

Avancées en Antibiothérapie et Résistance aux Antibiotiques

» Modalité: en ligne

» Durée: 12 mois

» Qualification: TECH Euromed University

» Accréditation: 60 ECTS

» Horaire: à votre rythme

» Examens: en ligne

Accès au site web: www.techtitute.com/fr/pharmacie/master/master-avancees-antibiotherapie-resistence-aux-antibiotiques

Sommaire

 $\begin{array}{c} 01 & 02 \\ \hline Pr\'{e}sentation & Objectifs \\ \hline 03 & 04 & 05 \\ \hline Comp\'{e}tences & Direction de la formation & Structure et contenu \\ \hline & page 14 & page 18 & page 26 \\ \hline \end{array}$

06 07
Méthodologie d'étude Diplôme

page 38

page 48

tech 06 | Présentation

La résistance aux antimicrobiens est devenue l'une des plus grandes menaces pour la santé publique aujourd'hui. Face à cette réalité, les efforts se concentrent sur la recherche de réponses à sa cause, ainsi que sur le développement et la réduction des coûts de nouveaux antibiotiques.

C'est précisément en raison de cette nouvelle réalité, où le traitement de bactéries de plus en plus résistantes est particulièrement préoccupant, que les laboratoires sont soumis à une pression accrue pour lutter contre ce danger, ce qui exige des pharmaciens une mise à jour continue de leurs connaissances dans ce domaine, afin de suivre à la fois les progrès et les dernières recommandations dans l'utilisation des antituberculeux ou des quinolones respiratoires. C'est pourquoi TECH Euromed University a créé un diplôme universitaire dans lequel elle a réuni une équipe d'enseignants spécialisés et multidisciplinaires, qui fournit au professionnel les dernières informations dans ce domaine.

Le pharmacien est donc confronté à un programme qui lui demandera plus de 12 mois pour connaître les progrès et les dernières évolutions en matière de microbiologie, d'antibiotiques, d'antiparasitaires et de développement de la résistance aux antibiotiques. Pour ce faire, il dispose d'un programme d'études qui présente une approche théorique-pratique et de ressources multimédia, dans lesquelles les dernières technologies appliquées à l'enseignement universitaire ont été utilisées.

TECH Euromed University offre ainsi une qualification universitaire de qualité, où les professionnels pourront actualiser leurs connaissances en matière de progrès de l'antibiothérapie et de la résistance aux antibiotiques. Tout cela, confortablement depuis un ordinateur ou une tablette avec une connexion internet, qui permet d'accéder au syllabus de ce programme. De cette façon, sans avoir besoin d'assiduité ou de classes à horaires fixes, le professionnel peut répartir la charge d'enseignement comme il le souhaite et rendre ses responsabilités compatibles avec un enseignement en accord avec l'époque actuelle.

Ce Mastère Spécialisé en Avancées en Antibiothérapie et Résistance aux Antibiotiques contient le programme scientifique le plus complet et le plus actuel du marché. Les principales caractéristiques sont les suivants:

- L'élaboration d'études de cas présentées par des experts et portant sur les progrès en Antibiothérapie et Résistance aux Antibiotiques
- Les contenus graphiques, schématiques et éminemment pratiques avec lesquels ils sont conçus fournissent des informations scientifiques et sanitaires essentielles à la pratique professionnelle
- Des exercices pratiques afin d'effectuer un processus d'auto-évaluation pour améliorer l'apprentissage
- Il met l'accent sur les méthodologies innovantes
- Des cours théoriques, des questions à l'expert, des forums de discussion sur des sujets controversés et un travail de réflexion individuel
- La possibilité d'accéder aux contenus depuis n'importe quel appareil fixe ou portable doté d'une connexion internet

TECH Euromed University vous fournit des outils didactiques innovants afin que vous puissiez en savoir plus sur les derniers développements en matière de médicaments antiparasitaires"

En savoir plus sur les nouvelles modalités thérapeutiques pour le contrôle de la morbidité et de la mortalité dues aux maladies infectieuses"

Le programme comprend, dans son corps enseignant, des professionnels du secteur qui apportent à cette formation l'expérience de leur travail, ainsi que des spécialistes reconnus de grandes sociétés et d'universités prestigieuses.

Grâce à son contenu multimédia développé avec les dernières technologies éducatives, les spécialistes bénéficieront d'un apprentissage situé et contextuel. Ainsi, ils se formeront dans un environnement simulé qui leur permettra d'apprendre en immersion et de s'entrainer dans des situations réelles.

La conception de ce programme est basée sur l'Apprentissage par Problèmes. Ainsi l'étudiant devra essayer de résoudre les différentes situations de pratique professionnelle qui se présentent à lui tout au long du Mastère Spécialisé Pour ce faire, l'étudiant sera assisté d'un innovant système de vidéos interactives, créé par des experts reconnus.

