University certificate
The world's largest faculty of engineering”
Introduction to the Program
Conviértete en un experto en Técnicas de Mecánica de Fluidos Computacional en solo unos meses”
Dentro de la Simulación encontramos diferentes técnicas informáticas como la Dinámica de Fluidos Computacional, que ha cobrado una gran importancia en la actualidad por sus múltiples ventajas, como son el nivel de detalle que otorga, el ahorro de tiempo o la reducción de costes. Sus diferentes procedimientos simulan mediante métodos numéricos el comportamiento real de los fluidos, con el objetivo de obtener más información y comprensión del mismo. Por lo que son aplicables en múltiples áreas como la aeroespacial, la automoción, el medio ambiente, la biomedicina o la energía eólica.
Para sacarle el máximo partidos a dichas técnicas, son necesarios unos conocimientos avanzados que cada vez están más demandados en el mercado laboral, motivo por el que TECH ha diseñado una Postgraduate diploma en CFD Techniques. Esta titulación busca capacitar a los alumnos con una buena base especializada en los diferentes métodos numéricos de CFD, para que puedan afrontar su labor en este ámbito, con la máxima calidad en los trabajos.
De esta forma, se ha creado un contenido que profundiza en Mecánica de Fluidos, Computación de Altas Prestaciones, Matemáticas Avanzadas para CFD, Métodos de los Volúmenes Finitos y Métodos Avanzados para CFD, entre otros temas relevantes.
Todo ello a través de un contenido 100% online que da total libertad al alumno para organizar sus estudios y sus horarios como mejor le convenga, pudiendo compaginar la superación del programa con sus otras actividades diarias. Además, el estudiante contará con materiales multimedia dinámicos, ejercicios prácticos, información completamente actualizada y las últimas tecnologías en materia de enseñanza.
Profundiza en las CFD Techniques esenciales y domina un área con un potencial laboral brillante”
Esta Postgraduate diploma en CFD Techniques contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Técnicas CFD
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Adquiere nuevos conocimientos y mejores habilidades en Métodos de Elementos Finitos o Hidrodinámica de Partículas Suavizadas”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Matricúlate ahora y accede a todo el contenido en Desarrollo de Simuladores basado en SPH”
Disfruta del mejor contenido teórico y práctico en Métodos Avanzados para CFD”
Syllabus
The structure and content of this program have been meticulously created by the professionals in CFD Techniques that make up TECH's team of subject matter experts. In this way, they have resulted in accurate multimedia materials, verified and updated information, as well as the most useful practical activities to test the new skills acquired by the students.
Quality content designed under the most efficient pedagogical methodology, Relearning, in which TECH is a pioneer"
Module 1. Fluid Mechanics and High-Performance Computing
1.1. Dynamics of computational fluid mechanics
1.1.1. The origin of the turbulence
1.1.2. The need for modeling
1.1.3. CFD work process
1.2. The Equations of Fluid Mechanics
1.2.1. The continuity equation
1.2.2. The Navier-Stokes equation
1.2.3. The energy equation
1.2.4. The Reynolds averaged equations
1.3. The problem of closing equations
1.3.1. The Bousinesq hypothesis
1.3.2. Turbulent viscosity in a spray
1.3.3. CFD Modeling
1.4. Dimensionless numbers and dynamic similarity
1.4.1. Dimensionless numbers in fluid mechanics
1.4.2. The principle of dynamic similarity
1.4.3. Practical example: wind tunnel modeling
1.5. Turbulence Modeling
1.5.1. Direct numerical simulations
1.5.2. Simulations of large eddies
1.5.3. RANS Methods
1.5.4. Other Methods
1.6. Experimental Techniques
1.6.1. PIV
1.6.2. Hot wire
1.6.3. Wind and water tunnels
1.7. Supercomputing environments
1.7.1. Supercomputing. Ide future
1.7.2. Supercomputer operation
1.7.3. Tools for use
1.8. Software in parallel architectures
