University certificate
The world's largest artificial intelligence faculty”
Introduction to the Program
Mediante esta Postgraduate diploma 100% online, manejarás las herramientas de la Inteligencia Artificial para automatizar Procesos Financieros y gestionar Riesgos de inversión”
Un nuevo informe elaborado por el Banco Mundial refleja que las tecnologías de la Inteligencia Artificial están impulsando una transformación profunda en la forma en que las organizaciones financieras operan, ofreciendo soluciones que mejoran la eficiencia, la precisión y la capacidad de adaptación frente a un entorno económico global en constante cambio. Frente a esta realidad, los profesionales necesitan manejar el uso de algoritmos avanzados y Aprendizaje Automático para identificar patrones y anomalías en los datos financieros, con el objetivo de identificar riesgos potenciales.
En este marco, TECH lanza un revolucionario programa en Financial Process Automation and Risk Management with Artificial Intelligence. El itinerario académico ahondará en áreas que abarcan desde la automatización robótica de procesos en operaciones financieras o la implementación de sistemas de pagos automatizados mediante Stripe Radar hasta la gestión de flujos de caja utilizando algoritmos de Deep Learning. Asimismo, el temario abordará en detalle las técnicas avanzadas de análisis de datos financieros empleando Google Data Studio, proporcionando a los alumnos habilidades para interpretar grandes volúmenes de datos de manera eficiente. Además, el programa brindará diversas estrategias de Machine Learning para la evaluación cuantitativa del riesgo de crédito, permitiendo una identificación y mitigación más precisa de riesgos financieros mediante modelos predictivos sofisticados.
Por otra parte, la metodología de este programa refuerza su carácter innovador. Para ello, emplea la metodología Relearning, basada en la repetición de conceptos clave para fijar conocimientos y facilitar el aprendizaje. De esta manera, la combinación de flexibilidad y un enfoque pedagógico robusto, lo hace altamente accesible. Además, los expertos accederán a una biblioteca didáctica con disímiles recursos multimedia en diferentes formatos como resúmenes interactivos, vídeos explicativos e infografías. También los especialistas se capacitarán en entornos simulados de aprendizaje para extraer valiosas lecciones que aplicarán en su praxis laboral.
Una experiencia académica sin horarios establecidos y a la que podrás acceder desde cualquier dispositivo con conexión a internet. ¡Incluso desde tu móvil!”
Esta Postgraduate diploma en Financial Process Automation and Risk Management with Artificial Intelligence contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Utilizarás análisis de datos para respaldar decisiones estratégicas en áreas como inversiones, financiamiento y gestión de portafolios”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
¿Buscas aplicar modelos predictivos para la evaluación de riesgos financieros? Lógralo con esta titulación universitaria en solamente 6 meses"
El sistema Relearning aplicado por TECH en sus programas reduce las largas horas de estudio tan frecuentes en otros métodos de enseñanza. ¡Disfrutarás de un aprendizaje natural y progresivo! "
Syllabus
This university program has been designed by recognized experts in Financial Process Automation and Risk Management with Artificial Intelligence. The study plan will delve into issues ranging from robotic automation of financial processes or implementation of automatic payment systems with Stripe Radar to cash flow management with Deep Learning. At the same time, the syllabus will delve into the most advanced techniques for analyzing financial data with Google Data Studio. In addition, the program will offer the most effective Machine Learning strategies to evaluate credit risk.
