Introduction to the Program

You will acquire knowledge through a 100% online format, becoming an expert in Electrotherapy in Physical Activity and Sport” 

The use of electrical stimulation techniques in rehabilitation and physical performance has gained significant importance today.  Electrotherapy is used to treat various muscular and joint conditions, alleviating pain, improving blood circulation, and accelerating the recovery of injuries.  This tool is utilized as part of the physical preparation for athletes, as it helps optimize performance and prevent future injuries.  

In this context, TECH Global University will delve into an exclusive academic curriculum, focusing on key areas such as high-frequency electrotherapy, ultrasound therapy in physiotherapy, and electromagnetic fields.  These advancements are essential for the effective application of treatments in both the sports and therapeutic fields. With a technical and scientific approach, professionals will be able to integrate these methods into their daily practice, improving the quality and outcomes of treatments.  Additionally, the program will explore the physiological mechanisms underlying each of these approaches. 

This university program offers professionals a unique opportunity to refine their skills and acquire new knowledge that will allow them to stand out in their field.  The acquisition of advanced competencies in Electrotherapy techniques will not only improve the effectiveness of treatments but also provide the possibility to implement more innovative and personalized protocols. As such, graduates will be better prepared to address the specific needs of each patient, optimizing their performance and recovery. 

Finally, the methodology of TECH Global University, with its innovative Relearning approach, offers a completely flexible and accessible learning experience.  With a 100% online environment available 24/7, accessible from any device with an internet connection, professionals can progress at their own pace, adapting to their schedules and needs. 

Update your professional practice in the sports field with TECH Global University! Access the most innovative content in the use of Electrotherapy” 

This Master's Degree in Electrotherapy in Physical Activity and Sport contains the most complete and up-to-date scientific program on the market. The most important features include:

  • The development of practical cases presented by experts in Electrotherapy in Physical Activity and Sport 
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where the self-assessment process can be carried out to improve learning 
  • With a special emphasis on innovative methodologies in electrical stimulation techniques 
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an internet connection 

You will elevate your skills in using ultrasound therapy to treat various conditions in physiotherapy” 

The faculty includes professionals from the field of Electrotherapy in Physical Activity and Sport, who bring their work experience to this program, along with renowned specialists from leading societies and prestigious universities. 

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive learning experience designed to prepare for real-life situations. 

This program is designed around Problem-Based Learning, whereby the student must try to solve the different professional practice situations that arise throughout the program. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts. 

You will refine your skills in the use of electromagnetic fields for effective treatments in the sports field"

You will deepen your understanding of the therapeutic effects of high-frequency electrotherapy, enhancing its application in injury recovery"

Syllabus

This innovative university program will address essential aspects of Electrotherapy in Physical Activity and Sport, focusing on its application for rehabilitation and performance enhancement. In addition, professionals will develop competencies in Electrotherapy techniques for pain relief and muscle stimulation, optimizing the recovery of sports injuries and pain alleviation. The program will also delve into electrostimulation for neurological patients, enhancing motor functionality and accelerating rehabilitation times. As a result, this specialized knowledge will provide students with key tools to implement effective treatments in their daily practice. 

Get up to date with this innovative curriculum on the uses of electrostimulation in neurology, improving the motor recovery of athletes” 

Module 1. High-Frequency Electrotherapy 

1.1. Physical Fundamentals of High Frequency 

1.1.1. Introduction
1.1.2. Basic Principles 

1.2. Physiological Effects of High Frequency 

1.2.1. Athermal Effects 
1.2.2. Thermal Effects 

1.3. Therapeutic Effects of High Frequency 

1.3.1. Athermal Effects 
1.3.2. Thermal Effects 

1.4. Shortwave Fundamentals 

1.4.1. Short Wave: Capacitive Application Mode
1.4.2. Short Wave: Inductive Application Mode 
1.4.3. Short Wave: Pulsed Emission Mode 

1.5. Practical Applications of Shortwave 

1.5.1. Practical Applications of Continuous Shortwave 
1.5.2. Practical Applications of Pulsed Shortwave 
1.5.3. Practical Applications of Shortwave: Pathology Phase and Protocols 

1.6. Contraindications of Shortwave 

1.6.1. Absolute Contraindications 
1.6.2. Relative Contraindications 
1.6.3. Precautions and Safety Measures 

1.7. Practical Applications of the Microwave 

1.7.1. Microwave Basics 
1.7.2. Practical Microwave Considerations 
1.7.3. Practical Applications of Continuous Microwave 
1.7.4. Practical Applications of Pulsed Microwave 
1.7.5. Microwave Treatment Protocols 

