Introduction to the Program

Thanks to this 100% online program, you will thoroughly analyze the essential principles of machine learning and its implementation in the analysis of biomedical data” 

##IMAGE##

During therapeutic treatments, users need to be constantly monitored by medical professionals to verify the effectiveness of the treatments. In this sense, Artificial Intelligence is useful for collecting real-time data on people's clinical status. Likewise, its tools can even detect subtle changes in health to alert specialists when necessary. Therefore, doctors can make changes based on the reactions of individuals and prevent future problems that endanger their lives. 

Aware of its importance, TECH is implementing a Artificial Intelligence in Clinical Research that will address in detail the specific applications of Artificial Intelligence in the field of Clinical Research. Designed by experts in this field, the syllabus will delve into computational simulation in biomedicine and advanced analysis of clinical data. In this way, experts will gain advanced skills to implement Machine Learning in complex biomedical situations. On the other hand, the syllabus will emphasize the ethical and legal considerations of the use of Artificial Intelligence so that graduates develop their procedures under a highly deontological perspective. 

It should be noted that the methodology of this program emphasizes its innovative nature. TECH offers a 100% online educational environment, adapted to the needs of busy professionals seeking to advance in their professional careers.

Therefore, they will be able to individually plan their schedules and assessment timetables. Likewise, the specialization employs the innovative Relearning system, based on the repetition of key concepts to retain knowledge and facilitate learning. In this way, the combination of flexibility and a robust pedagogical approach makes it highly accessible. Professionals will also have access to a rich library of audiovisual resources, including infographics and interactive summaries.  Additionally, the university qualification will include clinical cases, which will bring the development of the program as close as possible to the reality of medical care. 

The ability of Artificial Intelligence to both integrate data from diverse sources and predict results will contribute to making your medical practice more precise and personalized” 

This Professional master’s degree in Artificial Intelligence in Clinical Research contains the most complete and up-to-date program on the market. The most important features include:

  • The development of case studies presented by experts in Artificial Intelligence in Clinical Research
  • The graphic, schematic and eminently practical contents with which it is conceived gather scientific and practical information on those disciplines that are indispensable for professional practice 
  • Practical exercises where self-assessment can be used to improve learning 
  • Its special emphasis on innovative methodologies  
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

To help you achieve your academic goals in a flexible way, TECH offers you a 100% online learning methodology, based on free access to content and customized teaching" 

The program’s teaching staff includes professionals from the field who contribute their work experience to this educational program, as well as renowned specialists from leading societies and prestigious universities.  

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to prepare for real situations.  

This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the course. For this purpose, students will be assisted by an innovative interactive video system created by renowned and experienced experts.   

Are you looking to delve into the implementation of Big Data? Master the most effective Machine Learning techniques thanks to this Professional master’s degree"

##IMAGE##

The program includes the analysis of ethical, legal and regulatory aspects, committing to responsibility and awareness of contemporary challenges"

Syllabus

This Professional master’s degree will encompass the scientific rigor of Clinical Research with the disruptive innovations of Artificial Intelligence. Composed of 20 modules, the syllabus will delve into both the interpretation of medical data and the development of predictive algorithms. Likewise, the syllabus will highlight the relevance of implementing technological solutions in clinical contexts. With a theoretical-practical approach, students will master the basics of Machine Learning and its correct application in the medical field. Graduates will therefore be qualified to lead advances in the individualization of treatments and the optimization of healthcare. 

##IMAGE##

Access the multimedia resources library and the entire syllabus from day one. No fixed schedules or attendance!" 

Module 1. Fundamentals of Artificial Intelligence 

1.1. History of Artificial Intelligence 

1.1.1. When Do We Start Talking About Artificial Intelligence?  
1.1.2. References in Films 
1.1.3. Importance of Artificial Intelligence 
1.1.4. Technologies that Enable and Support Artificial Intelligence 

1.2. Artificial Intelligence in Games 

1.2.1. Game Theory 
1.2.2. Minimax and Alpha-Beta Pruning 
1.2.3. Simulation: Monte Carlo 

1.3. Neural Networks 

1.3.1. Biological Fundamentals 
1.3.2. Computational Model 
1.3.3. Supervised and Unsupervised Neural Networks 
1.3.4. Simple Perceptron 
1.3.5. Multilayer Perceptron 

1.4. Genetic Algorithms 

1.4.1. History 
1.4.2. Biological Basis 
1.4.3. Problem Coding 
1.4.4. Generation of the Initial Population 
1.4.5. Main Algorithm and Genetic Operators 
1.4.6. Evaluation of Individuals: Fitness 