Ce programme 100% en ligne vous donne l'occasion d'actualiser vos connaissances sur la résistance aux antibiotiques sans négliger vos responsabilités professionnelles.

> Cette qualification vous permettra de connaître les changements les plus récents dans la gestion des antiviraux de l'herpès.

tech 10 | Objectifs

Objectifs généraux

- Mettre à jour les connaissances des professionnels de la réadaptation dans le domaine de l'électrothérapie
- Promouvoir des stratégies de travail fondées sur une approche globale du patient en tant que modèle de référence pour atteindre l'excellence en matière de soins
- Favoriser l'acquisition de compétences et d'aptitudes techniques, grâce à un système audiovisuel performant, et la possibilité de se perfectionner par des ateliers de simulation en ligne et/ou des formations spécifiques
- Encourager la stimulation professionnelle par la formation continue et la recherche

Des résumés vidéo, des vidéos détaillées et un vaste contenu multimédia sont disponibles, de sorte que vous pouvez obtenir les dernières informations sur les antibiotiques d'une manière beaucoup plus visuelle et attrayante"

Objectifs spécifiques

Module 1. Microbiologie générale

- Fournir aux participants des informations avancées, inédites, approfondies, actualisées et multidisciplinaires permettant une approche globale du processus santé-maladie infectieuse, de l'utilisation des antibiotiques et de la résistance aux antibiotiques
- Fournir une formation théorique et pratique qui permettra un diagnostic clinique de certitude soutenu par l'utilisation efficace des méthodes de diagnostic, pour indiquer une thérapie antimicrobienne efficace

Module 2. Introduction à la pharmacologie et à la thérapeutique

- Créer des compétences pour la mise en œuvre de plans prophylactiques pour la prévention de ces pathologies
- Évaluer et interpréter les caractéristiques épidémiologiques et les conditions des pays qui favorisent l'émergence et le développement des maladies infectieuses et de la résistance aux antibiotiques

Module 3. Antimicrobiens: éléments généraux

- Expliquer les interrelations complexes entre l'hôte, le micro-organisme et l'antibiotique à utiliser
- Aborder le rôle important de la microbiologie dans le diagnostic et le contrôle des maladies infectieuses

Module 4. Antiviraux

- Décrire les principaux mécanismes de la résistance aux antimicrobiens
- Souligner l'importance de la thérapeutique raisonnée dans l'utilisation rationnelle des antimicrobiens

tech 12 | Objectifs

Module 5. Antibiotiques I

- Aborder les éléments les plus importants parmi les mécanismes de résistance des superbactéries et autres germes au sens général
- Approfondir les études sur l'utilisation des médicaments dans le cadre de la pharmacoépidémiologie qui facilite la sélection des antimicrobiens dans la pratique clinique quotidienne

Module 6. Antibiotiques II

- Souligner le rôle de la lecture interprétée de l'antibiogramme et l'identification de nouveaux génotypes de résistance ayant une pertinence clinique
- Décrire les éléments les plus importants de l'absorption, du transport, de la distribution, du métabolisme et de l'excrétion des antibiotiques

Module 7. Antibiotiques III

- Traiter en détail et en profondeur les données scientifiques les plus récentes sur les mécanismes d'action, les effets indésirables, le dosage et l'utilisation des antimicrobiens
- Expliquer les interrelations pathophysiologiques et pathogéniques entre l'utilisation d'antimicrobiens et la réponse immunitaire

Module 8. Antimycotiques

- Justifier l'importance du contrôle de l'utilisation des antimicrobiens comme alternative pour réduire la résistance aux antibiotiques
- Mettre en évidence le rôle de l'immunité et les nouvelles alternatives pour le traitement des infections

Module 9. Antiparasitaires

- Expliquer le processus de production des nouveaux antibiotiques
- Approfondir le traitement des maladies infectieuses les plus importantes grâce aux dernières avancées des connaissances scientifiques médicales

Module 10. Résistance aux antibiotiques

- Exposer la question cruciale des microbes super-résistants et leur relation avec l'utilisation des antimicrobiens en se basant sur les concepts les plus actuels
- Mettre l'accent sur le développement d'antibiotiques pour l'avenir et d'autres modalités thérapeutiques pour les maladies infectieuses

Module 11. Surveillance et contrôle de l'utilisation des antimicrobiens

- Mettre l'accent sur les défis futurs des maladies infectieuses en matière de diminution de la morbidité et de la mortalité infectieuses et de traitement antimicrobien
- Élaborer des documents normatifs ou référentiels, tels que des directives de pratique clinique ou des politiques d'utilisation des antimicrobiens, en s'appuyant sur des concepts gardistes

