University certificate
The world's largest faculty of information technology”
Introduction to the Program
Matricúlate ahora y conviértete en un experto en Fluid Modeling en solo 6 meses”
La Turbulencia no puede ser calculada sino modelada, ese es uno de los aspectos fundamentales de su estudio, que hace que la investigación en este ámbito sea muy compleja y costosa, requiriendo el uso de los mayores ordenadores, durante mucho tiempo, para unos resultados poco útiles. Estos recursos resultan ser inalcanzables para la mayoría de usuarios o empresas y por este motivo es tan relevante Fluid Modeling, porque resulta ser muy eficiente y cuenta con múltiples ventajas que ahorran estos problemas.
Por este motivo, existe una creciente demanda de especialistas en este sector, por la que TECH ha decidido crear una Postgraduate diploma en Fluid Modeling con el que busca dotar a los alumnos de nuevas habilidades y mejores competencias, con las que puedan afrontar un futuro profesional de éxito en esta área. A lo largo del temario se abordan profundamente temas como la Cascada de Energía, Turbulencias de Pared, las Ecuaciones de Euler o las Transferencias de Calor por Convección, entre otros.
Todo ello, a través de una cómoda modalidad 100% online que da total libertad al alumno para compaginar sus estudios con otras labores profesionales y personales, sin necesidad de desplazamientos. Además, con los contenidos multimedia más completos, la información más actualizada y las herramientas más innovadoras en materia de enseñanza.
Obtén nuevas competencias en Fluid Modeling y destaca en uno de los sectores con más futuro del ámbito de la informática”
Esta Postgraduate diploma en Fluid Modeling contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Modelado de Fluidos
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Accede a todo el contenido en Modelos Avanzados en CFD, sin límites horarios y desde cualquier dispositivo con conexión a internet"
El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Profundiza en tus conocimientos en Lámina de Agua, gracias al material teórico y práctico más completo”
Adquiere nuevas habilidades en materia de Transferencia de Calor por Convección o Cosimulación Bidireccional”
Syllabus
The content and structure of this University Expert in Fluid Modeling have been designed by the outstanding professionals that make up TECH Global University team of experts in the field. In this way, they have created teaching materials of the highest quality, based on their experience, on the most rigorous sources and on the most efficient pedagogical methodology, Relearning, in which TECH Global University is a pioneer.
The most dynamic and practical content on Fluid Modeling, designed by leading professionals"