You will implement Artificial Intelligence solutions to automate routine financial tasks such as bank reconciliation, accounts receivable management and reporting”
Module 1. Automation of Financial Department Processes with Artificial Intelligence
1.1. Automation of Financial Processes with Artificial Intelligence and Robotic Process Automation (RPA)
1.1.1. AI and RPA for Process Automation and Robotization
1.1.2. RPA Platforms for Financial Processes: UiPath, Blue Prism, and Automation Anywhere
1.1.3. Evaluation of RPA Use Cases in Finance and Expected ROI
1.2. Automated Invoice Processing with AI with Kofax
1.2.1. Configuration of AI Solutions for Invoice Processing with Kofax
1.2.2. Application of Machine Learning Techniques for Invoice Classification
1.2.3. Automation of the Accounts Payable Cycle with AI Technologies
1.3. Payment Automation with AI Platforms
1.3.1. Implementing Automated Payment Systems with Stripe Radar and AI
1.3.2. Use of Predictive AI Models for Efficient Cash Management
1.3.3. Security in Automated Payment Systems: Fraud Prevention with AI
1.4. Bank Reconciliation with AI and Machine Learning
1.4.1. Automation of Bank Reconciliation Using AI with Platforms Such as Xero
1.4.2. Implementation of Machine Learning Algorithms to Improve Accuracy
1.4.3. Case Studies: Efficiency Improvements and Error Reduction
1.5. Cash Flow Management with Deep Learning and TensorFlow
1.5.1. Predictive Cash Flow Modeling with LSTM Networks Using TensorFlow
1.5.2. Implementation of LSTM Models in Python for Financial Forecasting
1.5.3. Integration of Predictive Models in Financial Planning Tools
1.6. Inventory Automation with Predictive Analytics
1.6.1. Use of Predictive Techniques to Optimize Inventory Management
1.6.2. Apply Predictive Models with Microsoft Azure Machine Learning
1.6.3. Integration of Inventory Management Systems with ERP
1.7. Creation of Automated Financial Reports with Power BI
1.7.1. Automation of Financial Reporting using Power BI
1.7.2. Developing Dynamic Dashboards for Real-Time Financial Analysis
1.7.3. Case Studies of Improvements in Financial Decision Making with Automated Reports
1.8. Purchasing Optimization with IBM Watson
1.8.1. Predictive Analytics for Purchasing Optimization with IBM Watson
1.8.2. AI Models for Negotiations and Pricing
1.8.3. Integration of AI Recommendations in Purchasing Platforms
1.9. Customer Support with Financial Chatbots and Google DialogFlow
1.9.1. Implementing Financial Chatbots with Google Dialogflow
1.9.2. Integration of Chatbots in CRM Platforms for Financial Support
1.9.3. Continuous Improvement of Chatbots Based on User Feedback
1.10. AI-Assisted Financial Auditing
1.10.1. IA Applications in Internal Audits: Transaction Analysis
1.10.2. Implementation of IA for Compliance Auditing and Discrepancy Detection
1.10.3. Improvement of Audit Efficiency with IA Technologies
Module 2. Analysis and Visualization of Financial Data with Plotly and Google Data Studio
2.1. Fundamentals of Financial Data Analysis
2.1.1. Introduction to Data Analysis
2.1.2. Tools and Techniques for Financial Data Analysis
2.1.3. Importance of Data Analysis in Finance
2.2. Techniques for Exploratory Analysis of Financial Data
2.2.1. Descriptive Analysis of Financial Data
2.2.2. Visualization of Financial Data with Python and R
2.2.3. Identifying Patterns and Trends in Financial Data
2.3. Financial Time Series Analysis
2.3.1. Fundamentals of Time Series
2.3.2. Time Series Models for Financial Data
2.3.3. Time Series Analysis and Forecasting
2.4. Correlation and Causality Analysis in Finance
2.4.1. Correlation Analysis Methods
2.4.2. Techniques for Identifying Causal Relationships
2.4.3. Applications in Financial Analysis
2.5. Advanced Visualization of Financial Data
2.5.1. Advanced Data Visualization Techniques
2.5.2. Tools for Interactive Visualization (Plotly, Dash)
2.5.3. Use Cases and Practical Examples
2.6. Cluster Analysis in Financial Data
2.6.1. Introduction to Cluster Analysis
2.6.2. Applications in Market and Customer Segmentation
2.6.3. Tools and Techniques for Cluster Analysis
2.7. Network and Graph Analysis in Finance
2.7.1. Fundamentals of Network Analysis
2.7.2. Applications of Network Analysis in Finance
2.7.3. Network Analysis Tools (NetworkX, Gephi)
2.8. Text and Sentiment Analysis in Finance
2.8.1. Natural Language Processing (NLP) in Finance
2.8.2. Sentiment Analysis in News and Social Networks
2.8.3. Tools and Techniques for Text Analysis
2.9. Financial Data Analysis and Visualization Tools with AI
2.9.1. Data Analysis Libraries in Python (Pandas, NumPy)