Module 12. Antibiotiques et thérapies antimicrobiennes du futur

- Conseiller les équipes de travail de l'industrie pharmaceutique et biotechnologique dans le processus de recherche et de production de nouveaux antimicrobiens et d'alternatives de traitement des maladies infectieuses
- Maîtriser les éléments les plus innovants des études sur l'utilisation des antimicrobiens

Des résumés vidéo, des vidéos détaillées et un vaste contenu multimédia sont disponibles, de sorte que vous pouvez obtenir les dernières informations sur les antibiotiques d'une manière beaucoup plus visuelle et attrayante"

tech 16 | Compétences

Compétences générales

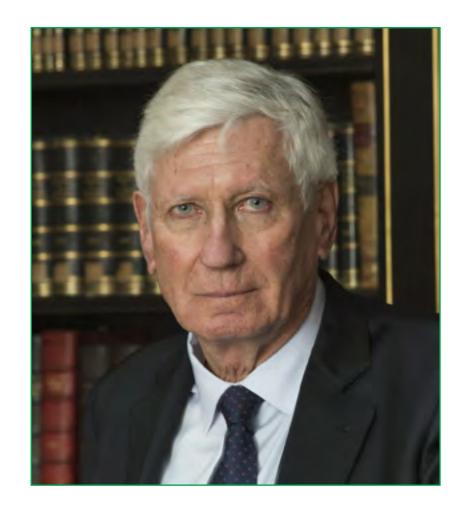
- Augmenter les capacités diagnostiques et thérapeutiques pour les maladies infectieuses et les soins de santé des patients en général, par l'étude approfondie des dernières avancées scientifiques, épidémiologiques, cliniques, physiopathologiques, diagnostiques et thérapeutiques de ces maladies
- Affiner les compétences pour gérer, conseiller ou diriger des équipes multidisciplinaires pour l'étude de l'utilisation des antimicrobiens et de la résistance aux antibiotiques dans les communautés ou chez les patients individuels, ainsi que des équipes de recherche scientifique
- Développer des compétences pour l'auto-amélioration, en plus d'être capable de fournir des activités de formation et de développement professionnel grâce au haut niveau de préparation scientifique et professionnelle acquis avec ce programme
- Éduquer la population dans le domaine de l'utilisation des antimicrobiens afin d'acquérir et de développer une culture de la prévention dans la population, basée sur des modes de vie et des habitudes de vie sains

Compétences spécifiques

- Maîtriser les déterminants de l'hôte, de l'antibiotique et du germe dans la prescription d'antimicrobiens et leur impact sur les taux de morbidité et de mortalité des maladies infectieuses, à partir de l'étude des progrès et des défis futurs dans le domaine de l'antibiothérapie et de la résistance aux antibiotiques
- Identifier et analyser les dernières informations scientifiques sur la résistance aux antibiotiques afin de concevoir des plans et des programmes pour son contrôle
- Appliquer les mesures de contrôle existantes pour prévenir la transmission de germes multirésistants, dans des situations réelles et/ou modélisées
- Identification en temps utile de l'émergence de germes résistants et de la surconsommation d'antibiotiques, sur la base de l'application de la méthode scientifique de la profession
- Diagnostiquer en temps utile, sur la base des manifestations cliniques, les infections les plus fréquentes ou nouvelles pour les traiter, les réhabiliter et les contrôler correctement
- Justifier l'importance de la discussion clinico-thérapeutique en tant que mesure de santé publique importante pour contrôler l'utilisation des antimicrobiens et la résistance aux antibiotiques
- Identifier les facteurs de risque biologiques, sociaux, économiques et médicaux qui déterminent le mauvais usage des antimicrobiens
- Maîtriser les éléments cliniques, épidémiologiques, diagnostiques et thérapeutiques des principales menaces bactériennes

- Sensibiliser la communauté à l'utilisation appropriée des antibiotiques
- Identifier les aspects fondamentaux de la pharmacocinétique et de la pharmacodynamique pour la sélection des thérapeutiques antimicrobiennes
- Enrayer la progression de la résistance aux antibiotiques, sur la base d'une thérapeutique raisonnée et étayée par les meilleures preuves scientifiques
- Utiliser et interpréter correctement toutes les études microbiologiques et de plus de ressources diagnostiques dans les soins de vos patients
- Diriger des équipes de travail dans les établissements de santé, en tant que emploi de pharmacothérapie et d'utilisation des antimicrobiens

Les cas pratiques faciliteront par le corps enseignant spécialisé vous seront très utiles dans votre pratique quotidienne"


Direttore ospite internazionale

Le Docteur Dominique Franco est un spécialiste de la Chirurgie Hépatique et du traitement du Carcinome Hépatocellulaire, avec une grande expérience dans le domaine de la Médecine Régénératrice. Tout au long de sa carrière, il a concentré ses recherches sur la thérapie cellulaire pour les maladies du foie et la bioconstruction d'organes, domaines dans lesquels il a apporté des contributions innovantes. Son travail se concentre sur le développement de nouvelles techniques de traitement qui visent non seulement à améliorer l'efficacité des interventions chirurgicales, mais aussi à optimiser la qualité de vie des patients.