1.8. Contraindications of the Microwave 

1.8.1. Absolute Contraindications 
1.8.2. Relative Contraindications 

1.9. Fundamentals of Techartherapy 

1.9.1. Physiological Effects of Techarterapy 
1.9.2. Dosage of Tecartherapy Treatment 

1.10. Practical Applications of Techartherapy 

1.10.1. Arthrosis 
1.10.2. Myalgia 
1.10.3. Muscle Fibrillar Rupture 
1.10.4. Post-Needling Pain of Myofascial Trigger Points 
1.10.5. Tendinopathy 
1.10.6. Tendon Rupture (Post-Surgical Period) 
1.10.7. Wound Healing 
1.10.8. Keloid Scars 
1.10.9. Edema Drainage 
1.10.10. Post-Exercise Recovery 

1.11. Contraindications of Techartherapy 

1.11.1. Absolute Contraindications 
1.11.2. Relative Contraindications 

Module 2. Ultrasound Therapy in Physiotherapy 

2.1. Physical Principles of Ultrasound Therapy 

2.1.1. Definition of Ultrasound Therapy 
2.1.2. Main Physical Principles of Ultrasound Therapy 

2.2. Physiological Effects of Ultrasound Therapy 

2.2.1. Mechanisms of Action of Therapeutic Ultrasound 
2.2.2. Therapeutic Effects of Ultrasound Therapy 

2.3. Main Parameters of Ultrasound Therapy 

2.3.1. Introduction 
2.3.2. Main parameters 

2.4. Practical Applications 

2.4.1. Ultrasound Treatment Methodology 
2.4.2. Practical Applications and Indications of Ultrasound Therapy 
2.4.3. Ultrasound Therapy Research Studies 

2.5. Ultrasonophoresis 

2.5.1. Definition of Ultrasonophoresis 
2.5.2. Mechanisms of Ultrasonophoresis 
2.5.3. Factors on Which the Effectiveness of Ultrasonophoresis Depends 
2.5.4. Ultrasonophoresis Considerations to Take into Account 
2.5.5. Research Studies on Ultrasonophoresis 

2.6. Contraindications to Ultrasound Therapy 

2.6.1. Absolute Contraindications 
2.6.2. Relative Contraindications 
2.6.3. Precautions 
2.6.4. Recommendations 
2.6.5. Contraindications to Ultrasonophoresis 

2.7. High-Frequency Ultrasound Therapy. High-Frequency Pressure Waves (HFPW) 

2.7.1. Definition of HFPW Therapy 
2.7.2. Parameters of HFPW Therapy and HIFU (High-Intensity Focused Ultrasound) Therapy 

2.8. Practical Applications of High-Frequency Ultrasound Therapy 

2.8.1. Indications for HFPW and HIFU Therapy 
2.8.2. HFPW and HIFU Therapy Research Studies 

2.9. Contraindications to High Frequency Ultrasound Therapy 

2.9.1. Introduction 
2.9.2. Main Contraindications 

Module 3. Other Electromagnetic Fields 

3.1. Laser. Physical Principles 

3.1.1. Laser. Definition 
3.1.2. Laser Parameters 
3.1.3. Laser. Classification 
3.1.4. Laser. Physical Principles 

3.2. Laser. Physiological Effects 

3.2.1. Interrelationship between Laser and Living Tissues 
3.2.2. Biological Effects of Low and Medium Power Lasers 
3.2.3. Direct Effects of Laser Application 

3.2.3.1. Photothermal Effect 
3.2.3.2. Photochemical Effect 
3.2.3.3. Photoelectric Stimulus 

3.2.4. Indirect Effects of Laser Application 

3.2.4.1. Microcirculation Stimulation 
3.2.4.2. Trophism Stimulus and Repair 

3.3. Laser. Therapeutic Effects 

3.3.1. Analgesia 
3.3.2. Inflammation and Edema 
3.3.3. Reparation 
3.3.4. Dosimetry 

3.3.4.1. Recommended Treatment Dose in Low Level Laser Therapy Application according to WALT Guidelines 

3.4. Laser. Clinical Applications 

3.4.1. Laser Therapy in Osteoarthritis 
3.4.2. Laser Therapy in Chronic Low Back Pain 
3.4.3. Laser Therapy in Epicondylitis 
3.4.4. Laser Therapy in Rotator Cuff Tendinopathy 
3.4.5. Laser Therapy in Cervicalgias 
3.4.6. Laser Therapy in Musculoskeletal Disorders 
3.4.7. Other Practical Laser Applications 
3.4.8. Conclusions 