1.5. Thesauri, Vocabularies, Taxonomies 

1.5.1. Vocabulary 
1.5.2. Taxonomy 
1.5.3. Thesauri 
1.5.4. Ontologies 
1.5.5. Knowledge Representation Semantic Web 

1.6. Semantic Web 

1.6.1. Specifications RDF, RDFS and OWL 
1.6.2. Inference/Reasoning 
1.6.3. Linked Data 

1.7. Expert Systems and DSS 

1.7.1. Expert Systems 
1.7.2. Decision Support Systems 

1.8. Chatbots and Virtual Assistants  

1.8.1. Types of Assistants: Voice and Text Assistants  
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow 
1.8.3. Integrations: Web, Slack, WhatsApp, Facebook 
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant  

1.9. AI Implementation Strategy 
1.10. Future of Artificial Intelligence  

1.10.1. Understand How to Detect Emotions Using Algorithms  
1.10.2. Creating a Personality: Language, Expressions and Content  
1.10.3. Trends of Artificial Intelligence  
1.10.4. Reflections 

Module 2. Data Types and Life Cycle 

2.1. Statistics  

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences  
2.1.2. Population, Sample, Individual  
2.1.3. Variables: Definition, Measurement Scales  

2.2. Types of Data Statistics  

2.2.1. According to Type  

2.2.1.1. Quantitative: Continuous Data and Discrete Data  
2.2.1.2. Qualitative. Binomial Data, Nominal Data and Ordinal Data 

2.2.2. According to their Shape   

2.2.2.1. Numeric  
2.2.2.2. Text   
2.2.2.3. Logical  

2.2.3. According to its Source  

2.2.3.1. Primary  
2.2.3.2. Secondary  

2.3. Life Cycle of Data  

2.3.1. Stages of the Cycle  
2.3.2. Milestones of the Cycle  
2.3.3. FAIR Principles  

2.4. Initial Stages of the Cycle  

2.4.1. Definition of Goals  
2.4.2. Determination of Resource Requirements  
2.4.3. Gantt Chart  
2.4.4. Data Structure  

2.5. Data Collection  

2.5.1. Methodology of Data Collection  
2.5.2. Data Collection Tools  
2.5.3. Data Collection Channels  

2.6. Data Cleaning  

2.6.1. Phases of Data Cleansing  
2.6.2. Data Quality  
2.6.3. Data Manipulation (with R)  

2.7. Data Analysis, Interpretation and Evaluation of Results  

2.7.1. Statistical Measures  
2.7.2. Relationship Indexes  
2.7.3. Data Mining  

2.8. Datawarehouse  

2.8.1. Elements that Comprise it  
2.8.2. Design  
2.8.3. Aspects to Consider  

2.9. Data Availability  

2.9.1. Access  
2.9.2. Uses  
2.9.3. Security  

2.10. Regulatory Framework 

2.10.1. Data Protection Law  
2.10.2. Good Practices  
2.10.3. Other Regulatory Aspects 

Module 3. Data in Artificial Intelligence 

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Advanced Tools for Data Scientists 

3.2. Data, Information and Knowledge 

3.2.1. Data, Information and Knowledge  
3.2.2. Types of Data 
3.2.3. Data Sources 

3.3. From Data to Information  

3.3.1. Data Analysis 
3.3.2. Types of Analysis 
3.3.3. Extraction of Information from a Dataset 

3.4. Extraction of Information Through Visualization 

3.4.1. Visualization as an Analysis Tool 
3.4.2. Visualization Methods  
3.4.3. Visualization of a Data Set 

3.5. Data Quality 

3.5.1. Quality Data 
3.5.2. Data Cleaning  
3.5.3. Basic Data Preprocessing 

3.6. Dataset 

3.6.1. Dataset Enrichment 
3.6.2. The Curse of Dimensionality 
3.6.3. Modification of Our Data Set 

3.7. Unbalance  

3.7.1. Classes of Unbalance 
3.7.2. Unbalance Mitigation Techniques 
3.7.3. Balancing a Dataset 

3.8. Unsupervised Models  

3.8.1. Unsupervised Model 
3.8.2. Methods 
3.8.3. Classification with Unsupervised Models 

3.9. Supervised Models 

3.9.1. Supervised Model 
3.9.2. Methods 
3.9.3. Classification with Supervised Models 

3.10. Tools and Good Practices 

3.10.1. Good Practices for Data Scientists 
3.10.2. The Best Model  
3.10.3. Useful Tools 

Module 4. Data Mining. Selection, Pre-Processing and Transformation 

4.1. Statistical Inference 

4.1.1. Descriptive Statistics vs. Statistical Inference 
4.1.2. Parametric Procedures 
4.1.3. Non-Parametric Procedures 

4.2. Exploratory Analysis 

4.2.1. Descriptive Analysis  
4.2.2. Visualization 
4.2.3. Data Preparation 

4.3. Data Preparation 

4.3.1. Integration and Data Cleaning  
4.3.2. Normalization of Data 
4.3.3. Transforming Attributes  

4.4. Missing Values 

4.4.1. Treatment of Missing Values 
4.4.2. Maximum Likelihood Imputation Methods 
4.4.3. Missing Value Imputation Using Machine Learning 