Il a occupé des postes de direction dans plusieurs institutions prestigieuses. Il a été Chef du Département de Chirurgie Hépatique et de Transplantation à l'Hôpital Antoine-Béclère, où il a participé à des événements médicaux marquants tels que la première transplantation hépatique réalisée en Europe. Sa grande expérience en chirurgie avancée et en transplantation lui a permis d'acquérir des connaissances approfondies dans la prise en charge de pathologies hépatiques complexes, ce qui fait de lui une référence dans le domaine médical, tant au niveau national qu'international. Il a également été Directeur Émérite de la Chirurgie Digestive à l'Université de Paris-Sud, où il a contribué à la formation de nouvelles générations de chirurgiens.

Au niveau international, il est reconnu pour ses contributions au développement de la Médecine Régénératrice. En 2014, il a fondé CellSpace, une association dédiée à la promotion de la bioingénierie des tissus et des organes en France, dans le but de rassembler des chercheurs de différentes disciplines pour faire avancer ce domaine.

Il a publié plus de 280 articles scientifiques dans des revues internationales, traitant de sujets tels que la Chirurgie Hépatique, le carcinome hépatocellulaire et la Médecine Régénératrice. Il est également membre de l'unité de recherche U-1193 de l'Inserm et consultant à l'Institut Pasteur, où il continue à travailler en tant que consultant sur des projets de pointe, contribuant à repousser les limites des connaissances médicales dans son domaine d'expertise.

Dr. Franco, Dominique

- Directeur Académique de l'Institut Pasteur, Paris, France
- Vice-président Santé du Pôle de compétitivité des médecins
- Chef du Service de Chirurgie Digestive à l'Hôpital Antoine-Béclère (APHP)
- Directeur Émérite de la Chirurgie Digestive à l'Université Paris-Sud
- Fondateur de CellSpace
- Membre de l'unité de recherche U-1193 de l'Inserm
- Président de l'Académie Nationale de Chirurgie

tech 22 | Direction de la formation

Direction

Dr Quintero Casanova, Jesús

- Chef du service des maladies infectieuses de l'hôpital Héroes del Baire
- Médecin spécialiste en Afrique (Tchad) et au Venezuela
- MSc en maladies tropicales et maladies infectieuses cliniques, Institut Pedro Kuori (La Havane, Cuba)
- Professeur de Médecine et de Médecine interne à la Faculté des Sciences médicales de l'Université de
- Maître de conférences du Master en maladies infectieuses à la Faculté des Sciences Médicales de l'Île de la Juventud
- Membre de la Société Cubaine de Médecine Interne
- Diplôme en Médecine et de Chirurgie, Université Université Médical de La Habana

Professeurs

Dr Valle Vargas, Mariano

- Chef de Service de Médecine Interne à, Hôpital Héroes del Baire
- Spécialiste en médecine interne, Hôpital "Héroes del Baire"
- Médecin spécialiste en Venezuela
- Master en Biostatistique de Santé
- Diplômé en Épidémiologie
- Membre de la Société Cubaine de Médecine Interne
- Membre de a Sociedad Cubana de Pedagogos
- Professeur de Médecine et de Médecine interne à la Faculté des Sciences médicales de l'Université de
- Professeur de la Maîtrise des Maladies Infectieuses à la Faculté des sciences médicales la Isla de la Juventud
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba

Dr Cantalapiedra Torres, Alejandro

- Spécialiste en Gynécologie et en Obstétrique à l'Hôpital « Héroes del Baire »
- Master en Maladies Infectieuses
- Diplôme d'Enseignement Médical
- Diplôme en Gestion de la Santé
- Professeur de Médecine et de Pédiatrie à la Faculté des Sciences Médicales de la Isla de la Juventud
- Membre de la Sociedad Cubana Pediatría
- Médecin spécialiste en Endocrinologie
- Médecin spécialiste à Antigua-et-Barbuda en 2008
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba

Dr Dranguet Bouly, José Ismael

- Spécialiste en médecine interne et en Thérapie intensive Hôpital "Héroes del Baire"
- Spécialiste en médecine interne, Hôpital "Héroes del Baire"
- Médecin spécialiste en Venezuela
- Master en Biostatistique de Santé
- Diplômé en Épidémiologie
- Membre de la Société Cubaine de Médecine Interne
- Membre de a Sociedad Cubana de Pedagogos
- Professeur de Médecine et de Médecine interne à la Faculté des Sciences médicales de l'Université de
- Professeur de la Maîtrise des Maladies Infectieuses à la Faculté des sciences médicales la Isla de la Juventud
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba
- Membre de tribunaux nationaux de manifestations scientifiques, Cuba
- Prix comme enseignant des Sciences médiacales, Cuba
- Professeur à l'Université catholique de Santiago de Guayaquil, Ecuador, 2018