3.5. Laser. Contraindications 

3.5.1. Precautions 
3.5.2. Contraindications 

3.5.2.1. Conclusions 

3.6. Infrared Radiation. Physical Principles 

3.6.1. Introduction 

3.6.1.1. Definition 
3.6.1.2. Classification 

3.6.2. Infrared Radiation Generation 

3.6.2.1. Luminous Emitters 
3.6.2.2. Non-Luminous Emitters 

3.6.3. Physical Properties 

3.7. Infrared Physiological Effects 

3.7.1. Physiological Effects on the Skin 
3.7.2. Infrared and Chromophores in Mitochondria 
3.7.3. Radiation Absorption in Water Molecules 
3.7.4. Infrared at the Cell Membrane 
3.7.5. Conclusions 

3.8. Therapeutic Effects of Infrared 

3.8.1. Introduction 
3.8.2. Local Effects of Infrared 

3.8.2.1. Erythematous 
3.8.2.2. Anti-inflammatory 
3.8.2.3. Scarring 
3.8.2.4. Sweating 
3.8.2.5. Relaxation 
3.8.2.6. Analgesia 

3.8.3. Infrared Systemic Effects 

3.8.3.1. Cardiovascular System Benefits 
3.8.3.2. Systemic Muscle Relaxation 

3.8.4. Dosimetry and Infrared Application 

3.8.4.1. Infrared Lamps 
3.8.4.2. Non-Luminous Lamps 
3.8.4.3. Luminous Lamps 
3.8.4.4. Monochromatic Infrared Energy (MIRE) 

3.8.5. Conclusions 

3.9. Practical Applications 

3.9.1. Introduction 
3.9.2. Clinical Applications 

3.9.2.1. Osteoarthritis and Infrared Radiation 
3.9.2.2. Lumbago and Infrared Radiation 
3.9.2.3. Fibromyalgia and Infrared 
3.9.2.4. Infrared Saunas in Cardiopathies 

3.9.3. Conclusions 

3.10. Infrared Contraindications 

3.10.1. Precautions/Adverse Effects 

3.10.1.1. Introduction 
3.10.1.2. Consequences of Poor Infrared Dosing 
3.10.1.3. Precautions 
3.10.1.4. Formal Contraindications 

3.10.2. Conclusions 

Module 4. General Principles of Electrotherapy 

4.1. Physical Basis of Electric Current 

4.1.1. Brief Historical Recollection 
4.1.2. Definition and Physical Basis of Electrotherapy 

4.1.2.1. Potential Concepts 

4.2. Main Parameters of the Electric Current 

4.2.1. Pharmacology / Electrotherapy Parallelism 
4.2.2. Main Parameters of the Waves: Waveform, Frequency, Intensity, and Pulse Width 
4.2.3. Other Concepts: Voltage, Current and Resistance 

4.3. Frequency-Dependent Classification of Currents 

4.3.1. Classification according to Frequency: High, Medium and Low 
4.3.2. Properties of Each Type of Frequency 
4.3.3. Choice of the Most Suitable Current in Each Case 

4.4. Waveform-Dependent Current Classification 

4.4.1. General Classification: Direct and Alternating or Variable currents 
4.4.2. Classification of the Variable Currents: Interrupted and Uninterrupted 
4.4.3. Spectrum Concept 

4.5. Current Transmission: Electrodes 

4.5.1. General Information on Electrodes 
4.5.2. Importance of Tissue Impedance 
4.5.3. General Precautions 

4.6. Types of Electrodes 

4.6.1. Brief Recollection of the Historical Evolution of Electrodes 
4.6.2. Considerations on Maintenance and Use of Electrodes 
4.6.3. Main Types of Electrodes 
4.6.4. Electrophoretic Application 

4.7. Bipolar Application 

4.7.1. Bipolar Application Overview 
4.7.2. Electrode Size and Area to be Treated 
4.7.3. Application of More Than Two Electrodes 

4.8. Four-pole Application 

4.8.1. Possibility of Combinations 
4.8.2. Application in Electrostimulation 
4.8.3. Tetrapolar Application in Interferential Currents 
4.8.4. General Conclusions 

4.9. Importance of Polarity Alternation 

4.9.1. Brief Introduction to Galvanism 
4.9.2. Risks Derived from Load Accumulation 
4.9.3. Polar Behavior of Electromagnetic Radiation 

Module 5. Electrostimulation for Muscle Strengthening 

5.1. Principles of Muscle Contraction 

5.1.1. Introduction to Muscle Contraction 
5.1.2. Types of Muscles 
5.1.3. Muscle Characteristics 
5.1.4. Muscle Functions 
5.1.5. Neuromuscular Electrical Stimulation (NMES) 

5.2. Sarcomere Structure 

5.2.1. Introduction 
5.2.2. Sarcomere Functions 
5.2.3. Sarcomere Structure 
5.2.4. Sliding Filament Theory 

5.3. Motor Plate Structure 

5.3.1. Motor Unit Concept 
5.3.2. Concept of Neuromuscular Junction and Motor Plate 
5.3.3. Structure of the Neuromuscular Junction 
5.3.4. Neuromuscular Transmission and Muscle Contraction 