4.5. Noise in the Data  

4.5.1. Noise Classes and Attributes 
4.5.2. Noise Filtering  
4.5.3. The Effect of Noise 

4.6. The Curse of Dimensionality 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Multidimensional Data Reduction 

4.7. From Continuous to Discrete Attributes 

4.7.1. Continuous Data Vs. Discreet Data 
4.7.2. Discretization Process 

4.8. The Data  

4.8.1. Data Selection  
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods  

4.9. Instance Selection 

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Preprocessing in Big Data Environments 

Module 5. Algorithm and Complexity in Artificial Intelligence 

5.1. Introduction to Algorithm Design Strategies 

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms 

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Criteria for Mathematical Analysis of Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms 

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Merge Sort 
5.3.6. Quick Sort 

5.4. Algorithms with Trees 

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps 

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms 

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms 

5.7.1. Greedy Strategy 
5.7.2. Elements of the Greedy Strategy 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding 

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra's Algorithm 

5.9. Greedy Algorithms on Graphs 

5.9.1. The Minimum Covering Tree 
5.9.2. Prim's Algorithm 
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking 

5.10.1. Backtracking 
5.10.2. Alternative Techniques 

Module 6. Intelligent Systems 

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology? 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems 

Module 7. Machine Learning and Data Mining 

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Preprocessing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. C Algorithm 
7.3.3. Overtraining and Pruning 
7.3.4. Result Analysis 

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrixes 
7.4.2. Numerical Evaluation Matrixes 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves 

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes' Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10. Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis 

Module 8. Neural Networks, the Basis of Deep Learning 

8.1. Deep Learning 

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Surgery 

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers 

8.3.1. Input Layer 
8.3.2. Cloak 
8.3.3. Output Layer 

8.4. Layer Bonding and Operations 

8.4.1. Architecture Design 
8.4.2. Connection between Layers 
8.4.3. Forward Propagation 

8.5. Construction of the first neural network 

8.5.1. Network Design 
8.5.2. Establish the Weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8. From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine Tuning Hyperparameters of Neural Networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights 

Module 9. Deep Neural Networks Training 

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques 

9.2. Reuse of Pre-Trained Layers 

9.2.1. Learning Transfer Training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Optimizers Adam and RMSprop 
9.3.3. Moment Optimizers 

9.4. Learning Rate Programming 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines 

9.6.1. Model Design 
9.6.2. Selection of Metrics and Evaluation Parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Learning Transfer Training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Learning Transfer Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout 

Module 10. Model Customization and Training with TensorFlow 

10.1. TensorFlow 

10.1.1. Use of the TensorFlow Library 
10.1.2. Model Training with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computing Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy Operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Features and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Grap Optimization with TensorFlow Operations 

10.5. Loading and Preprocessing Data with TensorFlow 

10.5.1. Loading Data Sets with TensorFlow 
10.5.2. Preprocessing Data with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The tf.data API 

10.6.1. Using the tf.dataAPI for Data Processing 
10.6.2. Construction of Data Streams with tf.data 
10.6.3. Using the tf.data API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecord API for Data Serialization 
10.7.2. TFRecord File Upload with TensorFlow 
10.7.3. Using TFRecord Files for Model Training 

10.8. Keras Preprocessing Layers 

10.8.1. Using the Keras Preprocessing API 
10.8.2. Preprocessing Pipelined Construction with Keras 
10.8.3. Using the Keras Preprocessing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasetsfor Data Loading 
10.9.2. Data Preprocessing with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets for Model Training 

10.10. Building a Deep Learning App with TensorFlow 

10.10.1. Practical Applications 
10.10.2. Building a Deep Learning App with TensorFlow 
10.10.3. Model Training with TensorFlow 
10.10.4. Use of the Application for the Prediction of Results 

Module 11. Deep Computer Vision with Convolutional Neural Networks 

11.1. The Visual Cortex Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1. Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Grouping Layers and Implementation of Grouping Layers with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1. VGG Architecture 
11.4.2. AlexNet Architecture 
11.4.3. ResNet Architecture 

11.5. Implementing a CNN ResNet using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of Pre-trained Keras Models 

11.6.1. Characteristics of Pre-trained Models 
11.6.2. Uses of Pre-trained Models 
11.6.3. Advantages of Pre-trained Models 

11.7. Pre-trained Models for Transfer Learning 

11.7.1. Learning by Transfer 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Deep Computer Vision Classification and Localization 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.1. Edge Detection 
11.10.1. Rule-based Segmentation Methods 

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention 

12.1. Text Generation using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of the Training Dataset 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Classification of Opinions with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment Analysis with Deep Learning Algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an Encoder-Decoder Network for Machine Translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of Care Mechanisms in RNN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of Attention Mechanisms in Neural Networks 