Mme Laurence Carmenaty, Araelis

- Spécialiste en Microbiologie
- Master en Maladies Infectieuses
- Professeur d'agents biologiques, Faculté des sciences Médicales Isla de la Juventud
- Membre de la Société Cubaine des Microbiologie
- Membre de l'Association des Pédagogues
- Diplôme En Microbiologie, Université de La Havane

tech 24 | Direction de la formation

Dr Dávila, Heenry Luís

- Spécialiste en Gynécologie et en Obstétrique à l'Hôpital Héroes del Baire Cuba
- Chef du Service de Pathologie Cervicale, l'Hôpital Héroes del Baire
- Médecin Spécialiste, Guatemala
- Master en prise en charge intégrale de la femme
- Membre de la Société Cubaine de Gynécologie et d'Obstétrique
- Membre de la Société Cubaine des Pédagogues
- Professeur de Médecine à la Faculté des Sciences Médicales de la Isla de la Juventud
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba

Dr Jiménez Valdés, Erlivan

- Spécialiste en Gynécologie et en Obstétrique à l'Hôpital « Héroes del Baire »
- Master en prise en charge Intégrale de l'enfant
- Membre de la Sociedad Cubana Pediatría
- Professeur en Médecine et de la spécialité à la Faculté des Sciences Médicales Isla de la Juventud
- la Faculté des Sciences Médicales de la Isla de la Juventud
- Membre de tribunaux nationaux de manifestations scientifiques(Cuba)
- Médecin spécialiste en Venezuela
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba

Direction de la formation | 25 **tech**

Dr Batista Valladares, Adrián

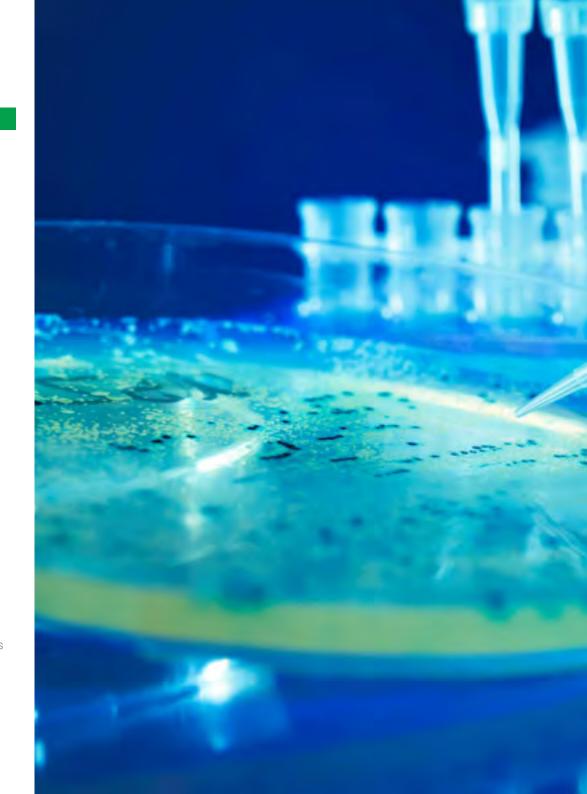
- Responsable des services pour les personnes âgées sur l'Isla de la Juventud Cuba
- Diplôme en Médecine et de Chirurgie, Université Université de La Habana Cuba
- Spécialiste en Médecine Familiale et Communautaire
- Master en Infectiologie familiale et Communitarire
- Diplôme en Échographie Diagnostique
- Diplôme en Gestion de la Santé
- Responsable des services pour les personnes âgées sur l'Isla de la Juventud, Cuba
- Membre de la Sociedad Cubana Medicina Familiar
- Professeur de Médecine et de Médecine Familiale à la Faculté des Sciences Médicales de la Isla de la Juventud
- Professeur de la Maîtrise des Maladies Infectieuses à la Faculté des sciences médicales la Isla de la Juventud
- Membre des jurys d'examen d'État pour le Diplôme de Médecin et la Spécialité de Médecine Familiale
- Membre de tribunaux nationaux de manifestations scientifiques, Cuba

Mme González Fiallo, Sayli

- Directrice de l'Unité d'Analyse, de Biostatistique et de Surveillance Sanitaire de la Direction Municipale de la Santé, Isla de la Juventud
- Professeur à la faculté des sciences médicales de la Isla de la Juventud
- Master en Épidémiologie
- Diplôme d'hygiène et d'épidémiologie