5.4. Type of Muscle Contraction 

5.4.1. Concept of Muscle Contraction 
5.4.2. Types of Contraction 
5.4.3. Isotonic Muscle Contraction 
5.4.4. Isometric Muscle Contraction 
5.4.5. Relationship between Strength and Endurance in Contractions
5.4.6. Auxotonic and Isokinetic Contractions 

5.5. Types of Muscle Fibers 

5.5.1. Types of Muscle Fibers 
5.5.2. Slow-Twitch Fibers or Type I Fibers 
5.5.3. Fast-Twitch Fibers or Type II Fibers 

5.6. Main Neuromuscular Injuries 

5.6.1. Concept of Neuromuscular Disease 
5.6.2. Etiology of Neuromuscular Diseases 
5.6.3. Neuromuscular Junction Injury and NMD 
5.6.4. Major Neuromuscular Injuries or Diseases 

5.7. Principles of Electromyography 

5.7.1. Electromyography Concept 
5.7.2. Development of Electromyography 
5.7.3. Electromyographic Study Protocol 
5.7.4. Electromyography Methods 

5.8. Main Excitomotor Currents. Neo-Faradic Currents 

5.8.1. Definition of Excitomotor Current and Main Types of Excitomotor Currents 
5.8.2. Factors Influencing the Neuromuscular Response 
5.8.3. Exitomotor Currents Most Commonly Used Neo-Faradic Currents 

5.9. Excitomotor Interferential Currents. Kotz Currents 

5.9.1. Kotz Currents or Russian Currents 
5.9.2. Most Relevant Parameters in Kotz Currents 
5.9.3. Strengthening Protocol Described with Russian Current 
5.9.4. Differences between Low Frequency and Medium Frequency Electrostimulation 

5.10. Applications of Electrical Stimulation in Urogynecology 

5.10.1. Electrostimulation and Urogynecology 
5.10.2. Types of Electrostimulation in Urogynecology 
5.10.3. Placement of Electrodes 
5.10.4. Mechanism of Action 

5.11. Practical Applications 

5.11.1. Recommendations for the Application of Excitomotor currents 
5.11.2. Techniques of Application of Excitomorphic Currents 
5.11.3. Examples of Work Protocols Described in Scientific Literature 

5.12. Contraindications 

5.12.1. Contraindications for the Use of Electrostimulation for Muscle Strengthening 
5.12.2. Recommendations for Safe Electrostimulation Practice 

Module 6. Electrostimulation in the Neurological Patient 

6.1. Assessment of Nerve Injury. Principles of Muscle Innervation 

6.1.1. Assessment of Nerve Injury 
6.1.2. Principles of Muscle Innervation 

6.2. Intensity/Time (I/T) and Amplitude/Time (A/T) Curves 

6.2.1. Intensity/Tme Curves 
6.2.2. Amplitude /Time Curves 

6.3. Main Trends in Neurological Rehabilitation 

6.3.1. Introduction to Neurological Rehabilitation 
6.3.2. Main Currents 

6.4. Electrotherapy for Motor Rehabilitation in the Neurological Patient 

6.4.1. Neurological Patient 
6.4.2. Electrotherapy for Motor Rehabilitation in this Patient

6.5. Electrotherapy for Somatosensory Rehabilitation in the Neurologic Patient 

6.5.1. Introduction to Somatosensory Rehabilitation 
6.5.2. Electrotherapy for Somatosensory Rehabilitation in the Neurologic Patient 

6.6. Practical Applications 

6.6.1. Case Studies 

6.7. Contraindications 

6.7.1. Adverse Effects 

Module 7. Electrotherapy and Analgesia 

7.1. Definition of Pain. Concept of Nociception 

7.1.1. Definition of Pain 

7.1.1.1. Characteristics of Pain 
7.1.1.2. Other Concepts and Definitions Related to Pain 
7.1.1.3. Types of Pain 

7.1.2. Concept of Nociception 

7.1.2.1. Peripheral Part Nociceptive System 
7.1.2.2. Central Part Nociceptive System 

7.2. Main Nociceptive Receptors 

7.2.1. Nociceptor Classification 

7.2.1.1. According to Driving Speed 
7.2.1.2. According to Location 
7.2.1.3. According to Stimulation Modality 

7.2.2. Nociceptor Functioning 

7.3. Main Nociceptive Pathways 

7.3.1. Basic Structure of the Nervous System 
7.3.2. Ascending Spinal Pathways 

7.3.2.1. Spinothalamic Tract (STT) 
7.3.2.2. Spinoreticular Tract (SRT) 
7.3.2.3. Spinomesencephalic Tract (SRT) 

7.3.3. Trigeminal Ascending Pathways 

7.3.3.1. Trigeminothalamic Tract or Trigeminal Lemniscus 

7.3.4. Sensitivity and Nerve Pathways 

7.3.4.1. Exteroceptive Sensitivity 
7.3.4.2. Proprioceptive Sensitivity 
7.3.4.3. Interoceptive Sensitivity 
7.3.4.4. Other Fascicles Related to Sensory Pathways 

