

Executive Master's Degree

Crypto-Gaming and Blockchain Economics

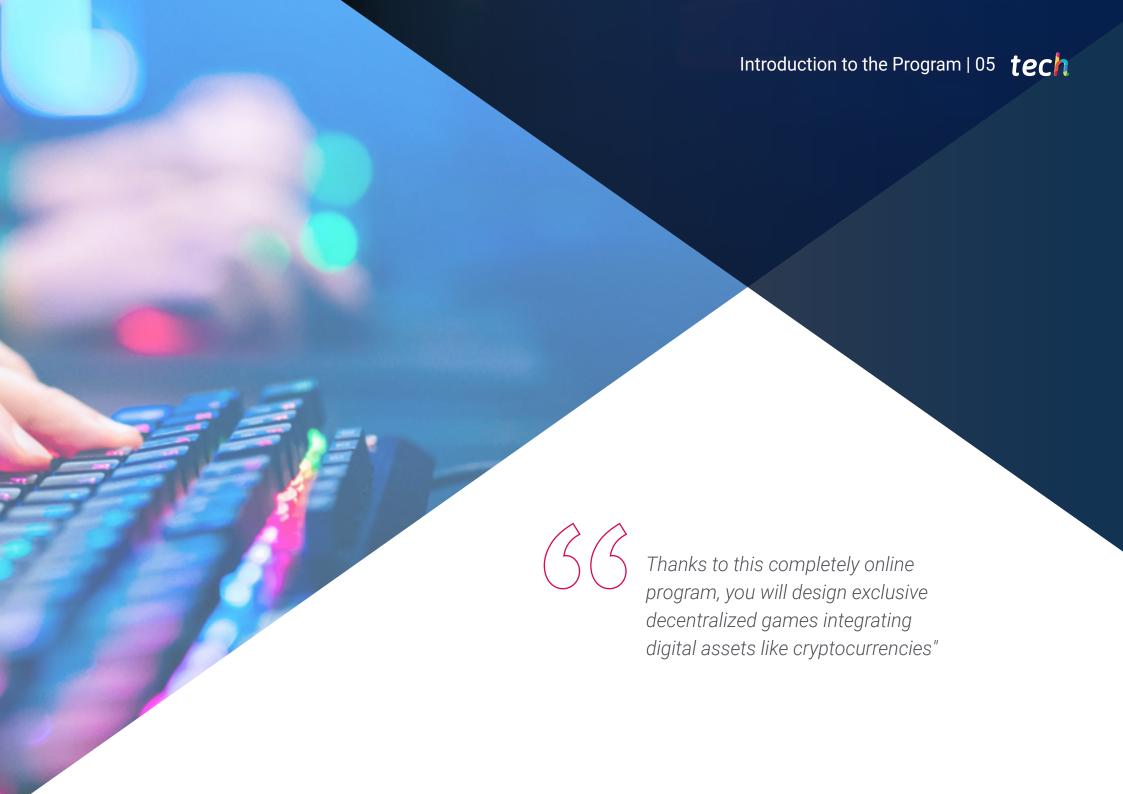
» Modality: online

» Duration: 12 months

» Certificate: TECH Global University

» Accreditation: 60 ECTS

» Schedule: at your own pace


» Exams: online

Website: www.techtitute.com/us/school-of-business/master/executive-master-crypto-gaming-blockchain-economics

Index

02 Introduction to the Program Why Study at TECH? p. 4 p. 8 05 03 Syllabus **Teaching Objectives Career Opportunities** p. 12 p. 22 p. 28 06 80 **Teaching Staff** Study Methodology Certificate p. 32 p. 42 p. 48

tech 06 | Introduction to the Program

The rise of Crypto-Gaming has introduced new financial opportunities in the video game industry, thanks to the integration of play to earn models and decentralized digital economies. This way, players not only interact for entertainment but can now generate real income through their digital assets and active participation in these ecosystems. In this context, professionals need to have a solid understanding of how these technologies are redefining the design, distribution, and monetization of video games in the digital age.

To this end, TECH presents an innovative program in Crypto-Gaming and Blockchain Economics, an exhaustive program that deeply explores the most effective strategies for using Blockchain technologies. The curriculum covers everything from the fundamentals of Blockchain to the analysis of gamified economic systems, with specialized modules that allow students to dive into tools applicable to video games and digital investment platforms. Additionally, students will develop strategic skills in using DeFi and NFTs, learning to manage innovative projects that maximize profitability and foster leadership in the blockchain gaming environment.

This program is delivered with a 100% online methodology, allowing students to balance their studies with other responsibilities, accessing content available 24/7 from any device. Additionally, graduates will have access to various multimedia resources in formats such as explanatory videos, real-world case studies, and specialized readings.

Moreover, a renowned International Guest Director will offer 10 rigorous Masterclasses focused on the latest advancements in Crypto-Gaming and Blockchain Economics.

This Executive Master's Degree in **Crypto-Gaming and Blockchain Economics** contains the most complete and up-to-date university program on the market. Its most notable features are:

- The development of practical cases presented by experts in Crypto-Gaming and Blockchain Economics.
- The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice
- Practical exercises where self-assessment can be used to improve learning
- Special emphasis on innovative methodologies in the management of Crypto-Gaming and Blockchain Economics industries
- Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
- Content that is accessible from any fixed or portable device with an internet connection

You will develop decentralized financial mechanisms that allow for the investment and exchange of digital assets"

Introduction to the Program | 07 tech

A curriculum based on TECH's disruptive Relearning system, which will facilitate the absorption of complex concepts in a fast and flexible manner"

The program includes a teaching staff composed of professionals from the Crypto-Gaming and Blockchain Economics sectors, who bring their practical experience to the program, alongside recognized specialists from leading companies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive learning experience designed to prepare for real-life situations.

This program is designed around Problem-Based Learning, whereby the student must try to solve the different professional practice situations that arise throughout the program. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts.

You will apply technologies such as virtual reality or augmented reality in the development of personalized gaming experiences.

You will delve into the compliance with international regulations to protect user identities and ensure secure transactions.

tech 10 | Why Study at TECH?

The world's best online university, according to FORBES

The prestigious Forbes magazine, specialized in business and finance, has highlighted TECH as "the best online university in the world" This is what they have recently stated in an article in their digital edition in which they echo the success story of this institution, "thanks to the academic offer it provides, the selection of its teaching staff, and an innovative learning method oriented to form the professionals of the future"

The best top international faculty

TECH's faculty is made up of more than 6,000 professors of the highest international prestige. Professors, researchers and top executives of multinational companies, including Isaiah Covington, performance coach of the Boston Celtics; Magda Romanska, principal investigator at Harvard MetaLAB; Ignacio Wistuba, chairman of the department of translational molecular pathology at MD Anderson Cancer Center; and D.W. Pine, creative director of TIME magazine, among others.