Structure et contenu

Le programme de ce Mastère Spécialisé a été conçu par une équipe d'enseignants spécialisée et en Avancées en Antibiotiques et Résistance aux Antibiotiques. Ses connaissances approfondies dans ce domaine permettront au pharmacien de disposer des connaissances les plus avancées et les plus récentes dans ce domaine. Pendant 12 mois, vous pourrez en apprendre davantage sur les progrès de la microbiologie, de la pharmacocinétique et de la pharmacodynamique, ainsi que sur le développement de la résistance aux antibiotiques. Tout cela, en plus des ressources multimédias qui vous aideront à vous tenir à jour.



tech 28 | Structure et contenu

Module 1. Microbiologie générale

- 1.1. Éléments généraux de la microbiologie
 - 1.1.1. Le rôle de la microbiologie dans l'étude des maladies infectieuses
 - 1.1.2. Structure et fonction du laboratoire de microbiologie
 - 1.1.3. L'indication et l'interprétation des études microbiologiques
- 1.2. Virologie
 - 1.2.1. Caractéristiques générales des virus
 - 1.2.2. Classification et principaux virus affectant l'homme
 - 1.2.3. Virus émergents
 - 1.2.4. Études virologiques
- 1.3. Bactériologie: concepts actuels pour la thérapeutique antibiotique
 - 1.3.1. Caractéristiques générales des bactéries
 - 1.3.2. Classification et principales bactéries affectant l'homme
 - 1.3.3. Études microbiologiques
- 1.4. Mycologie
 - 1.4.1. Caractéristiques générales des champignons
 - 1.4.2. Classification et principales bactéries affectant l'homme
 - 1.4.3. Études mycologiques
- 1.5. Parasitologie
 - 1.5.1. Caractéristiques générales des parasites
 - 1.5.2. Classification et principaux parasites affectant l'homme
 - 1.5.3. Études parasitologiques
- 1.6. L'échantillon microbiologique: collecte, stockage et transport
 - 1.6.1. Le processus de collecte des échantillons microbiologiques: étapes préanalytiques, analytiques et post-analytiques
 - 1.6.2. Exigences d'échantillonnage pour les principales études microbiologiques utilisées dans la pratique clinique quotidienne: études du sang, de l'urine, des selles, de la salive
- 1.7. Antibiogramme: nouveaux concepts de son interprétation et de son utilisation
 - 1.7.1. Lecture traditionnelle de l'antibiogramme
 - 1.7.2. Lecture interprétée de l'antibiogramme et nouveaux mécanismes et phénotypes de la résistance aux antimicrobiens
 - 1.7.3. Cartographie antimicrobienne et schémas de résistance

Structure et contenu | 29 **tech**

- 1.8. Méthodes de diagnostic rapide: nouveautés dans leur application
 - 1.8.1. Méthodes de diagnostic rapide pour les virus
 - 1.8.2. Méthodes de diagnostic rapide des bactéries
 - 1.8.3. Méthodes de diagnostic rapide pour les champignons
 - 1.8.4. Méthodes de diagnostic rapide des parasites
- 1.9. La biologie moléculaire dans le diagnostic microbiologique: son rôle dans le futur
 - 1.9.1. Développement et application de la biologie moléculaire dans les méthodes microbiologiques
- 1.10. Microbiologie: défis à relever pour améliorer l'utilisation des antibiotiques et contrôler la résistance aux antibiotiques
 - 1.10.1. Les défis du diagnostic microbiologique
 - 1.10.2. Les défis futurs de la gestion des laboratoires de microbiologie dans l'utilisation correcte et rationnelle des antibiotiques
 - 1.10.3. Les techniques microbiologiques du futur pour l'étude de la résistance aux antibiotiques

Module 2. Introduction à la pharmacologie et à la thérapeutique

- 2.1. Utilité de la pharmacologie clinique
 - 2.1.1. Concept
 - 2.1.2. Objet de l'étude
 - 2.1.3. Branches de la pharmacologie
 - 2.1.4. Utilisation de la pharmacologie clinique
- 2.2. Pharmacocinétique: certitudes et contradictions dans son utilisation pratique
 - 2.2.1. La dynamique de l'absorption, de la distribution, du métabolisme et de l'élimination des médicaments et en particulier des antimicrobiens
- 2.3. Pharmacodynamique: son utilisation dans l'utilisation pratique de nouveaux
 - 2.3.1. Mécanismes moléculaires d'action des médicaments et en particulier des antimicrobiens
 - 2.3.2. Interactions entre les antibiotiques et d'autres médicaments
 - 2.3.3. Modèles pharmacocinétiques/pharmacodynamiques dans l'utilisation des antibiotiques
- 2.4. Pharmacovigilance
 - 2.4.1. Concept
 - 2.4.2. Objectifs
 - 2.4.3. Effets indésirables des antibiotiques