7.4. Transmitter Mechanisms of Nociceptive Regulation 

7.4.1. Transmission at the Spinal Cord Level (PHSC) 
7.4.2. APME Neuron Characteristics 
7.4.3. Redex Lamination 
7.4.4. Biochemistry of Transmission at the PHSC Level

7.4.4.1. Presynaptic and Postsynaptic Channels and Receptors 
7.4.4.2. Transmission at the Level of Ascending Spinal Tract 
7.4.4.3. Spinothalamic Tract (STT) 
7.4.4.4. Transmission at the Level of the Thalamus 
7.4.4.5. Ventral Posterior Nucleus (VPN) 
7.4.4.6. Medial Dorsal Nucleus (MDN) 
7.4.4.7. Intralaminar Nuclei 
7.4.4.8. Posterior Region 
7.4.4.9. Transmission at the Level of the Cerebral Cortex 
7.4.4.10. Primary Somatosensory Area (S1) 
7.4.4.11. Secondary Somatosensory or Association Area (S2) 

7.4.5. Gate Control 

7.4.5.1. Modulation Segmental Level 
7.4.5.2. Suprasegmental Modulation 
7.4.5.3. Considerations 
7.4.5.4. Gate Control Theory Review 

7.4.6. Descending Routes 

7.4.6.1. Brainstem Modulatory Centers 
7.4.6.2. Diffuse Noxious Inhibitory Control (DNIC) 

7.5. Modulatory Effects of Electrotherapy 

7.5.1. Pain Modulation Levels 
7.5.2. Neuronal Plasticity 
7.5.3. Sensory Pathway Theory of Pain 
7.5.4. Electrotherapy Models 

7.6. High Frequency and Analgesia 

7.6.1. Heat and Temperature 
7.6.2. Effects 
7.6.3. Application Techniques 
7.6.4. Dosage 

7.7. Low Frequency and Analgesia 

7.7.1. Selective Stimulation 
7.7.2. TENS and Gate Control 
7.7.3. Post-Excitatory Depression of Orthosympathetic Nervous System 
7.7.4. Theory of Endorphin Release 
7.7.5. TENS Dosage 

7.8. Other Parameters Related to Analgesia 

7.8.1. Electrotherapy Effects 
7.8.2. Dosage in Electrotherapy 

Module 8. Transcutaneous Electrical Nerve Stimulation (TENS) 

8.1. Fundamentals of Current Type used in TENS 

8.1.1. Introduction 

8.1.1.1. Theoretical Framework: Neurophysiology of Pain 

8.1.1.1.1. Introduction and Classification of Nociceptive Fibers 
8.1.1.1.2. Characteristics of Nociceptive Fibers 
8.1.1.1.3. Stages of the Nociceptive Process 

8.1.2. Anti-Nociceptive System: Gate Control Theory 

8.1.2.1. Introduction to Current Type used in TENS 
8.1.2.2. Basic Characteristics of TENS Type of Current (Pulse Shape, Duration, Frequency and Intensity) 

8.2. Classification of Current Type used in TENS 

8.2.1. Introduction 

8.2.1.1. Types of Electrical Current Classification 
8.2.1.2. According to Frequency (Number of Pulses Emitted per Second) 

8.2.2. Classification of Current Type used in TENS 

8.2.2.1. Conventional TENS 
8.2.2.2. TENS-Acupuncture 
8.2.2.3. Low-Rate Burst TENS 
8.2.2.4. Brief or Intense TENS 

8.2.3. Mechanisms of Action of the TENS Current Type 

8.3. Transcutaneous Electrical Nerve Stimulation (TENS) 


8.4. Analgesic Effects of High-Frequency TENS 

8.4.1. Introduction 

8.4.1.1. Main Reasons for the Wide Clinical Application of Conventional TENS 

8.4.2. Hypoalgesia Derived from Conventional/High Frequency TENS 

8.4.2.1. Mechanism of Action 

8.4.3. Neurophysiology of Conventional TENS 

8.4.3.1. Gate Control 
8.4.3.2. The Metaphor 

8.4.4. Failure to Achieve Analgesic Effects 

8.4.4.1. Main Mistakes 
8.4.4.2. Main Problem of Hypoalgesia by Conventional TENS 

8.5. Analgesic Effects of Low-Frequency TENS 

8.5.1. Introduction 
8.5.2. Mechanisms of Action of TENS-mediated Hypoalgesia Acupuncture: Endogenous Opioid System 
8.5.3. Mechanism of Action 
8.5.4. High-Intensity and Low-Frequency 