12.6. Transformer Models 

12.6.1. Using Transformers Models for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for Vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Preprocessing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face’s Transformers Bookstore 

12.8.1. Using the Hugging Face's Transformers Library 
12.8.2. Hugging Face´s Transformers Library Application 
12.8.3. Advantages of Hugging Face´s Transformers Library 

12.9. Other Transformers Libraries. Comparison 

12.9.1. Comparison Between Different Transformers Libraries 
12.9.2. Use of the Other Transformers Libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP Application with RNN and Attention. Practical Applications 

12.10.1. Development of a Natural Language Processing Application with RNN and Attention 
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application 

Module 13. Autoencoders, GANs and Diffusion Models 

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Noise Suppression of Autoencoders 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Generation of Fashion MNIST Images 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative Adversarial Networks and Diffusion Models 

13.9.1. Content Generation from Images 
13.9.2. Modeling of Data Distributions 
13.9.3. Use of Adversarial Networks 

13.10. Implementation of the Models 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation 

Module 14. Bio-Inspired Computing  

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computation Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computing Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1. Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications  

15.1. Financial Services 

15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services  Opportunities and Challenges  
15.1.2. Case Uses  
15.1.3. Potential Risks Related to the Use of AI 
15.1.4. Potential Future Developments/Uses of AI 

15.2. Implications of Artificial Intelligence in the Healthcare Service  

15.2.1. Implications of AI in the Healthcare Sector. Opportunities and Challenges  
15.2.2. Case Uses 

15.3. Risks Related to the Use of AI in the Health Service 

15.3.1. Potential Risks Related to the Use of AI 
15.3.2. Potential Future Developments/Uses of AI  

15.4. Retail  

15.4.1. Implications of AI in Retail. Opportunities and Challenges  
15.4.2. Case Uses  
15.4.3. Potential Risks Related to the Use of AI  
15.4.4. Potential Future Developments/Uses of AI 

15.5. Industry   

15.5.1. Implications of AI in Industry. Opportunities and Challenges 
15.5.2. Case Uses 

15.6. Potential Risks Related to the Use of AI in Industry   

15.6.1. Case Uses 
15.6.2. Potential Risks Related to the Use of AI 
15.6.3. Potential Future Developments/Uses of AI  

15.7. Public Administration  

15.7.1. AI Implications for Public Administration. Opportunities and Challenges 
15.7.2. Case Uses  
15.7.3. Potential Risks Related to the Use of AI  
15.7.4. Potential Future Developments/Uses of AI  

15.8. Education  

15.8.1. AI Implications for Education. Opportunities and Challenges 
15.8.2. Case Uses  
15.8.3. Potential Risks Related to the Use of AI  
15.8.4. Potential Future Developments/Uses of AI 

15.9. Forestry and Agriculture  

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges  
15.9.2. Case Uses 
15.9.3. Potential Risks Related to the Use of AI 
15.9.4. Potential Future Developments/Uses of AI  

15.10. Human Resources  

15.10.1. Implications of AI for Human Resources. Opportunities and Challenges 
15.10.2. Case Uses  
15.10.3. Potential Risks Related to the Use of AI  
15.10.4. Potential Future Developments/Uses of AI 

Module 16. Artificial Intelligence Methods and Tools for Clinical Research 

16.1. AI Technologies and Tools in Clinical Research 

16.1.1. Using Machine Learning to Identify Patterns in Clinical Data 
16.1.2. Development of Predictive Algorithms for Clinical Trials 
16.1.3. Implementation of AI Systems to Improve Patient Recruitment 
16.1.4. AI Tools for Real-Time Analysis of Research Data with Tableau

16.2. Statistical Methods and Algorithms in Clinical Trials 

16.2.1. Application of Advanced Statistical Techniques for Clinical Data Analysis 
16.2.2. Use of Algorithms for the Validation and Verification of Trial Results 
16.2.3. Implementation of Regression and Classification Models in Clinical Studies 
16.2.4. Analysis of Large Data Sets using Computational Statistical Methods 

16.3. Design of Experiments and Analysis of Results 

16.3.1. Strategies for the Efficient Design of Clinical Trials Using AI with IBM Watson Health
16.3.2. AI Techniques for Analysis and Interpretation of Experimental Data 
16.3.3. Optimization of Research Protocols Using AI Simulations 
16.3.4. Evaluation of Efficacy and Safety of Treatments Using AI Models 

16.4. Interpretation of Medical Images Using AI in Research Using Aidoc

16.4.1. Development of AI Systems for the Automatic Detection of Diseases in Images 
16.4.2. Use of Deep Learning for Classification and Segmentation in Medical Images 
16.4.3. AI Tools to Improve Accuracy in Image Diagnostics 
16.4.4. Analysis of Radiological and Magnetic Resonance Imaging Using AI 