tech 30 | Structure et contenu

- 2.5. Pharmacoépidémiologie: mise à jour de la recherche sur les antimicrobiens
 - 2.5.1. Concept
 - 2.5.2. Objectifs
 - 2.5.3. Études sur l'utilisation des médicaments
- 2.6. Essais cliniques
 - 2.6.1. Concept
 - 2.6.2. Méthodologie
 - 2.6.3. Objectifs
 - 2.6.4. Les étapes des essais cliniques
 - 2.6.5. Utilitaire
- 2.7. Méta-analyse
 - 2.7.1. Concept
 - 2.7.2. Méthodologie
 - 2.7.3. Objectifs
 - 274 Utilitaire
- La thérapeutique raisonnée: de l'ancien au nouveau et à la médecine fondée sur les preuves
 - 2.8.1. Les étapes d'une thérapie raisonnée
 - 2.8.2. Utilisation et importance de la thérapeutique raisonnée
- 2.9. Directives de pratique clinique: la nouveauté de leur application
 - 2.9.1. Élaboration de lignes directrices pour la pratique clinique
 - 2.9.2. Impact des directives de pratique clinique
- 2.10. Pharmacologie clinique: avancées et perspectives d'avenir pour l'amélioration de la thérapeutique antibiotique
 - 2.10.1. Activités de recherche et avancées scientifiques: Pharmacie-fiction?
 - 2.10.2. La pharmacologie moléculaire et son rôle dans l'antibiothérapie

Module 3. Antimicrobiens: éléments généraux

- 3.1. Histoire et émergence des antimicrobiens
 - 3.1.1. Émergence et développement de thérapies antimicrobiennes
 - 3.1.2. Impact sur la morbidité et la mortalité des maladies infectieuses
- 3.2. Classifications: utilité pratique et future de chaque classification
 - 3.2.1. Classification Chimique
 - 3.2.2. Classification par action antimicrobienne
 - 3.2.3. Classification selon le spectre antimicrobien

- 3.3. Mise à jour sur les mécanismes d'action des antimicrobiens
 - 3.3.1. Principaux mécanismes d'action des antimicrobiens
- 3.4. Évolution générale et récente de la thérapeutique antimicrobienne
 - 3.4.1. Concepts généraux et récents de l'utilisation des antimicrobiens
 - 3.4.2. Nouveaux développements dans l'utilisation des combinaisons d'antimicrobiens
 - 3.4.3. Interactions entre les antimicrobiens
- 3.5. Prophylaxie antibiotique: son rôle actuel dans la morbidité et la mortalité
 - 3.5.1. Concept
 - 3.5.2. Objectifs
 - 3.5.3. Types d'antibioprophylaxie
 - 3.5.4. Prophylaxie antibiotique périopératoire
- 3.6. Antibiotique thérapeutique par paliers: critères actuels
 - 3.6.1. Concept
 - 3.6.2. Principes
 - 3.6.3. Objectifs
- 3.7. Nouveaux concepts d'utilisation des antibiotiques dans l'insuffisance rénale
 - 3.7.1. Excrétion rénale des antibiotiques
 - 3.7.2. Toxicité rénale des antibiotiques
 - 3.7.3. Modification de la dose en cas d'insuffisance rénale
- 3.8. Antibiotiques et barrière hémato-encéphalique: découvertes récentes
 - 3.8.1. Le passage des antibiotiques à travers la barrière hémato-encéphalique
 - 3.8.2. Antibiotiques dans les infections du système nerveux central
- 3.9. Antibiotiques et insuffisance hépatique: progrès et défis futurs
 - 3.9.1. Métabolisme hépatique des antibiotiques
 - 3.9.2. Toxicité hépatique des antimicrobiens
 - 3.9.3. Adaptation de la dose en cas d'insuffisance hépatique
- 3.10. L'utilisation des antibiotiques chez les immunodéprimés: le nouveau paradigme
 - 3.10.1. Réponse immunitaire à l'infection
 - 3.10.2. Principaux germes opportunistes chez l'immunodéprimé
 - 3.10.3. Principes pour le choix et la durée de l'antibiothérapie chez le patient immunodéprimé
- 3.11. Antibiotiques pendant la grossesse et l'allaitement: la sécurité de leur utilisation selon les dernières découvertes
 - 3.11.1. Le passage des antibiotiques à travers le placenta
 - 3.11.2. Antibiotiques et lait maternel
 - 3.11.3. Tératogénicité des antibiotiques