8.5.4.1. Parameters 
8.5.4.2. Fundamental Differences from Conventional TENS Current 

8.6. Analgesic Effects of “Burst-Type TENS” 

8.6.1. Introduction 
8.6.2. Description 

8.6.2.1. Burst-Type TENS Current Details 
8.6.2.2. Physical Parameters 
8.6.2.3. Sjölund and Eriksson 

8.6.3. Summary of the Physiological Mechanisms of Analgesia, Both Central and Peripheral, Up to This Point 

8.7. Importance of Pulse Width 

8.7.1. Introduction 

8.7.1.1. Physical Characteristics of Waves 
8.7.1.1.1. Definition of a Wave 
8.7.1.1.2. Other General Characteristics and Properties of a Wave 
8.7.2. Impulse Shape 

8.8. Electrodes. Types and Application 

8.8.1. Introduction 

8.8.1.1. The TENS Current Device 

8.8.2. Electrodes 

8.8.2.1. General Characteristics 
8.8.2.2. Skin Care 
8.8.2.3. Other Types of Electrodes 

8.9. Practical Applications 

8.9.1. TENS Applications 
8.9.2. Impulse Duration 
8.9.3. Impulse Shape 
8.9.4. Intensity 
8.9.5. Frequency 
8.9.6. Electrode Type and Placement 

8.10. Contraindications 

8.10.1. Contraindications to the use of TENS Therapy 
8.10.2. Recommendations for Safe TENS Practice 

Module 9. Interferential Currrents 

9.1. Fundamentals of Interferential Currents 

9.1.1. Interferential Current Concept 
9.1.2. Main Properties of Interferential Currents 
9.1.3. Characteristics and Effects of Interferential Currents 

9.2. Main Parameters of Interferential Currents 

9.2.1. Introduction to the Different Parameters 
9.2.2. Types of Frequencies and Effects Produced 
9.2.3. Relevance of Application Time 
9.2.4. Types of Applications and Parameters 

9.3. Effects of High Frequency 

9.3.1. Concept of High Frequency in Interferential Streams 
9.3.2. Main Effects of High Frequency 
9.3.3. Application of High Frequency 

9.4. Concept of Accommodation. Importance and Adjustment of the Frequency Spectrum 

9.4.1. Low-Frequency Concept in Interferential Currents 
9.4.2. Main Effects of Low Frequency 
9.4.3. Low-Frequency Application 

9.5. Electrodes. Types and Application 

9.5.1. Main Types of Electrodes in Interferential Currents 
9.5.2. Relevance of Electrode Types in Interferential Currents 
9.5.3. Application of Different Types of Electrodes 

9.6. Practical Applications 

9.6.1. Recommendations for the Application of Interferential Currents 
9.6.2. Techniques for the Application of Interferential Currents 

9.7. Contraindications 

9.7.1. Contraindications to the Use of Interferential Currents 
9.7.2. Recommendations for Safe Practice Using Interferential Currents 

Module 10. Invasive Treatment in Electrotherapy 

10.1. Invasive Treatment in Physical Therapy for Analgesic Purposes 

10.1.1. General Aspects 
10.1.2. Types of Invasive Treatment 
10.1.3. Infiltration Versus Puncture 

10.2. Fundamentals of Dry Needling 

10.2.1. Myofascial Pain Syndrome 
10.2.2. Myofascial Trigger Points 
10.2.3. Neurophysiology of Myofascial Pain Syndrome and Trigger Points 

10.3. Post-puncture Treatments 

10.3.1. Adverse Effects of Dry Needling 
10.3.2. Post-puncture Treatments 
10.3.3. Combination of Dry Needling and TENS 

10.4. Electrotherapy as an Adjunct to Dry Needling 

10.4.1. Non-Invasive Approach 
10.4.2. Invasive Approach 
10.4.3. Types of Electropuncture 

10.5. Percutaneous Electrical Nerve Stimulation: PENS 

10.5.1. Neurophysiological Fundamentals of PENS Application 
10.5.2. Scientific Evidence for the Application of PENS 
10.5.3. General Considerations for PENS Implementation 

10.6. Advantages of PENS Over TENS 

10.6.1. Current Status of PENS Implementation 
10.6.2. Application of PENS in Lower Back Pain 
10.6.3. Application of PENS in Other Regions and Pathologies 

10.7. Use of Electrodes 

10.7.1. General Information on the Application of Electrodes 
10.7.2. Variants in the Application of Electrodes 
10.7.3. Multipole Application 

10.8. Practical Applications 

10.8.1. Justification for the Implementation of the PENS 
10.8.2. Applications in Lower Back Pain 
10.8.3. Upper Quadrant and Lower Limb Applications 