1.8.1. Distributed environments: MPI
1.8.2. Shared memory: GPU
1.8.3. Data engraving: HDF5
1.9. Grid computing
1.9.1. Description of computer farms
1.9.2. Parametric problems
1.9.3. Queuing systems in grid computing
1.10. GPU, the future of CFD
1.10.1. GPU Environments
1.10.2. GPU Programming
1.10.3. Practical example: artificial intelligence in fluids using GPUs
Module 2. Advanced mathematics for CFD
2.1. Fundamentals of Mathematics
2.1.1. Gradients, divergences and rotations. Total derivative
2.1.2. Ordinary Differential Equations
2.1.3. Partial derivative equations
2.2. Statistics
2.2.1. Averages and moments
2.2.2. Probability density functions
2.2.3. Correlation and energy spectra
2.3. Strong and weak solutions of a differential equation
2.3.1. Function bases. Strong and weak solutions
2.3.2. The finite volume method. The heat equation
2.3.3. The finite volume method. Navier-Stokes
2.4. Taylor's Theorem and Discretization in time and space
2.4.1. Finite differences in 1 dimension. Error order
2.4.2. Finite differences in 2 dimensions
2.4.3. From continuous equations to algebraic equations
2.5. Algebraic problem solving, LU method
2.5.1. Algebraic problem solving methods
2.5.2. The LU method on full matrices
2.5.3. The LU method in sparse matrices
2.6. Algebraic Problem Solving, Iterative Methods I
2.6.1. Iterative methods. Waste
2.6.2. Jacobi's method
2.6.3. Generalization of Jacobi's method
2.7. Algebraic problem solving, iterative methods II
2.7.1. Multi-grid methods: V-cycle: interpolation
2.7.2. Multi-grid methods: V-cycle: extrapolation
2.7.3. Multi-grid methods: W-cycle
2.7.4. Error estimation
2.8. Eigenvalues and eigenvectors
2.8.1. The algebraic problem
2.8.2. Application to the heat equation
2.8.3. Stability of differential equations
2.9. Non-linear evolution equations
2.9.1. Heat equation: explicit methods
2.9.2. Heat equation: implicit methods
2.9.3. Heat equation: Runge-Kutta methods
2.10. Stationary non-linear equations
2.10.1. The Newton-Raphson method
2.10.2. 1D Applications
2.10.3. 2D Applications
Module 3. CFD in Application Environments: Finite Volumes Methods
3.1. Finite Volume Methods
3.1.1. Definitions in FVM
3.1.2. Historical Background
3.1.3. MVF in Structures
3.2. Source Terms
3.2.1. External volumetric forces
3.2.1.1. Gravity, centrifugal force
3.2.2. Volumetric (mass) and pressure source term (evaporation, cavitation, chemical)
3.2.3. Scalar source term
3.2.3.1. Temperature, species
3.3. Applications of boundary conditions
3.3.1. Input and Output
3.3.2. Symmetry condition
3.3.3. Wall condition
3.3.3.1. Tax values
3.3.3.2. Values to be solved by parallel calculation
3.3.3.3. Wall models
3.4. Boundary Conditions
3.4.1. Known boundary conditions: Dirichlet
3.4.1.1. Scalars
3.4.1.2. Diseases
3.4.2. Boundary conditions with known derivative: Neumann
3.4.2.1. Zero gradient
3.4.2.2. Finite gradient
3.4.3. Cyclic boundary conditions: Born-von Karman
3.4.4. Other boundary conditions: Robin
3.5. Temporary integration
3.5.1. Explicit and implicit Euler
3.5.2. Lax-Wendroff time step and variants (Richtmyer and MacCormack)
3.5.3. Runge-Kutta multi-stage time step
3.6. Upwind Schematics
3.6.1. Riemman's Problem
3.6.2. Main upwind schemes: MUSCL, Van Leer, Roe, AUSM
3.6.3. Design of an upwind spatial scheme
3.7. High order schemes
3.7.1. High-order discontinuous Galerkin
3.7.2. ENO and WENO
3.7.3. High Order Schemes. Advantages and Disadvantages
3.8. Pressure-velocity convergence loop
3.8.1. PISO
3.8.2. SIMPLE, SIMPLER and SIMPLEC
3.8.3. PIMPLE
3.8.4. Transient loops
3.9. Moving contours
3.9.1. Overlocking techniques
3.9.2. Mapping: mobile reference system
3.9.3. Immersed boundary method
3.9.4. Overlapping meshes
3.10. Errors and uncertainties in CFD modeling
3.10.1. Precision and accuracy
3.10.2. Numerical errors
3.10.3. Input and physical model uncertainties
Module 4. Advanced Methods for CFD
4.1. Finite Element Method (FEM)
4.1.1. Domain discretization. Finite Elements
4.1.2. Form functions. Reconstruction of the continuous field