16.5. Clinical Analysis and Biomedical Data Analysis 

16.5.1. AI in the Processing and Analysis of Genomic and Proteomic Data DeepGenomics
16.5.2. Tools for the Integrated Analysis of Clinical and Biomedical Data 
16.5.3. Use of AI to Identify Biomarkers in Clinical Research 
16.5.4. Predictive Analysis of Clinical Outcomes Based on Biomedical Data 

16.6. Advanced Data Visualization in Clinical Research 

16.6.1. Development of Interactive Visualization Tools for Clinical Data 
16.6.2. Use of AI in the Creation of Graphical Representations of Complex Data in Microsoft Power BI
16.6.3. Visualization Techniques for Easy Interpretation of Research Results 
16.6.4. Augmented and Virtual Reality Tools for Visualization of Biomedical Data 

16.7. Natural Language Processing in Scientific and Clinical Documentation 

16.7.1. Application of NLP for the Analysis of Scientific Literature and Clinical Records with Linguamatics
16.7.2. AI Tools for the Extraction of Relevant Information from Medical Texts 
16.7.3. AI Systems for Summarizing and Categorizing Scientific Publications 
16.7.4. Use of NLP to Identify Trends and Patterns in Clinical Documentation 

16.8. Processing Heterogeneous Data in Clinical Research with Google Cloud Healthcare API and IBM Watson Health

16.8.1. AI Techniques for Integrating and Analyzing Data from Diverse Clinical Sources 
16.8.2. Tools for the Management of Unstructured Clinical Data 
16.8.3. AI Systems for Correlating Clinical and Demographic Data 
16.8.4. Analysis of Multidimensional Data for Clinical Insights 

16.9. Applications of Neural Networks in Biomedical Research 

16.9.1. Use of Neural Networks for Disease Modeling and Treatment Prediction 
16.9.2. Implementation of Neural Networks in Genetic Disease Classification 
16.9.3. Development of Diagnostic Systems Based on Neural Networks 
16.9.4. Application of Neural Networks in the Personalization of Medical Treatments 

16.10. Predictive Modeling and its Impact on Clinical Research 

16.10.1. Development of Predictive Models for the Anticipation of Clinical Outcomes 
16.10.2. Use of AI in the Prediction of Side Effects and Adverse Reactions 
16.10.3. Implementation of Predictive Models in the Optimization of Clinical Trials 
16.10.4. Risk Analysis in Medical Treatments Using Predictive Modeling 

Module 17. Biomedical Research with AI 

17.1. Design and Implementation of Observational Studies with AI 

17.1.1. Implementation of AI for the Selection and Segmentation of Populations in Studies 
17.1.2. Use of Algorithms for Real-Time Monitoring of Observational Study Data 
17.1.3. AI Tools for Identifying Patterns and Correlations in Observational Studies with Flatiron Health
17.1.4. Automation of the Data Collection and Analysis Process in Observational Studies 

17.2. Validation and Calibration of Models in Clinical Research 

17.2.1. AI Techniques to Ensure the Accuracy and Reliability of Clinical Models 
17.2.2. Use of AI in the Calibration of Predictive Models in Clinical Research 
17.2.3. Cross-Validation Methods Applied to Clinical Models Using AI with KNIME Analytics Platform
17.2.4. AI Tools for the Evaluation of Generalization of Clinical Models 

17.3. Methods for Integration of Heterogeneous Data in Clinical Research 

17.3.1. AI Techniques for Combining Clinical, Genomic and Environmental Data with DeepGenomics
17.3.2. Use of Algorithms to Manage and Analyze Unstructured Clinical Data 
17.3.3. AI Tools for the Normalization and Standardization of Clinical Data with Informatica's Healthcare Data Management
17.3.4. AI Systems for Correlation of Different Types of Data in Research 

17.4. Integration of Multidisciplinary Biomedical Data Using Flatiron Health's OncologyCloud and AutoML

17.4.1. AI Systems to Combine Data from Different Biomedical Disciplines 
17.4.2. Algorithms for Integrated Analysis of Laboratory and Clinical Data 
17.4.3. AI Tools for Visualization of Complex Biomedical Data 
17.4.4. Use of AI in the Creation of Holistic Health Models from Multidisciplinary Data 

17.5. Deep Learning Algorithms in Biomedical Data Analysis 

17.5.1. Implementation of Neural Networks in the Analysis of Genetic and Proteomic Data 
17.5.2. Use of Deep Learning for Pattern Identification in Biomedical Data 
17.5.3. Development of Predictive Models in Precision Medicine with Deep Learning 
17.5.4. Application of AI in the Advanced Analysis of Biomedical Images Using Aidoc

17.6. Optimization of Research Processes with Automation 

17.6.1. Automation of Laboratory Routines Using AI Systems with Beckman Coulter
17.6.2. Use of AI for Efficient Management of Resources and Time in Research 
17.6.3. AI Tools for Optimization of Workflows in Clinical Research 
17.6.4. Automated Systems for Tracking and Reporting Progress in Research 