The world's largest online university

TECH is the world's largest online university. We are the largest educational institution, with the best and widest digital educational catalog, one hundred percent online and covering most areas of knowledge. We offer the largest selection of our own degrees and accredited online undergraduate and postgraduate degrees. In total, more than 14,000 university programs in eleven different languages position us as the largest educational institution in the world.

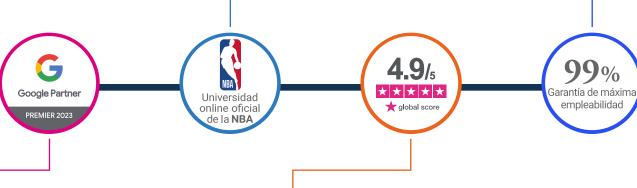
Plan
de estudios
más completo

n°1 Mundial Mayor universidad online del mundo

The most complete syllabuses on the university scene

TECH offers the most complete syllabuses on the university scene, with programs that cover fundamental concepts and, at the same time, the main scientific advances in their specific scientific areas. In addition, these programs are continuously updated to guarantee students the academic vanguard and the most demanded professional skills. and the most in-demand professional competencies. In this way, the university's qualifications provide its graduates with a significant advantage to propel their careers to success.

A unique learning method


TECH is the first university to use Relearning in all its programs. This is the best online learning methodology, accredited with international teaching quality certifications, provided by prestigious educational agencies. In addition, this innovative academic model is complemented by the "Case Method", thereby configuring a unique online teaching strategy. Innovative teaching resources are also implemented, including detailed videos, infographics and interactive summaries.

The official online university of the NBA

TECH is the official online university of the NBA. Thanks to our agreement with the biggest league in basketball, we offer our students exclusive university programs, as well as a wide variety of educational resources focused on the business of the league and other areas of the sports industry. Each program is made up of a uniquely designed syllabus and features exceptional guest hosts: professionals with a distinguished sports background who will offer their expertise on the most relevant topics.

Leaders in employability

TECH has become the leading university in employability. 99% percent of its students obtain jobs in the academic field they have studied within one year of completing any of the university's programs. A similar number achieve immediate career enhancement. All this thanks to a study methodology that bases its effectiveness on the acquisition of practical skills, which are absolutely necessary for professional development.

Google Premier Partner

The American technology giant has awarded TECH the Google Premier Partner badge. This award, which is only available to 3% of the world's companies, highlights the efficient, flexible and tailored experience that this university provides to students. The recognition not only accredits the maximum rigor, performance and investment in TECH's digital infrastructures, but also places this university as one of the world's leading technology companies.

The top-rated university by its students

Students have positioned TECH as the world's toprated university on the main review websites, with a highest rating of 4.9 out of 5, obtained from more than 1,000 reviews. These results consolidate TECH as the benchmark university institution at an international level, reflecting the excellence and positive impact of its educational model.

tech 14 | Syllabus

Module 1. Blockchain

- 1.1. Blockchain
 - 1.1.1. Blockchain
 - 1.1.2. The New Blockchain Economy
 - 1.1.3. Decentralization as the Foundation of the Blockchain Economy
- 1.2. Blockchain Technologies
 - 1.2.1. Bitcoin Blockchain
 - 1.2.2. Validation Process, Computational Power
 - 1.2.3. Hash
- 1.3. Types of Blockchain
 - 1.3.1. Public Chain
 - 1.3.2. Private Chain
 - 1.3.3. Hybrid or Federated Chain
- 1.4. Types of Networks
 - 1.4.1. Centralized Network
 - 1.4.2. Distributed Network
 - 1.4.3. Decentralized Network
- 1.5. Smart Contracts
 - 1.5.1. Smart Contracts
 - 1.5.2. Process of Generating a Smart Contract
 - 1.5.3. Examples and Applications of Smart Contracts
- 1.6. Wallets
 - 161 Wallets
 - 1.6.2. Usefulness and Importance of a Wallet
 - 1.6.3. Hot & Cold Wallet
- 1.7. The Blockchain Economy
 - 1.7.1. Advantages of the Blockchain Economy
 - 1.7.2. Risk Level
 - 1.7.3. Gas Fee
- 1.8. Security
 - 1.8.1. Revolution in Security Systems
 - 1.8.2. Absolute Transparency
 - 1.8.3. Gas Fee Attacks

- 1.9. Tokenization
 - 1.9.1. Tokens
 - 1.9.2. Tokenization
 - 1.9.3. Tokenized Models
- 1.10. Legal Aspects
 - 1.10.1. How Architecture Affects Regulatory Capacity
 - 1.10.2. Jurisprudence
 - 1.10.3. Current Legislation on Gas Fee

Module 2. DeFi (Decentralized Finance)

- 2.1. DeFi (Decentralized Finance)
 - 2.1.1. DeFi (Decentralized Finance)
 - 2.1.2. Origin
 - 2.1.3. Critiques
- 2.2. Market Decentralization
 - 2.2.1. Economic Advantages
 - 2.2.2. Creation of Financial Products
 - 2.2.3. Loans of DeFi
- 2.3. Components DeFi
 - 2.3.1. Layer 0
 - 2.3.2. Software Protocol Layer
 - 2.3.3. Application Layer and Aggregation Layer
- 2.4. Decentralized Exchanges
 - 2.4.1. Exchange of Tokens
 - 2.4.2. Adding Liquidity
 - 2.4.3. Eliminating Liquidity
- 2.5. DeFi Markets
 - 2.5.1. MarketDAO
 - 2.5.2. Argus Prediction Market
 - 2.5.3. Ampleforth
- 2.6. Keys
 - 2.6.1. Yield Farming
 - 2.6.2. Liquidity Mining
 - 2.6.3. Componibility

- 2.7. Differences with Other Systems
 - 2.7.1. Traditional
 - 2.7.2. Fintech
 - 2.7.3. Comparison
- 2.8. Risk to Consider
 - 2.8.1. Incomplete Decentralization
 - 2.8.2. Security
 - 2.8.3. Usage Errors
- 2.9. DeFi Applications
 - 2.9.1. Lending
 - 2.9.2. Trading
 - 2.9.3. Derivatives
- 2.10. Projects Under Development
 - 2.10.1. AAVE
 - 2.10.2. DydX
 - 2.10.3. Money on Chain