10.9. Contraindications 

10.9.1. Contraindications Derived from TENS 
10.9.2. Contraindications Derived from Dry Needling 
10.9.3. General Considerations 

10.10. Invasive Treatments for Regenerative Purposes 

10.10.1. Introduction 

10.10.1.1. Electrolysis Concept 

10.10.2. Intratissue Percutaneous Electrolysis 

10.10.2.1. Concept 
10.10.2.2. Effects 
10.10.2.3. Review of the State-of-the-Art 
10.10.2.4. Combination with Eccentric Exercises 

10.11. Physical Principles of Galvanism 

10.11.1. Introduction 

10.11.1.1. Physical Characteristics of Direct Current 

10.11.2. Galvanic Current 

10.11.2.1. Physical Characteristics of Galvanic Current 
10.11.2.2. Chemical Phenomena of Galvanic Current 
10.11.2.3. Structure 

10.11.3. Iontophoresis 

10.11.3.1. Leduc’s Experiment 
10.11.3.2. Physical Properties of Iontophoresis 

10.12. Physiological Effects of Galvanic Current 

10.12.1. Physiological Effects of Galvanic Current 
10.12.2. Electrochemical Effects 

10.12.2.1. Chemical Behavior 

10.12.3. Electrothermal Effects 
10.12.4. Electrophysical Effects 

10.13. Therapeutic Effects of Galvanic Current 

10.13.1. Clinical Application of Galvanic Current 

10.13.1.1. Vasomotor Action 

10.13.1.1.1. Effect on the Nervous System 

10.13.2. Therapeutic Effects of Iontophoresis 

10.13.2.1. Penetration and Elimination of Cations and Anions 
10.13.2.2. Drugs and Indications 

10.13.3. Therapeutic Effects of Intratissue Percutaneous Electrolysis 

10.14. Types of Percutaneous Application of Galvanic Currents 

10.14.1. Introduction to Application Techniques 

10.14.1.1. Classification According to Electrode Placement 

10.14.1.1.1. Direct Galvanizing 

10.14.2. Indirect Galvanizing 
10.14.3. Classification According to the Technique Applied 

10.14.3.1. Intratissue Percutaneous Electrolysis 
10.14.3.2. Iontophoresis 
10.14.3.3. Galvanic Bath 

10.15. Application Protocols 

10.15.1. Galvanic Current Application Protocols 
10.15.2. Intratissue Percutaneous Electrolysis Application Protocols 

10.15.2.1. Procedure 

10.15.3. Iontophoresis Application Protocols 

10.15.3.1. Procedure 

10.16. Contraindications 

10.16.1. Contraindications of Galvanic Current 
10.16.2. Contraindications, Complications and Precautions of Galvanic Current 

Module 11. Magnetotherapy in Physiotherapy 

11.1. Physical Principles of Magnetotherapy 

11.1.1. Introduction 
11.1.2. History of Magnetotherapy 
11.1.3. Definition 
11.1.4. Principles of Magnetotherapy 

11.1.4.1. Magnetic Fields on Earth 
11.1.4.2. Physical Principles 

11.1.5. Biophysical Interactions with Magnetic Fields 

11.2. Physiological Effects of Magnetotherapy 

11.2.1. Effects of Magnetotherapy on Biological Systems 

11.2.1.1. Biochemical Effects 
11.2.1.2. Cellular Effect 

11.2.1.2.1. Effects on Lymphocytes and Macrophages 
11.2.1.2.2. Effects on the Cell Membrane 
11.2.1.2.3. Effects on the Cytoskeleton 
11.2.1.2.4. Effects on Cytoplasm 

11.2.1.3. Conclusion on the Effect on the Cell 
11.2.1.4. Effect on Bone Tissue 

11.3. Therapeutic Effects of Magnetotherapy 

11.3.1. Introduction 
11.3.2. Inflammation 
11.3.3. Vasodilatation 
11.3.4. Analgesia 
11.3.5. Increased Calcium and Collagen Metabolism 
11.3.6. Reparation 
11.3.7. Muscle Relaxation 

11.4. Main Magnetic Field Parameters 

11.4.1. Introduction 
11.4.2. Magnetic Field Parameters 

11.4.2.1. Intensity 
11.4.2.2. Frequency 

11.4.3. Dosimetry of Magnetic Fields 

11.4.3.1. Frequency of Application 
11.4.3.2. Application Time 

11.5. Types of Electrodes and their Application 

11.5.1. Introduction 
11.5.2. Electromagnetic Fields 

11.5.2.1. Total Body or Global Application 
11.5.2.2. Regional Application 

11.5.3. Local Magnetic Fields Induced with Magnets 

11.5.3.1. Conclusions 

11.6. Magnetotherapy. Clinical Applications 

11.6.1. Introduction 
11.6.2. Arthrosis 

11.6.2.1. Electromagnetic Fields and Chondrocyte Apoptosis 
11.6.2.2. Early-Stage Knee Osteoarthritis 
11.6.2.3. Advanced Stage Osteoarthritis 
11.6.2.4. Conclusion on Osteoarthritis and Pulsed Electromagnetic Fields 