17.7. Simulation and Computational Modeling in Medicine with AI 

17.7.1. Development of Computational Models to Simulate Clinical Scenarios 
17.7.2. Using AI to Simulate Molecular and Cellular Interactions with Schrödinger 
17.7.3. AI Tools in the Creation of Predictive Disease Models with GNS Healthcare
17.7.4. Application of AI in the Simulation of Drug and Treatment Effects 

17.8. Use of Virtual and Augmented Reality in Clinical Studies with Surgical Theater

17.8.1. Implementation of Virtual Reality for Training and Simulation in Medicine 
17.8.2. Use of Augmented Reality in Surgical and Diagnostic Procedures 
17.8.3. Virtual Reality Tools for Behavioral and Psychological Studies 
17.8.4. Application of Immersive Technologies in Rehabilitation and Therapy 

17.9. Data Mining Tools Applied to Biomedical Research 

17.9.1. Use of Data Mining Techniques to Extract Knowledge from Biomedical Databases 
17.9.2. Implementation of AI Algorithms to Discover Patterns in Clinical Data 
17.9.3. AI Tools for Trend Identification in Large Data Sets with Tableau
17.9.4. Application of Data Mining in the Generation of Research Hypotheses  

17.10. Development and Validation of Biomarkers with Artificial Intelligence 

17.10.1. Use of AI for the Identification and Characterization of Novel Biomarkers 
17.10.2. Implementation of AI Models for the Validation of Biomarkers in Clinical Studies 
17.10.3. AI Tools in the Correlation of Biomarkers with Clinical Outcomes
17.10.4. Application of AI in Biomarker Analysis for Personalized Medicine 

Module 18. Practical Application of Artificial Intelligence in Clinical Research 

18.1. Genome Sequencing Technologies and Data Analysis with AI with DeepGenomics

18.1.1. Use of AI for Rapid and Accurate Analysis of Genetic Sequences 
18.1.2. Implementation of Machine Learning Algorithms in the Interpretation of Genomic Data 
18.1.3. AI Tools for Identification of Genetic Variants and Mutations 
18.1.4. Development of AI Systems for Anomaly Detection in Medical Images 

18.2. AI in the Analysis of Biomedical Images with Aidoc

18.2.1. Development of AI Systems for the Detection of Anomalies in Medical Images 
18.2.2. Use of Deep Learning in the Interpretation of X-rays, MRI and CT Scans 
18.2.3. AI Tools to Improve Accuracy in Diagnostic Imaging 
18.2.4. Implementation of AI in Biomedical Image Classification and Segmentation 

18.3. Robotics and Automation in Clinical Laboratories 

18.3.1. Use of Robots for the Automation of Tests and Processes in Laboratories 
18.3.2. Implementation of Automatic Systems for the Management of Biological Samples 
18.3.3. Development of Robotic Technologies to Improve Efficiency and Accuracy in Clinical Analysis 
18.3.4. Application of AI in the Optimization of Laboratory Workflows with Optum

18.4. AI in the Personalization of Therapies and Precision Medicine 

18.4.1. Development of AI Models for the Personalization of Medical Treatments 
18.4.2. Use of Predictive Algorithms in the Selection of Therapies based on Genetic Profiling 
18.4.3. AI Tools in the Adaptation of Drug Doses and Combinations with PharmGKB
18.4.4. Application of AI in the Identification of Effective Treatments for Specific Groups  

18.5. Innovations in AI-assisted Diagnosis using ChatGPT and Amazon Comprehend Medical

18.5.1. Implementation of AI Systems for Rapid and Accurate Diagnostics 
18.5.2. Use of AI in Early Identification of Diseases through Data Analysis 
18.5.3. Development of AI Tools for Clinical Test Interpretation 
18.5.4. Application of AI in Combining Clinical and Biomedical Data for Comprehensive Diagnostics 

18.6. AI Applications in Microbiome and Microbiology Studies with Metabiomics

18.6.1. Use of AI in the Analysis and Mapping of the Human Microbiome 
18.6.2. Implementation of Algorithms to Study the Relation between Microbiome and Diseases 
18.6.3. AI Tools in the Identification of Patterns in Microbiological Studies 
18.6.4. Application of AI in Microbiome-Based Therapeutics Research 

18.7. Wearables and Remote Monitoring in Clinical Trials 

18.7.1. Development of Wearable Devices with AI for Continuous Health Monitoring with FitBit
18.7.2. Use of AI in the Interpretation of Data Collected by Wearables 
18.7.3. Implementation of Remote Monitoring Systems in Clinical Trials 
18.7.4. Application of AI in the Prediction of Clinical Events through Wearable Data 