Module 3. NFT

- 3.1. NFT
 - 3.1.1. NFTs
 - 3.1.2. NFT and Gas Fee Link
 - 3.1.3. Creation of NFT
- 3.2. Creating an NFT
 - 3.2.1. Design and Content
 - 3.2.2. Generation
 - 3.2.3. Metadata and Freeze Metada
- 3.3. NFT Sales Options in Gamified Economies
 - 3.3.1. Direct Sales
 - 3.3.2. Auction
 - 3.3.3. Whitelist
- 3.4. NFT Market Research
 - 3.4.1. Opensea
 - 3.4.2. Immutable Marketplace
 - 3.4.3. Gemini

- 3.5. NFT Monetization Strategies in Gamified Economies
 - 3.5.1. Value in Use
 - 3.5.2. Aesthetic Value
 - 3.5.3. Actual Value
- 3.6. NFT Monetization Strategies in Gamified Economies: Mining
 - 3.6.1. NFT Mining
 - 3.6.2. Merge
 - 3.6.3. Burn
- 3.7. NFT Monetization Strategies in Gamified Economies: Consumables
 - 3.7.1. NFT Consumable
 - 3.7.2. NFT Envelopes
 - 3.7.3. Quality of NFT
- 3.8. Analysis of Gamified Systems Based on NFT
 - 3.8.1. "Alien Worlds"
 - 3.8.2. "Gods Unchained"
 - 3.8.3. "R-Planet"
- 3.9. NFT as an Investment and Labor Incentive
 - 3.9.1. Investment Participation Privileges
 - 3.9.2. Collections Linked to Specific Dissemination Work
 - 3.9.3. Sum of Forces
- 3.10. Areas of Innovation in Development
 - 3.10.1. Music at NFT
 - 3.10.2. NFT Video
 - 3.10.3. NFT Books

Module 4. Cryptocurrency Analysis

- 4.1. Bitcoin
 - 4.1.1. Bitcoins
 - 4.1.2. Bitcoin as a Market Indicator
 - 4.1.3. Advantages and Disadvantages for Gamified Economies
- 4.2. Altcoins
 - 4.2.1. Main Characteristics and Differences with Respect to Bitcoin
 - 4.2.2. Market Impact
 - 4.2.3. Analysis of Binding Projects

tech 16 | Syllabus

4.3.	Ethereum		
	4.3.1.	Main Features and Operation	
	4.3.2.	Hosted Projects and Market Impact	
	4.3.3.		
4.4.	Binance Coin		
	4.4.1.	Main Features and Operation	
	4.4.2.	Hosted Projects and Market Impact	
	4.4.3.	Advantages and Disadvantages for Gamified Economies	
4.5.	Stablecoins		
	4.5.1.	Characteristics	
	4.5.2.	Projects in Operation as of Stablecoins	
	4.5.3.	Uses of Stablecoins in Gamified Economies	
4.6.	Main Stablecoins		
	4.6.1.	USDT	
	4.6.2.	USDC	
	4.6.3.	BUSD	
4.7.	Trading		
	4.7.1.	Trading in Gamified Economies	
	4.7.2.	Balanced Portfolio	
	4.7.3.	Unbalanced Portfolio	
4.8.	Trading: DCA		
	4.8.1.	DCA	
	4.8.2.	Positional Trading	
	4.8.3.	Daytrading	
4.9.	Risk		
	4.9.1.	Price Formation	
	4.9.2.	Liquidity	
	4.9.3.	Global Economy	
4.10.	Legal Aspects		
	4.10.1.	Mining Regulation	
	4.10.2.	Consumer Rights	
	4.10.3.	Warranty and Security	

Module 5. Blockchain Networks and Decentralized Architectures

- 5.1. The Revolution of Smart Contracts
 - 5.1.1. The Birth of Smart Contracts
 - 5.1.2. Application Hosting
 - 5.1.3. Security in IT Processes
- 5.2. Metamask
 - 5.2.1. Aspects
 - 5.2.2. Impact on Accessibility
 - 5.2.3. Asset Management at Metamask
- 5.3. Tron
 - 5.3.1. Aspects
 - 5.3.2. Hosted Applications
 - 5.3.3. Disadvantages and Benefits
- 5.4. Ripple
 - 5.4.1. Aspects
 - 5.4.2. Hosted Applications
 - 5.4.3. Disadvantages and Benefits
- 5.5. Ethereum
 - 5.5.1. Aspects
 - 5.5.2. Hosted Applications
 - 5.5.3. Disadvantages and Benefits
- 5.6. Polygon MATIC
 - 5.6.1. Aspects
 - 5.6.2. Hosted Applications
 - 5.6.3. Disadvantages and Benefits
- 5.7. Wax
 - 5.7.1. Aspects
 - 5.7.2. Hosted Applications
 - 5.7.3. Disadvantages and Benefits
- 5.8. ADA Cardano
 - 5.8.1. Aspects
 - 5.8.2. Hosted Applications
 - 5.8.3. Disadvantages and Benefits

Syllabus | 17 tech

- 5.9. Solana
 - 5.9.1. Aspects
 - 5.9.2. Hosted Applications
 - 5.9.3. Disadvantages and Benefits
- 5.10. Projects and Migrations
 - 5.10.1. Networks Suitable for the Project
 - 5.10.2. Migration
 - 5.10.3. Crosschain

Module 6. Metaverse

- 6.1. Metaverse
 - 6.1.1. Metaverse
 - 6.1.2. Impact on the World Economy
 - 6.1.3. Impact on the Development of Gamified Economies
- 6.2. Forms of Accessibility
 - 6.2.1. VR
 - 6.2.2. Computers
 - 6.2.3. Mobile Devices
- 6.3. Metaverse Types
 - 6.3.1. Traditional Metaverse
 - 6.3.2. Centralized Blockchain Metaverse
 - 6.3.3. Decentralized Blockchain Metaverse
- 6.4. Metaverse as a Workspace
 - 6.4.1. Idea of the Work within the Metaverse
 - 6.4.2. Creation of Services within the Metaverse
 - 6.4.3. Critical Points to Consider in Job Generation
- 6.5. Metaverso as a Space for Socialization
 - 6.5.1. User Interaction Systems
 - 6.5.2. Mechanics of Socialization
 - 6.5.3. Forms of Monetization
- 6.6. Metaverse as an Entertainment Space
 - 6.6.1. Training Spaces in the Metaverse
 - 6.6.2. Forms of Training Space Management
 - 6.6.3. Categories of Training Spaces in the Metaverse