4.1.3. Assembly of the coefficient matrix and boundary conditions
4.1.4. Solving Systems of Equations
4.2. FEM: case study. Development of a FEM simulator
4.2.1. Form functions
4.2.2. Assembling the coefficient matrix and applying boundary conditions
4.2.3. Solving Systems of Equations
4.2.4. Post-Process
4.3. Smoothed Particle Hydrodynamics (SPH)
4.3.1. Fluid field mapping from particle values
4.3.2. Evaluation of derivatives and particle interaction
4.3.3. The smoothing function. The kernel
4.3.4. Boundary Conditions
4.4. SPH: development of a simulator based on SPH
4.4.1. The kernel
4.4.2. Storage and sorting of particles in voxels
4.4.3. Development of boundary conditions
4.4.4. Post-Process
4.5. Direct Simulation Monte Carlo (DSMC)
4.5.1. Kinetic-molecular theory
4.5.2. Statistical mechanics
4.5.3. Molecular equilibrium
4.6. DSMC: methodology
4.6.1. Applicability of the DSMC method
4.6.2. Modeling
4.6.3. Considerations for the applicability of the method
4.7. DSMC: applications
4.7.1. Example in 0-D: thermal relaxation
4.7.2. 1-D example: normal shock wave
4.7.3. 2-D example: supersonic cylinder
4.7.4. 3-D example: supersonic corner
4.7.5. Complex example: space Shuttle
4.8. Lattice-Boltzmann Method (LBM)
4.8.1. Boltzmann equation and equilibrium distribution
4.8.2. De Boltzmann a Navier-Stokes. Chapman-Enskog Expansion
4.8.3. From probabilistic distribution to physical magnitude
4.8.4. Conversion of units. From physical quantities to lattice quantities
4.9. LBM: Numerical approximation
4.9.1. The LBM algorithm. Transfer step and collision step
4.9.2. Collision operators and momentum normalization
4.9.3. Boundary Conditions
4.10. LBM: case study
4.10.1. Development of a simulator based on LBM
4.10.2. Experimentation with various collision operators
4.10.3. Experimentation with various turbulence models
The world's best online university offers you a tailor-made program to quickly excel in the field of Computational Fluid Dynamics"
Postgraduate Diploma in CFD Techniques
If you are an engineer, you are passionate about computational fluid dynamics and you want to develop your career in this area, you can do it thanks to the Postgraduate Diploma in CFD Techniques from TECH Global University. This way you will expand your knowledge and skills in the field of CFD techniques completely online. Computational fluid dynamics is a discipline in constant evolution, and with our study program you will be able to keep up to date with the latest trends and technologies in the field. In addition, our team of highly qualified professionals will guide you through every step of the process, from theory to practice, and help you develop the skills you need to meet any challenges that arise in your career. Our curriculum is designed so that you can study online, from anywhere in the world, and at your own pace. This allows you to combine improving your resume with your work and personal responsibilities. In addition, our course material is designed to be easy to understand and apply in real life.
Get trained in computational fluid dynamics online
TECH Global University's Postgraduate Diploma in CFD Techniques focuses on the practical aspects of numerical fluid simulation and the application of CFD techniques in industry. You will learn to use the most advanced tools on the market, such as ANSYS Fluent, and to apply them in different sectors, such as aeronautics, automotive, energy and construction. At the end of the program, you will be able to design, model and simulate complex fluid problems with the most advanced CFD techniques on the market. This will allow you to excel in your work and be at the forefront in your field of specialization. In short, if you are an engineer with a passion for computational fluid dynamics and wish to expand your knowledge and skills, our Postgraduate Diploma in CFD Techniques is the ideal option for you. Study online, at your own pace, and become an expert in the most advanced CFD techniques on the market - enroll today!