18.8. AI in the Management of Clinical Trials with Oracle Health Sciences

18.8.1. Use of AI Systems for Optimization of Clinical Trial Management 
18.8.2. Implementation of AI in the Selection and Monitoring of Participants 
18.8.3. AI Tools for Analysis of Clinical Trial Data and Results 
18.8.4. Application of AI to Improve Trial Efficiency and Reduce Trial Costs 

18.9. Development of AI-Assisted Vaccines and Treatments with Benevolent AI

18.9.1. Use of AI to Accelerate Vaccine Development 
18.9.2. Implementation of Predictive Models in the Identification of Potential Treatments 
18.9.3. AI Tools to Simulate Responses to Vaccines and Drugs 
18.9.4. Application of AI in the Personalization of Vaccines and Therapies 

18.10. AI Applications in Immunology and Immune Response Studies 

18.10.1. Development of AI Models to Understand Immunological Mechanisms with Immuneering
18.10.2. Use of AI in the Identification of Patterns in Immune Responses 
18.10.3. Implementation of AI in Autoimmune Disorders Research 
18.10.4. Application of AI in the Design of Personalized Immunotherapies 

Module 19. Big Data Analytics and Machine Learning in Clinical Research 

19.1. Big Data in Clinical Research: Concepts and Tools 

19.1.1. The Explosion of Data in the Field of Clinical Research 
19.1.2. Concept of Big Data and Main Tools 
19.1.3. Applications of Big Data in Clinical Research 

19.2. Data Mining in Clinical and Biomedical Records with KNIME and Python 

19.2.1. Main Methodologies for Data Mining 
19.2.2. Data Integration of Clinical and Biomedical Registry Data 
19.2.3. Detection of Patterns and Anomalies in Clinical and Biomedical Records 

19.3. Machine Learning Algorithms in Biomedical Research with KNIME and Python

19.3.1. Classification Techniques in Biomedical Research 
19.3.2. Regression Techniques in Biomedical Research 
19.3.4. Unsupervised Techniques in Biomedical Research 

19.4. Predictive Analytics in Clinical Research with KNIME and Python

19.4.1. Classification Techniques in Clinical Research 
19.4.2. Regression Techniques in Clinical Research 
19.4.3. Deep Learning in Clinical Research 

19.5. AI Models in Epidemiology and Public Health with KNIME and Python 

19.5.1. Classification Techniques for Epidemiology and Public Health 
19.5.2. Regression Techniques for Epidemiology and Public Health 
19.5.3. Unsupervised Techniques for Epidemiology and Public Health 

19.6. Analysis of Biological Networks and Disease Patterns 

19.6.1. Exploration of Interactions in Biological Networks for the Identification of Disease Patterns 
19.6.2. Integration of Omics Data in Network Analysis to Characterize Biological Complexities 
19.6.3. Application of Machine Learning Algorithms for the Discovery of Disease Patterns 

19.7. Development of Tools for Clinical Prognosis with Workflow-type Platforms and Python

19.7.1. Creation of Innovative Clinical Prognostic Tools based on Multidimensional Data 
19.7.2. Integration of Clinical and Molecular Variables in the Development of Prognostic Tools 
19.7.3. Evaluating the Effectiveness of Prognostic Tools in Diverse Clinical Contexts 

19.8. Advanced Visualization and Communication of Complex Data with Tools like PowerBI and Python

19.8.1. Use of Advanced Visualization Techniques to Represent Complex Biomedical Data 
19.8.2. Development of Effective Communication Strategies to Present Results of Complex Analyses 
19.8.3. Implementation of Interactivity Tools in Visualizations to Enhance Understanding 

19.9. Data Security and Challenges in Big Data Management 

19.9.1. Addressing Data Security Challenges in the Context of Biomedical Big Data 
19.9.1. Strategies for Privacy Protection in the Management of Large Biomedical Datasets 
19.9.3. Implementation of Security Measures to Mitigate Risks in the Handling of Sensitive Data 

19.10. Practical Applications and Case Studies on Biomedical Big Data 

19.10.1. Exploration of Successful Cases in the Implementation of Biomedical Big Data in Clinical Research 
19.10.2. Development of Practical Strategies for the Application of Big Data in Clinical Decision Making 
19.10.3. Evaluation of Impact and Lessons Learned through Case Studies in the Biomedical Field 

Module 20. Ethical, Legal and Future Aspects of Artificial Intelligence in Clinical Research 

20.1. Ethics in the Application of AI in Clinical Research 

20.1.1. Ethical Analysis of AI-Assisted Decision Making in Clinical Research Settings 
20.1.2. Ethics in the Use of AI Algorithms for Participant Selection in Clinical Trials 
20.1.3. Ethical Considerations in the Interpretation of Results Generated by AI Systems in Clinical Research 