- 6.7. System for Purchase and Lease of Spaces in the Metaverse
 - 6.7.1. Lands
 - 6.7.2. Auctions
 - 6.7.3. Direct Sales
- 6.8. Second Life
 - 6.8.1. Second Life as a Pioneer in the Metaverse Industry
 - 6.8.2. Game Mechanics
 - 6.8.3. Profitability Strategies Employed
- 6.9. Decentraland
 - 6.9.1. Decentraland as the Most Profitable Metaverse on Record
 - 6.9.2. Game Mechanics
 - 6.9.3. Profitability Strategies Employed
- 6.10. Goals
 - 6.10.1. Meta: The Company with the Greatest Impact on Developing a Metaverse
 - 6.10.2. Market Impact
 - 6.10.3. Project Details

Module 7. External Platforms

- 7.1. DEX
 - 7.1.1. Characteristics
 - 7.1.2. Utilities
 - 7.1.3. Implementation in Gamified Economies
- 7.2. Swaps
 - 7.2.1. Characteristics
 - 7.2.2. Main Swaps
 - 7.2.3. Implementation in Gamified Economies
- 7.3. Oracles
 - 7.3.1. Characteristics
 - 7.3.2. Main Swaps
 - 7.3.3. Implementation in Gamified Economies
- 7.4. Staking
 - 7.4.1. Liquidity Pool
 - 7.4.2. Staking
 - 7.4.3. Farming

tech 18 | Syllabus

Search

8.2.1. Individual

8.2.2. By Group8.2.3. Global

Blockchain Development Tools 7.5.1. Geth 7.5.2. Mist 7.5.3. *Truffe* 7.6. Blockchain Development Tools: Embark 7.6.1. *Embark* 7.6.2. Ganache 7.6.3. Blockchain Testnet 7.7. Marketing Studies 7.7.1. DefiPulse 7.7.2. Skew 7.7.3. Trading View 7.8. Tracking 7.8.1. CoinTracking 7.8.2. CryptoCompare 7.8.3. Blackfolio Trading Bots 7.9.1. Aspects 7.9.2. SFOX Trading Algorithms 7.9.3. AlgoTrader 7.10. Mining Tools 7.10.1. Aspects 7.10.2. NiceHash 7.10.3. What to Mine Module 8. Analysis of Variables in Gamified Economies Gamified Economic Variables 8.1.1. Advantages of Fragmentation 8.1.2. Similarities with the Real Economy 8.1.3. Division Criteria

8.3.	Resources		
	8.3.1.	By Game Design	
	8.3.2.	Tangibles	
		Intangibles	
8.4.	Entities		
	8.4.1.	Players	
	8.4.2.	Single Resource Entities	
	8.4.3.	Multiple Resource Entities	
8.5.	Sources		
	8.5.1.	Generation Conditions	
	8.5.2.	Localization	
	8.5.3.	Production Ratio	
8.6.	Exits		
	8.6.1.	Consumables	
	8.6.2.	Maintenance Costs	
	8.6.3.	Time Out	
8.7.	Converters		
	8.7.1.	NPC	
	8.7.2.	Manufacture	
	8.7.3.	Special Circumstances	
8.8.	Exchange		
	8.8.1.	Public Markets	
	8.8.2.	Private Stores	
	8.8.3.	External Markets	
8.9.	Experience		
	8.9.1.	Acquisition Mechanics	
	8.9.2.	Apply Experience Mechanics to Economic Variables	
	8.9.3.	Penalties and Experience Limits	
8.10.	Deadlocks		
	8.10.1.	Resource Cycle	
	8.10.2.	Linking Economy Variables with Deadlocks	

8.10.3. Applying Deadlocks to Game Mechanics

Module 9. Gamified Economic Systems

- 9.1. Free-to-Play Systems
 - 9.1.1. Characterization of Free-to-Play Economies and Key Profitability Points
 - 9.1.2. Architectures in Free-to-Play Economies
 - 9.1.3. Economic Design
- 9.2. Freemium Systems
 - 9.2.1. Characterization of Freemium Economies and Main Monetization Points
 - 9.2.2. Architectures of Play-to-Earn Economies
 - 9.2.3. Economic Design
- 9.3. Pay-to-Play Systems
 - 9.3.1. Characterization of Pay-to-Play Economies and Key Profitability Points
 - 9.3.2. Architecture in Pay-to-Play Economies
 - 9.3.3. Economic Design
- 9.4. PvP-Based Systems
 - 9.4.1. Characterization of Economies Based on Pay-toPlay and Key Profitability Points
 - 9.4.2 Architecture in PvP Economies
 - 9.4.3. Economic Design Workshop
- 9.5. Seasons System
 - 9.5.1. Characterization of Season-Based Economies and Key Profitability Points
 - 9.5.2. Architecture in Season Economies
 - 9.5.3. Economic Design
- 9.6. Sandbox or MMORPG Economic Systems
 - 9.6.1. Characterization of Sandbox-Based Economies and Main Profitability Points
 - 9.6.2. Architecture in Sandbox Economies
 - 9.6.3. Economic Design
- 9.7. Trading Card Game System
 - 9.7.1. Characterization of Trading Card Game Economies and Key Profitability Points
 - 9.7.2. Architecture in Trading Card Game Economies
 - 9.7.3. Economic Design Workshop
- 9.8. PvE Systems
 - 9.8.1. Characterization of PvE-Based Economies and Main Cost-Effectiveness Points
 - 9.8.2. Architecture in PvE Economies

- 9.8.3. Economic Design Workshop
- 9.9. Betting Systems
 - 9.9.1. Characterization of Bet-Based Economies and Main Monetization Points
 - 9.9.2. Architecture in Betting Economies
 - 9.9.3. Economic Design
- 9.10. Systems Dependent on External Economies
 - 9.10.1. Characterization of Dependent Economies and Main Monetization Points
 - 9.10.2. Architecture in Dependent Economies
 - 9.10.3. Economic Design

Module 10. Blockchain Video Game Analysis

- 10.1. "Star Atlas"
 - 10.1.1. Game Mechanics
 - 10.1.2. Economic System
 - 10.1.3. Usability
- 10.2. "Outer Ring"
 - 10.2.1. Game Mechanics
 - 10.2.2. Economic System
 - 10.2.3. Usability
- 10.3. "Axie Infinity"
 - 10.3.1. Game Mechanics
 - 10.3.2. Economic System
 - 10.3.3. Usability
- 10.4. "Splinterlands"
 - 10.4.1. Game Mechanics
 - 10.4.2. Economic System
 - 10.4.3. Usability
- 10.5. "R-Planet"
 - 10.5.1. Game Mechanics
 - 10.5.2. Economic System
 - 10.5.3. Usability
- 10.6. "Ember Sword"
 - 10.6.1. Game Mechanics

tech 20 | Syllabus

10.6.2. Economic System

10.6.3. Usability

10.7. "Big Time"