Module 1. Modeling of turbulence in Fluid
1.1. Turbulence. Key Features
1.1.1. Dissipation and diffusivity
1.1.2. Characteristic scales. Orders of magnitude
1.1.3. Reynolds Number
1.2. Definitions of Turbulence. From Reynolds to the present day
1.2.1. Research Problem The boundary layer
1.2.2. Meteorology, Richardson and Smagorinsky
1.2.3. The Problem of Chaos
1.3. The Energy Cascade
1.3.1. Smaller scales of turbulence
1.3.2. Kolmogorov's hypothesis
1.3.3. The cascade exponent
1.4. The closure problem revisited
1.4.1. 10 unknowns and 4 equations
1.4.2. The turbulent kinetic energy equation
1.4.3. The Cycle of Turbulence
1.5. Turbulent viscosity
1.5.1. Historical Background and Parallelism
1.5.2. Initiation problem: jets
1.5.3. Turbulent viscosity in CFD problems
1.6. RANS methods
1.6.1. The turbulent viscosity hypothesis
1.6.2. The RANS equations
1.6.3. RANS methods. Examples of use
1.7. The Evolution of OCHA
1.7.1. Historical Background BORRAR
1.7.2. Spectral filters
1.7.3. Spatial Filtering The problem in the wall
1.8. Wall turbulence I
1.8.1. Characteristic scales
1.8.2. The momentum equations
1.8.3. The regions of a turbulent wall flow
1.9. Wall turbulence II
1.9.1. The boundary layer
1.9.2. Dimensionless numbers of a boundary layer
1.9.3. The Blasius solution
1.10. The energy equation
1.10.1. Passive scalars
1.10.2. Active scalars. The Bousinesq approach
1.10.3. Fanno and Rayleigh flows
Module 2. Compressible Fluids
2.1. Compressible Fluids
2.1.1. Compressible and incompressible fluids. Differences
2.1.2. Equation of State
2.1.3. Differential equations of compressible fluids
2.2. Practical examples of the compressible regime
2.2.1. Shock Waves
2.2.2. Prandtl-Meyer Expansion
2.2.3. Nozzles
2.3. Riemann problem
2.3.1. The Riemann problem
2.3.2. Solution of the Riemann problem by characteristics
2.3.3. Non-linear systems: Shock Waves Rankine-Hugoniot condition
2.3.4. Non-linear systems: Waves and expansion fans. Entropy condition
2.3.5. Riemannian Invariants
2.4. Euler Equations
2.4.1. Invariants of the Euler equations
2.4.2. Conservative vs. primitive variables
2.4.3. Solution Strategies
2.5. Solutions to Riemann problem
2.5.1. Exact solution
2.5.2. Conservation Methods
2.5.3. Godunov's method
2.5.4. División del vector de flujo
2.6. Approximate Riemann solvers
2.6.1. HLLC
2.6.2. Roe
2.6.3. AUSM
2.7. Higher order methods
2.7.1. Problems of higher order methods
2.7.2. Limiters and TVD methods
2.7.3. Practical Examples
2.8. Additional aspects of the Riemann Problem
2.8.1. Non-homogeneous equations
2.8.2. División dimensional
2.8.3. Would you like to master Navier-Stokes Equations?
2.9. Regions with high gradients and discontinuities
2.9.1. Importance of meshing
2.9.2. Automatic mesh adaptation (AMR)
2.9.3. Shock Fitting Methods
2.10. Compressible flow applications
2.10.1. Sod problem
2.10.2. Supersonic wedge
2.10.3. Convergent-divergent nozzle
Module 3. Multiphase flow
3.1. Flow regimes
3.1.1. Fase continuas
3.1.2. Discrete phase
3.1.3. Discrete phase populations
3.2. Continuous phases
3.2.1. Properties of the liquid-gas interface
3.2.2. Each phase a domain
3.2.2.1. Independent phase resolution
3.2.3. Coupled solution
3.2.3.1. Fluid fraction as a descriptive phase scalar
3.2.4. Reconstruction of the gas-liquid interface
3.3. Marine simulation
3.3.1. Wave regimes. Wave height vs. depth
3.3.2. Input boundary condition. Wave simulation
3.3.3. Non-reflective output boundary condition. Numerical beach
3.3.4. Lateral boundary conditions. Lateral wind and drift
3.4. Surface Tension
3.4.1. Physical Phenomenon of the Surface Tension
3.4.2. Modeling
3.4.3. Interaction with surfaces. Angle of wetting
3.5. Phase Changes
3.5.1. Source and sink terms associated with phase change
3.5.2. Evaporation models
3.5.3. Condensation and precipitation models. Nucleation of droplets
3.5.4. Cavitation
3.6. Discrete phase: particles, droplets and bubbles
3.6.1. Resistance strength
3.6.2. The buoyancy force
3.6.3. Inertia
3.6.4. Brownian motion and turbulence effects
3.6.5. Other forces
3.7. Interaction with the surrounding fluid
3.7.1. Generation from continuous phase
3.7.2. Aerodynamic Drag
3.7.3. Interaction with other entities, coalescence and rupture
3.7.4. Boundary Conditions
3.8. Statistical description of particle populations. Packages
3.8.1. Transportation of stocks
3.8.2. Stock Boundary Conditions
3.8.3. Stock interactions
3.8.4. Extending the discrete phase to populations
3.9. Water film
3.9.1. Water Sheet Hypothesis
3.9.2. Equations and modeling
3.9.3. Source term from particles
3.10. Example of an application with OpenFOAM
3.10.1. Description of an industrial problem
3.10.2. Setup and simulation
3.10.3. Visualization and interpretation of results
Module 4. Advanced CFD Models
4.1. Multiphysics
4.1.1. Multiphysics Simulations
4.1.2. System Types
4.1.3. Application Examples
4.2. Unidirectional Cosimulation
4.2.1. Unidirectional Cosimulation Advanced Aspects
4.2.2. Information Exchange Schemes
4.2.3. Applications
4.3. Bidirectional Cosimulation
4.3.1. Bidirectional Cosimulation Advanced Aspects
4.3.2. Information Exchange Schemes
4.3.3. Applications
4.4. Convection Heat Transfer
4.4.1. Convection Heat Transfer. Advanced Aspects
4.4.2. Convective heat transfer equations
4.4.3. Methods for solving convection problems
4.5. Conduction Heat Transfer
4.5.1. Conduction Heat Transfer. Advanced Aspects
4.5.2. Behaviorism heat transfer equations
4.5.3. Methods of solving conduction problems
4.6. Radiation Heat Transfer
4.6.1. Radiation Heat Transfer. Advanced Aspects
4.6.2. Due to Radiation heat transfer equations
4.6.3. Methods of solving Radiation problems
4.7. Solid-fluid-heat coupling
4.7.1. Solid-fluid-heat coupling
4.7.2. Solid-fluid thermal coupling
4.7.3. CFD and FEM
4.8. Aeroacoustics
4.8.1. Computational aeroacoustics
4.8.2. Acoustic analogies
4.8.3. Resolution methods
4.9. Advection-diffusion problems
4.9.1. Advection-diffusion problems
4.9.2. Scalar Fields
4.9.3. Particle methods
4.10. Coupling models with reactive flow
4.10.1. Coupling models with reactive flow. Applications
4.10.2. System of differential equations. Solving the chemical reaction
4.10.3. CHEMKINs
4.10.4. Combustion: flame, spark, Wobee
4.10.5. Reactive flows in non-stationary regime: quasi-stationary system hypothesis
4.10.6. Reactive flows in turbulent flows
4.10.7. Catalyst
A syllabus designed to guarantee you a promising future in one of the most relevant areas of computer science"
Postgraduate Certificate in Fluid Modeling
Fluid modeling is a key technique in various areas of industry and engineering, allowing the simulation and analysis of complex processes and phenomena, as well as the optimization of equipment and production processes. At TECH Global University we have designed a Postgraduate Certificate in Fluid Modeling program that provides highly specialized training in the use of simulation and fluid modeling software, as well as in the analysis and design of processes for various industrial applications.
In this program, students will learn how to use fluid simulation and modeling software in the analysis and design of processes for various industrial applications.
In this program, students will learn how to use fluid modeling software in the analysis and design of processes for various industrial applications.
In this program, you will delve into the use of tools such as ANSYS Fluent, COMSOL Multiphysics and OpenFOAM, as well as the modeling of heat transfer, turbulence and mass transport processes. In addition, topics such as multiphase flow simulation and optimization of equipment and production processes will be addressed. Our focus is on providing students with a solid theoretical and practical foundation that will allow them to apply their knowledge in real industry situations. As part of the program, practical projects will be carried out to apply the acquired knowledge and develop skills in the solution of complex problems. With our Postgraduate Certificate in Fluid Modeling program, students will be prepared to face the challenges of industry and contribute to the advancement of engineering in this critical field.