Cervical Dystonia, Blepharospasm, Facial Myokymia, Oromandibular Dystonia, Upper Extremity and Trunk Dystonia. 
10.10.3. Case Studies

study neurophysiological diagnosis treatment TECH Global University

The Syllabus of this program will be at your fingertips wherever and whenever you want from any device connected to the Internet"

Hybrid Master’s Degree Update on Neurophysiological Diagnosis and Treatment

The Hybrid Master's Degree in Update on Neurophysiological Diagnosis and Treatment is an educational program designed for health professionals interested in broadening their knowledge and skills in the field of neurophysiology. This program offers online learning that allows students to acquire the necessary theoretical knowledge and experience to become experts in the diagnosis and treatment of neurological diseases. During the program, students will learn about the most advanced neurophysiology techniques, such as electroencephalography (EEG), electromyography (EMG) and somatosensory potentiation (PSE). It will also explore topics related to neuromodulation, neuroplasticity and neurorehabilitation, among others. One of the highlights of this program is the opportunity for internships in hospitals and specialized clinics at the end of the Hybrid Master's Degree, where students will have the opportunity to apply their knowledge in real clinical settings.

Study and climb the professional ladder with TECH

The program's syllabus is constantly updated to ensure that students are exposed to the latest advances and practices in the field of neurophysiology. Our faculty is composed of internationally recognized experts who are committed to academic excellence and the training of highly skilled professionals. Upon successful completion of the Hybrid Master's Degree in Update on Neurophysiological Diagnosis and Treatment, graduates will be prepared to face the challenges and demands of clinical practice in the field of neurophysiology. They will be able to perform accurate assessments and diagnoses, plan and execute effective treatments, and collaborate with other healthcare professionals in the comprehensive management of patients. If you are a health professional passionate about neurophysiology and want to update your knowledge and skills, do not hesitate to enroll in the Hybrid Master's Degree in Update on Neurophysiological Diagnosis and Treatment. This program will provide you with the necessary tools to excel in your career and contribute to the well-being and health of your patients.