10.7.1. Game Mechanics

10.7.2. Economic System

10.7.3. Usability

10.8. "Gods Unchained"

10.8.1. Game Mechanics

10.8.2. Economic System

10.8.3. Usability

10.9. "Illuvium"

10.9.1. Game Mechanics

10.9.2. Economic System

10.9.3. Usability

10.10. "Upland"

10.10.1. Game Mechanics

10.10.2. Economic System

10.10.3. Usability

You will design models that allow players to earn financial rewards through active participation"

tech 24 | Teaching Objectives

General Objectives

- Develop advanced knowledge in Crypto-Gaming and Blockchain Economics, understanding their impact and potential in the transformation of digital business models
- Identify Blockchain applications in gamified economies, optimizing financial processes through the use of DeFi and NFTs
- Implement Smart Contracts to automate digital transactions, ensuring transparency, efficiency, and security in decentralized environments
- Integrate virtual reality platforms and the Metaverse to develop innovative gaming experiences and foster new investment opportunities
- Apply data analysis techniques in cryptocurrency markets to improve strategic decisionmaking
- Use decentralized technologies to efficiently manage digital assets, driving projects in the Crypto-Gaming field
- Design and execute sustainable gamified economies, using Blockchain tools to maximize profitability
- Promote continuous updates on Blockchain and DeFi technologies, ensuring that experts stay up to date with the latest industry innovations

Explore the mechanics and economic system of Star Atlas and dive into a virtual universe where decentralized economics drive an innovative gaming experience"

Specific Objectives

Module 1. Blockchain

- Analyze the origin and evolution of Blockchain technology, identifying its key milestones and its impact on the digital ecosystem
- Understand how blockchain networks operate, exploring key concepts like decentralization, validation, and security
- Study the different types of Blockchain (public, private, hybrid), evaluating their advantages and applications
- Analyze the role of smart contracts and their impact on process automation

Module 2. DeFi (Decentralized Finance)

- Explore the fundamental principles of DeFi and its role in transforming the traditional financial system
- Identify the key components of decentralized ecosystems and their applications in Crypto-Gaming
- Analyze the operation of decentralized exchanges and the opportunities they offer in today's market
- Evaluate the risks associated with DeFi and develop effective risk mitigation strategies

Module 3. NFT

- Understand the concept of NFT and its impact on the digital economy and collectibles market
- Explore the process of creating and tokenizing digital assets through Blockchain
- Analyze different NFT exchange platforms and their role in gamified economies
- Study NFT monetization strategies applied to Crypto-Gaming projects

Module 4. Cryptocurrency Analysis

- Study Bitcoin's role as a market indicator and its influence on the global economy
- Analyze the main characteristics of Altcoins and their impact on decentralized economy projects.
- Explore Ethereum's operation and its relevance in creating decentralized applications (dApps)
- Evaluate the advantages and disadvantages of cryptocurrencies in the design of gamified economies.

Module 5. Blockchain Networks and Decentralized Architectures

- Analyze the main Blockchain networks, such as Ethereum, Tron, Ripple, and Solana
- Explore the operation of Smart Contracts hosted on different networks and their impact on process automation
- Study security in decentralized transactions, identifying risks and mitigation methods
- Investigate the opportunities for integration and migration between networks using crosschain technologies

Module 6. Metaverse

- Explore the concept of the Metaverse and its impact on creating immersive digital economies
- Analyze leading platforms such as Decentraland and The Sandbox, evaluating their monetization models
- Investigate the role of digital assets in creating spaces for interaction and entertainment
- Study investment opportunities in virtual land and its influence on gamified economies

tech 26 | Teaching Objectives

Module 7. External Platforms

- Analyze the features of decentralized exchange (DEX) platforms and their integration with digital economies
- Study the operation of Swaps, Staking, and Oracles applied to the profitability of Blockchain projects
- Explore development tools like Geth, Truffle, and Ganache for creating decentralized applications
- Evaluate the impact of mining tools and market analysis on the development of innovative projects

Module 8. Analysis of Variables in Gamified Economies

- Analyze the economic variables that influence gamified systems, such as fragmentation and resource cycles
- Explore exchange processes in digital economies, from public markets to decentralized platforms
- Study the mechanics of experience acquisition and its application in gamified business models
- Evaluate strategies for designing sustainable economies in digital environments

Module 9. Gamified Economic Systems

- Explore business models based on Free to Play, Freemium, and Play to Earn in the Blockchain environment
- Analyze the design of economies in PvP games, PvE, and betting systems, highlighting key monetization points
- Study the architecture of economies based on Trading Card Games and their influence on the NFT market
- Evaluate the impact of seasons systems (Seasons) on user retention and revenue generation

Module 10. Blockchain Video Game Analysis

- Analyze case studies of Blockchain-based video games, such as Axie Infinity, Gods Unchained, and Illuvium
- Evaluate game mechanics and their impact on the development of sustainable digital economies
- Study the economic systems applied in these projects and their influence on market behavior
- Investigate innovation opportunities in the development of new video games based on decentralized technologies