11.6.3. Bone Consolidation 

11.6.3.1. Review of Literature on Bone Consolidation 
11.6.3.2. Bone Consolidation in Long Bone Fractures 
11.6.3.3. Bone Consolidation in Short Bone Fractures 

11.6.4. Shoulder Pathology 

11.6.4.1. Shoulder Impingement 
11.6.4.2. Rotator Cuff Tendinopathy 

11.6.4.2.1. Rheumatoid Arthritis 
11.6.4.2.2. Conclusions 

11.7. Magnetotherapy. Contraindications 

11.7.1. Introduction 
11.7.2. Possible Adverse Effects Studied 
11.7.3. Precautions 
11.7.4. Formal Contraindications 
11.7.5. Conclusions 

Module 12. Non-Invasive Brain Stimulation 

12.1. Non-Invasive Brain Stimulation: Introduction

12.1.1. Introduction to Non-Invasive Brain Stimulation
12.1.2. Transcranial Magnetic Stimulation

12.1.2.1. Introduction to Transcranial Magnetic Stimulation
12.1.2.2. Mechanisms of Action
12.1.2.3. Stimulation Protocols

12.1.2.3.1. Transcranial Magnetic Stimulation with Single and Paired Pulses
12.1.2.3.2. Location of the Stimulation Site “Hot Spot”
12.1.2.3.3. Repetitive Transcranial Magnetic Stimulation
12.1.2.3.4. Simple Repetitive Pattern Stimulation
12.1.2.3.5. Theta-Burst Stimulation (TBS)
12.1.2.3.6. Quadripulse Stimulation (QPS)
12.1.2.3.7. Paired Associative Stimulation (PAS)

12.1.2.4. Security
12.1.2.5. Therapeutic Applications

12.1.3. Conclusions
12.1.4. Bibliography

12.2. Transcranial Direct Current

12.2.1. Transcranial Direct Current

12.2.1.1. Introduction to Transcranial Direct Current
12.2.1.2. Mechanism of Action
12.2.1.3. Security
12.2.1.4. Procedures
12.2.1.5. Applications of SOFCs
12.2.1.6. Other Forms of Transcranial Electrical Stimulation

12.2.2. Transcranial Neuromodulation Combined with other Therapeutic Interventions
12.2.3. Conclusions
12.2.4. Bibliography

This university program provides you with the key tools to effectively apply electrotherapy for analgesia in the rehabilitation process” 

Master's Degree in Electrotherapy in Physical Activity and Sport

Rehabilitation plays a fundamental role in the medical field, as new treatments, techniques, and innovative tools emerge daily, requiring continuous knowledge updates from professionals in this sector. To expand knowledge and enhance your skills, TECH Global University has designed a Master's Degree in Electrotherapy in Physical Activity and Sport. This high-level academic program focuses on deepening knowledge of physiotherapeutic treatments to address various pathologies. Over the course of 1,500 hours, you will specialize in nerve fiber stimulation, modulation of brain areas, high-frequency electrotherapy, ultrasound therapy, and other electromagnetic fields applied to physical exercise. Complete this postgraduate degree at the largest Faculty of Sports Science and add new skills to your professional profile.

Become an expert in electrotherapy applied to exercise

At TECH Global University, we offer the most innovative and up-to-date scientific program in the sector. We provide you with the essential knowledge to dive deep into the use of electromagnetic field treatments. You will specialize in understanding human pathophysiology and physicochemistry, muscle contraction mechanisms, somatosensory transmission, percutaneous analgesic techniques, and transcranial stimulation. This will enable you to treat patients with chronic or neurological issues and apply highly tailored treatments for each case. Additionally, you will explore topics such as electrostimulation for muscle strengthening, transcutaneous electrical nerve stimulation (TENS), and high-frequency analgesic current.

Complete a postgraduate degree completely online

The curriculum for this program is designed with scientific evidence and neurophysiological foundations. Through this 100% online course, you will become an expert in electrotherapy for treating physiologies and stimulating areas of the body affected by nerve pain, including inflammation, atrophied muscles, and musculoskeletal injuries. You will also address neuromusculoskeletal pathologies by developing more than 75 practical cases simulated as real-life situations that could arise, which will complement your studies and prepare you to react to unforeseen events. At TECH, we employ exceptional teaching methodologies, and by completing this Master's Degree, you will have access to an interactive learning system, supported by theoretical lessons and participatory forums.