2.9.2. Visualization Tools in R (ggplot2, Shiny)
2.9.3. Practical Implementation of Analysis and Visualization
2.10. Practical Analysis and Visualization Projects and Applications
2.10.1. Development of Financial data Analysis Projects
2.10.2. Implementation of Interactive Visualization Solutions
2.10.3. Evaluation and Presentation of Project Results
Module 3. Artificial Intelligence for Financial Risk Management with TensorFlow and Scikit-Learn
3.1. Fundamentals of Financial Risk Management
3.1.1. Risk Management Basics
3.1.2. Types of Financial Risks
3.1.3. Importance of Risk Management in Finance
3.2. Credit Risk Models with AI
3.2.1. Machine Learning Techniques for Credit Risk Assessment
3.2.2. Credit Scoring Models (Scikit-Learn)
3.2.3. Implementation of Credit Risk Models with Python
3.3. Market Risk Models with AI
3.3.1. Market Risk Analysis and Management
3.3.2. Application of Predictive Market Risk Models
3.3.3. Implementation of Market Risk Models
3.4. Operational Risk and its Management with AI
3.4.1. Concepts and Types of Operational Risk
3.4.2. Application of AI Techniques for Operational Risk Management
3.4.3. Tools and Practical Examples
3.5. Liquidity Risk Models with AI
3.5.1. Fundamentals of Liquidity Risk
3.5.2. Machine Learning Techniques for Liquidity Risk Analysis
3.5.3. Practical Implementation of Liquidity Risk Models
3.6. Systemic Risk Analysis with AI
3.6.1. Systemic Risk Concepts
3.6.2. Applications of AI in the Evaluation of Systemic Risk
3.6.3. Case Studies and Practical Examples
3.7. Portfolio Optimization with Risk Considerations
3.7.1. Portfolio Optimization Techniques
3.7.2. Incorporation of Risk Measures in Optimization
3.7.3. Portfolio Optimization Tools
3.8. Simulation of Financial Risks
3.8.1. Simulation Methods for Risk Management
3.8.2. Application of Monte Carlo Simulations in Finance
3.8.3. Implementation of Simulations with Python
3.9. Continuous Risk Assessment and Monitoring
3.9.1. Continuous Risk Assessment Techniques
3.9.2. Risk Monitoring and Reporting Tools
3.9.3. Implementation of Continuous Monitoring Systems
3.10. Projects and Practical Applications in Risk Management
3.10.1. Development of Financial Risk Management Projects
3.10.2. Implementation of AI Solutions for Risk Management
3.10.3. Evaluation and Presentation of Project Results
You will benefit from an enjoyable learning experience through the didactic formats offered by this program, such as the explanatory video or the interactive summary”
Postgraduate Diploma in Financial Process Automation and Risk Management with Artificial Intelligence
In a world where technology is advancing by leaps and bounds, artificial intelligence (AI) has become an essential element in the financial arena. This digital transformation is redefining the way organizations manage their processes and risks, optimizing decision making and improving operational efficiency. Would you like to excel in this changing environment? You've come to the right place. At TECH Global University you will find this Postgraduate Diploma in Financial Process Automation and Risk Management with Artificial Intelligence that will help you achieve your goals. In this program, taught in 100% online mode, you will explore the automation of processes through the use of AI technologies, as well as their application in risk management. You will also address risk identification, the development of AI-based credit assessment models and the implementation of automated financial reporting systems. With a practical approach, this course will provide you with the ability to apply these techniques in real situations to excel in the job market.
Boost your career with Artificial Intelligence in Finance
The challenges of the financial sector require an innovative and up-to-date approach, which is why this TECH program will provide you with the tools to excel in this field. Here, you will learn how to implement automation processes that not only improve efficiency, but also enable more effective risk management. Next, you will emphasize the integration of machine learning tools to improve accuracy in fraud detection and investment portfolio optimization. Finally, you will handle the regulation of the use of AI in finance, the ethical implications of its implementation and best practices to ensure information security. Upon completion, you will be equipped with a set of skills that will enable you to lead digital transformation projects in organizations, becoming an agent of change in the financial field. Enroll now and take a decisive step towards professional success!