tech 30 | Career Opportunities

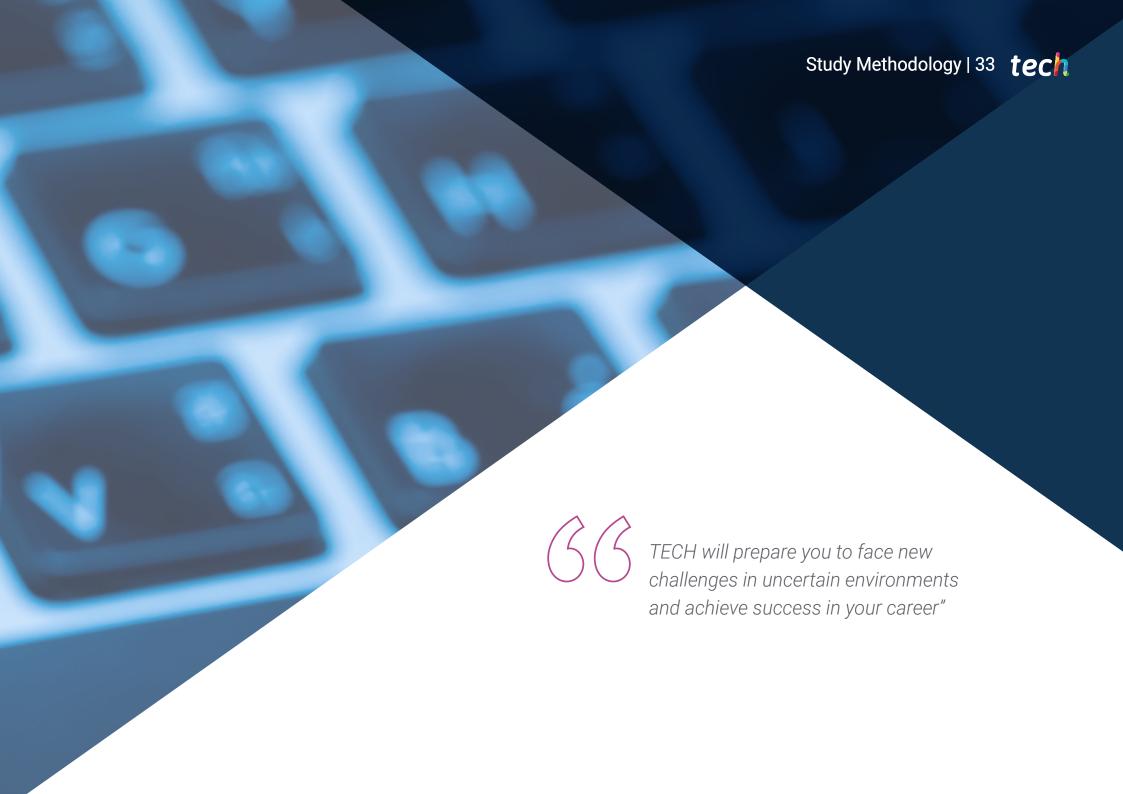
Graduate Profile

Graduates of this program will be experts trained to implement Blockchain technologies in digital environments, leading innovation and development projects in the Crypto-Gaming field. They will also have the necessary skills to create gamified economies, manage digital assets, and develop strategies with NFTs and DeFi. Additionally, they will be prepared to address the challenges of decentralization, digital security, and asset tokenization. This specialist will be able to lead innovative initiatives in digital platforms and promote continuous updates in the technological sector.

You will practice as a Blockchain-Based Video Game Developer, integrating aspects such as smart contracts on platforms like Ethereum"

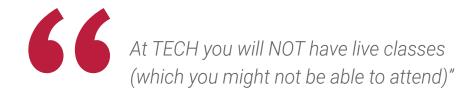
- Blockchain Technology Implementation: Ability to integrate decentralized solutions in digital environments, optimizing asset management and transactions.
- **Design of Decentralized Markets Economies:** Skill to develop sustainable economic models applied to video games and digital platforms
- **Digital Security Management:** Knowledge to ensure data protection and mitigate risks in Blockchain environments
- Leadership in Technological Innovation: Aptitude for leading disruptive projects in Crypto-Gaming and Blockchain Economy

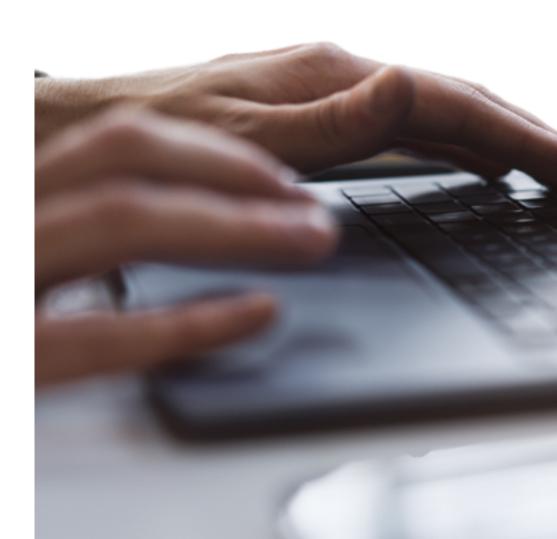
Career Opportunities | 31 tech


After completing this university program, you will be able to apply your knowledge and skills in the following positions:

- **1. Specialist in Crypto-Gaming and Digital Economies:** Responsible for leading projects in the development of Blockchain-based video games and gamified economies.
- **2. Consultant in Blockchain and Digital Assets:** Specialist advisor in the implementation of decentralized technologies in digital companies and institutions.
- **3. DeFi and Cryptocurrency Analyst:** In charge of developing investment strategies and managing digital assets in decentralized environments.
- **4. NFT Project Developer:** Leader in the creation and management of tokenized digital assets for gaming platforms or digital collectibles.
- **5. Blockchain Security Manager:** Responsible for implementing data protection strategies and mitigating risks associated with digital transactions.
- **6. Consultant in Technological Innovation Applied to Crypto-Gaming:** Advisor on the development of new business models in emerging digital economies.
- **7. Director of Metaverse Platforms:** Leader in the creation of virtual environments and management of decentralized entertainment ecosystems.
- **8. Researcher in Decentralized Technologies:** Specialist in the research and development of new Blockchain applications in the digital realm.

You will advise companies on integrating Blockchain technologies into their business models, focusing on the design of digital assets, secure transactions, and monetization strategies"


tech 34 | Study Methodology


The student: the priority of all TECH programs

In TECH's study methodology, the student is the main protagonist.

The teaching tools of each program have been selected taking into account the demands of time, availability and academic rigor that, today, not only students demand but also the most competitive positions in the market.

With TECH's asynchronous educational model, it is students who choose the time they dedicate to study, how they decide to establish their routines, and all this from the comfort of the electronic device of their choice. The student will not have to participate in live classes, which in many cases they will not be able to attend. The learning activities will be done when it is convenient for them. They can always decide when and from where they want to study.

The most comprehensive study plans at the international level

TECH is distinguished by offering the most complete academic itineraries on the university scene. This comprehensiveness is achieved through the creation of syllabi that not only cover the essential knowledge, but also the most recent innovations in each area.

By being constantly up to date, these programs allow students to keep up with market changes and acquire the skills most valued by employers. In this way, those who complete their studies at TECH receive a comprehensive education that provides them with a notable competitive advantage to further their careers.

And what's more, they will be able to do so from any device, pc, tablet or smartphone.