20.2. Legal and Regulatory Considerations in Biomedical AI 

20.2.1. Analysis of Legal Regulations in the Development and Application of AI Technologies in the Biomedical Field 
20.2.2. Assessment of Compliance with Specific Regulations to Ensure the Safety and Efficacy of AI-Based Solutions 
20.2.3. Addressing Emerging Regulatory Challenges Associated with the Use of AI in Biomedical Research 

20.3. Informed Consent and Ethical Aspects in the Use of Clinical Data

20.3.1. Development of Strategies to Ensure Effective Informed Consent in AI Projects 
20.3.2. Ethics in the Collection and Use of Sensitive Clinical Data in the Context of AI-Driven Research 
20.3.3. Addressing Ethical Issues Related to Ownership and Access to Clinical Data in Research Projects 

20.4. AI and Liability in Clinical Research 

20.4.1. Evaluation of Ethical and Legal Accountability in the Implementation of AI Systems in Clinical Research Protocols 
20.4.2. Development of Strategies to Address Potential Adverse Consequences of the Application of AI in Biomedical Research 
20.4.3. Ethical Considerations in the Active Participation of AI in Clinical Research Decision Making 

20.5. Impact of AI on Equity and Access to Health Care 

20.5.1. Evaluation of the Impact of AI Solutions on Equity in Clinical Trial Participation 
20.5.2. Development of Strategies to Improve Access to AI Technologies in Diverse Clinical Settings 
20.5.3. Ethics in the Distribution of Benefits and Risks Associated with the Application of AI in Health Care 

20.6. Privacy and Data Protection in Research Projects 

20.6.1. Ensuring the Privacy of Participants in Research Projects Involving the Use of AI 
20.6.2. Development of Policies and Practices for Data Protection in Biomedical Research 
20.6.3. Addressing Specific Privacy and Security Challenges in the Handling of Sensitive Data in the Clinical Environment 

20.7. AI and Sustainability in Biomedical Research 

20.7.1. Assessment of the Environmental Impact and Resources Associated with the Implementation of AI in Biomedical Research 
20.7.2. Development of Sustainable Practices in the Integration of AI Technologies into Clinical Research Projects 
20.7.3. Ethics in Resource Management and Sustainability in the Adoption of AI in Biomedical Research 

20.8. Auditing and Explainability of AI Models in the Clinical Setting

20.8.1. Development of Audit Protocols for Assessing the Reliability and Accuracy of AI Models in Clinical Research 
20.8.2. Ethics in Explainability of Algorithms to Ensure Understanding of Decisions Made by AI Systems in Clinical Contexts 
20.8.3. Addressing Ethical Challenges in the Interpretation of AI Model Results in Biomedical Research 

20.9. Innovation and Entrepreneurship in the Field of Clinical AI 

20.9.1. Responsible Innovation Ethics in Developing AI Solutions for Clinical Applications 
20.9.2. Development of Ethical Business Strategies in the Field of Clinical AI 
20.9.3. Ethical Considerations in the Commercialization and Adoption of AI Solutions in the Clinical Sector 

20.10. Ethical Considerations in International Collaboration in Clinical Research 

20.10.1. Development of Ethical and Legal Arrangements for International Collaboration in AI-Driven Research Projects 
20.10.2. Ethics in Multi-Institutional and Multi-Country Involvement in Clinical Research using AI Technologies 
20.10.3. Addressing Emerging Ethical Challenges Associated with Global Collaboration in Biomedical Research

##IMAGE##

A unique training experience, key and decisive to boost your professional development"

Professional Master's Degree in Artificial Intelligence in Clinical Research

Immerse yourself in the confluence of science and technology with the Professional Master's Degree in Artificial Intelligence in Clinical Research created by TECH Global University. This advanced program, taught completely online, is designed for healthcare professionals and scientists seeking to master the innovative applications of artificial intelligence (AI) in clinical research, opening new frontiers in the search for medical solutions. Here, you will discover how AI optimizes clinical study design. You will learn how to use advanced algorithms to analyze previous data, identify patterns and improve research planning, accelerating the development of new treatments. In addition, you will explore how AI transforms clinical data analysis. From interpreting medical images, to evaluating outcomes, you'll learn how to employ machine learning tools to obtain accurate and relevant information in clinical settings.

Get qualified at the world's largest online School of Artificial Intelligence

Only at TECH will you find the most up-to-date methods in the industry, complemented with multimedia material and dynamic classes that are completely new. Get ready to lead the revolution in clinical research with our Professional Master's Degree. Acquire cutting-edge skills and contribute to accelerate the advancement of medicine with the power of artificial intelligence. As you advance through the program, you'll learn how to personalize treatments with AI. You'll discover how algorithms can analyze individual patient data to tailor therapies, improving treatment efficacy and reducing side effects. In addition, you will dive into the integration of biomedical technologies with AI. You'll explore how connected medical devices and health sensors feed real-time data, improving the accuracy and efficiency of clinical studies. If you want to learn more, make the decision and enroll now. Start your journey to excellence in clinical research today!