TECH's model is asynchronous, so it allows you to study with your pc, tablet or your smartphone wherever you want, whenever you want and for as long as you want"

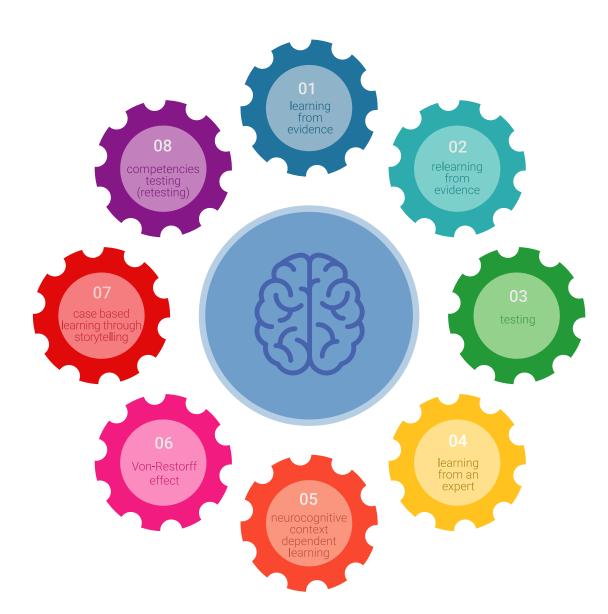
tech 36 | Study Methodology

Case Studies and Case Method

The case method has been the learning system most used by the world's best business schools. Developed in 1912 so that law students would not only learn the law based on theoretical content, its function was also to present them with real complex situations. In this way, they could make informed decisions and value judgments about how to resolve them. In 1924, Harvard adopted it as a standard teaching method.

With this teaching model, it is students themselves who build their professional competence through strategies such as Learning by Doing or Design Thinking, used by other renowned institutions such as Yale or Stanford.

This action-oriented method will be applied throughout the entire academic itinerary that the student undertakes with TECH. Students will be confronted with multiple real-life situations and will have to integrate knowledge, research, discuss and defend their ideas and decisions. All this with the premise of answering the question of how they would act when facing specific events of complexity in their daily work.


Relearning Methodology

At TECH, case studies are enhanced with the best 100% online teaching method: Relearning.

This method breaks with traditional teaching techniques to put the student at the center of the equation, providing the best content in different formats. In this way, it manages to review and reiterate the key concepts of each subject and learn to apply them in a real context.

In the same line, and according to multiple scientific researches, reiteration is the best way to learn. For this reason, TECH offers between 8 and 16 repetitions of each key concept within the same lesson, presented in a different way, with the objective of ensuring that the knowledge is completely consolidated during the study process.

Relearning will allow you to learn with less effort and better performance, involving you more in your specialization, developing a critical mindset, defending arguments, and contrasting opinions: a direct equation to success.

tech 38 | Study Methodology

A 100% online Virtual Campus with the best teaching resources

In order to apply its methodology effectively, TECH focuses on providing graduates with teaching materials in different formats: texts, interactive videos, illustrations and knowledge maps, among others. All of them are designed by qualified teachers who focus their work on combining real cases with the resolution of complex situations through simulation, the study of contexts applied to each professional career and learning based on repetition, through audios, presentations, animations, images, etc.

The latest scientific evidence in the field of Neuroscience points to the importance of taking into account the place and context where the content is accessed before starting a new learning process. Being able to adjust these variables in a personalized way helps people to remember and store knowledge in the hippocampus to retain it in the long term. This is a model called Neurocognitive context-dependent e-learning that is consciously applied in this university qualification.

In order to facilitate tutor-student contact as much as possible, you will have a wide range of communication possibilities, both in real time and delayed (internal messaging, telephone answering service, email contact with the technical secretary, chat and videoconferences).

Likewise, this very complete Virtual Campus will allow TECH students to organize their study schedules according to their personal availability or work obligations. In this way, they will have global control of the academic content and teaching tools, based on their fast-paced professional update.

The online study mode of this program will allow you to organize your time and learning pace, adapting it to your schedule"

The effectiveness of the method is justified by four fundamental achievements:

- 1. Students who follow this method not only achieve the assimilation of concepts, but also a development of their mental capacity, through exercises that assess real situations and the application of knowledge.
- 2. Learning is solidly translated into practical skills that allow the student to better integrate into the real world.
- 3. Ideas and concepts are understood more efficiently, given that the example situations are based on real-life.
- 4. Students like to feel that the effort they put into their studies is worthwhile. This then translates into a greater interest in learning and more time dedicated to working on the course.

Study Methodology | 39 tech

The university methodology top-rated by its students

The results of this innovative teaching model can be seen in the overall satisfaction levels of TECH graduates.

The students' assessment of the teaching quality, the quality of the materials, the structure of the program and its objectives is excellent. Not surprisingly, the institution became the top-rated university by its students according to the global score index, obtaining a 4.9 out of 5.

Access the study contents from any device with an Internet connection (computer, tablet, smartphone) thanks to the fact that TECH is at the forefront of technology and teaching.

You will be able to learn with the advantages that come with having access to simulated learning environments and the learning by observation approach, that is, Learning from an expert.

tech 40 | Study Methodology

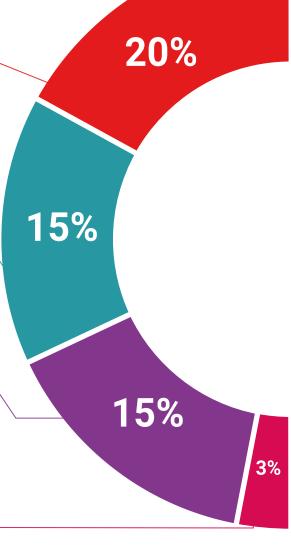
As such, the best educational materials, thoroughly prepared, will be available in this program:

Study Material

All teaching material is produced by the specialists who teach the course, specifically for the course, so that the teaching content is highly specific and precise.

This content is then adapted in an audiovisual format that will create our way of working online, with the latest techniques that allow us to offer you high quality in all of the material that we provide you with.

Practicing Skills and Abilities


You will carry out activities to develop specific competencies and skills in each thematic field. Exercises and activities to acquire and develop the skills and abilities that a specialist needs to develop within the framework of the globalization we live in.

Interactive Summaries

We present the contents attractively and dynamically in multimedia lessons that include audio, videos, images, diagrams, and concept maps in order to reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded by Microsoft as a "European Success Story".

Additional Reading

Recent articles, consensus documents, international guides... In our virtual library you will have access to everything you need to complete your education.

Study Methodology | 41 tech

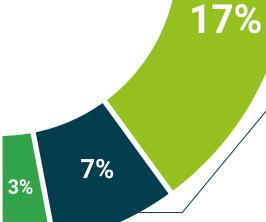
Students will complete a selection of the best case studies in the field. Cases that are presented, analyzed, and supervised by the best specialists in the world.

Testing & Retesting

We periodically assess and re-assess your knowledge throughout the program. We do this on 3 of the 4 levels of Miller's Pyramid.

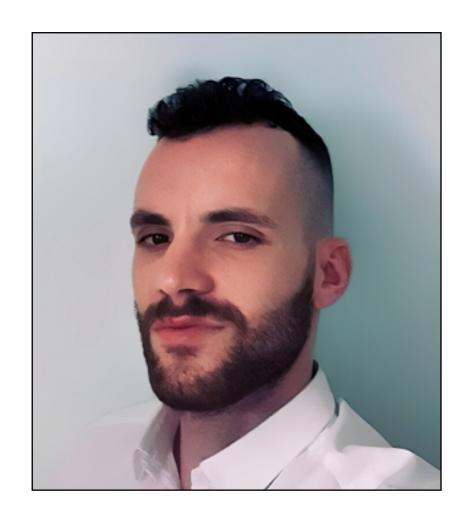
Classes

There is scientific evidence suggesting that observing third-party experts can be useful.



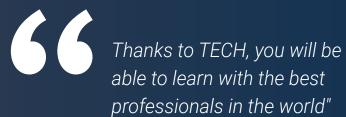
Quick Action Guides

TECH offers the most relevant contents of the course in the form of worksheets or quick action guides. A synthetic, practical and effective way to help students progress in their learning.

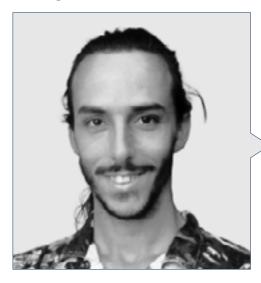


International Guest Director

Rene Stefancic is a leading Blockchain and Web3 technology professional known for his innovative approach and strategic leadership in emerging digital ecosystems. He currently serves as Chief Operating Officer (COO) at Enjin, a pioneering Blockchain and NFT platform, where he manages tasks such as the adoption of new tools and fosters strategic partnerships to drive cutting-edge IT solutions. With a hands-on, results-oriented approach, he applies his "swim or sink" and "try everything" philosophy to every project, always looking to solve the most complex challenges in a scalable and effective way.


Prior to joining Enjin, Stefancic held the position of Head of Marketing at CoinCodex, a platform aimed at cryptocurrency data aggregation. It was in this environment that he consolidated his expertise in growth strategies and digital marketing, taking a decisive role in expanding the company's visibility and reach. His transition to the Blockchain world began when he decided to leave his career in traditional finance to focus on data modeling and analytics in this new sector, thereby laying the foundations for his career in a constantly evolving market.

With a vision focused on product development and IT strategy, the expert excels in leading teams towards the creation of innovative and applicable solutions in the context of Blockchain technology. His ability to build strong and long-lasting business relationships has enabled him to establish key strategic partnerships in the industry, cementing his international reputation as a dynamic leader in the field of technology and digital assets.


Mr. Stefancic, Rene

- Chief Operating Officer (COO) at Enjin, Singapore
- Blockchain Advisor at NFTFrontier
- IT Consultant at RS IT Consulting
- Marketing Director at CoinCodex
- Consultant at NextCash
- · Digital Marketing Specialist at Piaggio Group Slovenia
- Master's Degree in Management at the Faculty of Management, University of Primorska
- Degree in Economics from the Faculty of Economics and Business at the University of Ljubljana

tech 46 | Teaching Staff

Management

Mr. Olmo Cuevas, Alejandro

- Game and Blockchain economies designer for video games
- Founder of Seven Moons Studios Blockchain Gaming
- Founder of the Niide project
- Writer of fantasy narrative and poetic prose

Teachers

Mr. Gálvez González, Danko Andrés

- Commercial advisor at Niide, a Gamified Economy project on Blockchain.
- HTML and CCS programmer in learning didactics projects
- Movistar and Virgin Mobile Sales Executive
- Bachelor's Degree in Education from Playa Ancha Educational Sciences University

Ms. Gálvez González, María Jesús

- Dideco Advisor and Head of the Women's Area of the Municipality of El Tabo.
- Teacher at the Professional Institute AIEP
- Head of the Social Department of the Municipality of El Tabo
- Degree in Social Work from the University of Santo Tomás.
- Master's Degree in Strategic People Management and Organizational Human Talent Management
- Postgraduate Certificate in Social Economy from the University of Santiago de Chile.

Mr. Olmo Cuevas, Víctor

- Co-Founder, Game Designer and Game Economist at Seven Moons Studios Blockchain Gaming
- Web designer and professional video game player
- Professional Online Poker Player and Teacher
- Graphic Designer at Arvato Services Bertelsmann
- Project Analyst and Investor at Crypto Play to Earn Gaming Scene
- Chemical Laboratory Technician
- Graphic Designer

tech 50 | Certificate

This private qualification will allow you to obtain a **Executive Master's Degree in Crypto-Gaming and Blockchain Economics** endorsed by **TECH Global University**, the world's largest online university.

TECH Global University is an official European University publicly recognized by the Government of Andorra (*official bulletin*). Andorra is part of the European Higher Education Area (EHEA) since 2003. The EHEA is an initiative promoted by the European Union that aims to organize the international training framework and harmonize the higher education systems of the member countries of this space. The project promotes common values, the implementation of collaborative tools and strengthening its quality assurance mechanisms to enhance collaboration and mobility among students, researchers and academics.

Mr./Ms. ______with identification document ______has successfully passed and obtained the title of:

Executive Master's Degree in Crypto-Gaming and Blockchain Economics

This is a private qualification of 1,800 hours of duration equivalent to 60 ECTs, with a start date of dd/mm/yyyy and an end date of dd/mm/yyyy.

TECH Global University is a university officially recognized by the Government of Andorra on the 31st of January of 2024, which belongs to the European Higher Education Area (EHEA).

In Andorra la Vella, on the 28th of February of 2024

This **TECH Global University** private qualification is a European program of continuing education and professional updating that guarantees the acquisition of competencies in its area of knowledge, providing a high curricular value to the student who completes the program.

Title: Executive Master's Degree in Crypto-Gaming and Blockchain Economics

Modality: online

Duration: 12 months

Accreditation: 60 ECTS

^{*}Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

tech global university **Executive Master's Degree** Crypto-Gaming and Blockchain Economics » Modality: online » Duration: 12 months » Certificate: TECH Global University

» Accreditation: 60 ECTS» Schedule: at your own pace

» Exams: online