Module 4. Antiviraux

- 4.1. Éléments généraux des antiviraux
 - 4.1.1. Classification
 - 4.1.2. Principales indications des antiviraux
- 4.2 Mécanismes d'action.
 - 4.2.1. Mécanismes d'action des antiviraux
- 4.3. Antiviraux pour l'hépatite: nouvelles recommandations et projections de recherche
 - 4.3.1. Hépatite virale spécifique
 - 4.3.2. Traitement de l'hépatite B
 - 4.3.3. Traitement de l'hépatite C
- 4.4. Antiviraux pour les infections respiratoires: les preuves scientifiques actuelles
 - 4.4.1. Principaux virus respiratoires
 - 4.4.2. Traitement de la grippe
 - 4.4.3. Traitement d'autres infections virales du système respiratoire
- 4.5. Antiviraux pour les virus de l'herpès: changements récents dans leur gestion
 - 4.5.1. Les principales infections à herpèsvirus
 - 4.5.2. Traitement des infections à herpès simplex
 - 4.5.3. Traitement des infections par le virus varicelle-zona
- 4.6. Antirétroviraux pour le VIH: certitudes et controverses. Les défis futurs
 - 4.6.1. Classification des antirétroviraux
 - 4.6.2. Mécanisme d'action des antirétroviraux
 - 4.6.3. Traitement antirétroviral de l'infection par le VIH
 - 4.6.4. Effets indésirables
 - 4.6.5. Échec de la thérapie antirétrovirale
- 4.7. Les antiviraux topiques
 - 4.7.1. Principales infections virales de la peau et des muqueuses
 - 4.7.2. Les antiviraux topiques
- 4.8. Mise à jour sur les interférons: leur utilisation dans les maladies virales et non infectieuses
 - 4.8.1. Classification et action des interférons
 - 4.8.2. Utilisation des interférons
 - 4 8 3 Effets indésirables des interférons
- 4.9. Nouveaux domaines de développement des antiviraux
 - 4.9.1. Antibiotiques dans les maladies hémorragiques virales
 - 4.9.2. Perspectives d'avenir pour la chimiothérapie antivirale

Module 5. Antibiotiques I

- 5.1. Avancées dans la connaissance de la synthèse et de la structure du cycle bêta-lactame
 - 5.1.1. Structure du cycle bêta-lactame
 - 5.1.2. Médicaments qui agissent sur la synthèse des cycles bêta-lactame
- 5.2. Les pénicillines: les nouveaux médicaments et leur rôle futur dans la thérapeutique anti-infectieuse
 - 5.2.1. Classification
 - 5.2.2. Mécanisme d'action
 - 5.2.3. Spectre antimicrobien
 - 5.2.4. Pharmacocinétique et pharmacodynamique
 - 5.2.5. Utilisations thérapeutiques
 - 5.2.6. Effets indésirables
 - 5.2.7. Présentation et dosage
- 5.3. Pénicillines antistaphylococciques: de l'ancien au nouveau et leurs implications
 - 5.3.1. Classification
 - 5.3.2. Mécanisme d'action
 - 5.3.3. Spectre antimicrobien
 - 5.3.4. Pharmacocinétique et pharmacodynamique
 - 5.3.5. Utilisations thérapeutiques
 - 5.3.6. Effets indésirables
 - 5.3.7. Présentation et dosage
- 5.4. Pénicillines anti-pseudomonales: le défi actuel de la résistance
 - 5.4.1. Classification
 - 5.4.2. Mécanisme d'action
 - 5.4.3. Spectre antimicrobien
 - 5.4.4. Pharmacocinétique et pharmacodynamique
 - 5.4.5. Utilisations thérapeutiques
 - 5.4.6. Effets indésirables
 - 5.4.7. Présentation et dosage
- 5.5. Céphalosporines: présent et avenir
 - 5.5.1. Classification
 - 5.5.2 Mécanisme d'action
 - 5.5.3. Spectre antimicrobien
 - 5.5.4. Pharmacocinétique et pharmacodynamique
 - 5.5.5. Utilisations thérapeutiques
 - 5.5.6 Effets indésirables
 - 5.5.7. Présentation et dosage

tech 32 | Structure et contenu

5.6.	Céphalosporines orales: nouveaux développements dans l'utilisation en ambulatoire		Module 6. Antibiotiques II		
	5.6.1.	Classification	6.1.	Glycon	peptides: les nouveaux médicaments contre les germes gram-positifs
	5.6.2.	Mécanisme d'action		6.1.1.	Classification
	5.6.3.	Spectre antimicrobien		6.1.2.	Mécanisme d'action
	5.6.4.	Pharmacocinétique et pharmacodynamique		6.1.3.	Spectre antimicrobien
	5.6.5.	Utilisations thérapeutiques		6.1.4.	Pharmacocinétique et pharmacodynamique
	5.6.6.	Effets indésirables		6.1.5.	Utilisations thérapeutiques
	5.6.7.	7. Présentation et dosage		6.1.6.	Effets indésirables
5.7.	Monobactames			6.1.7.	Présentation et dosage
	5.7.1.	Classification	6.2.	Lipope	ptides cycliques: avancées récentes et rôle futur
	5.7.2.	Mécanisme d'action		6.2.1.	Classification
	5.7.3.	Spectre antimicrobien		6.2.2.	Mécanisme d'action
	5.7.4.	Pharmacocinétique et pharmacodynamique		6.2.3.	Spectre antimicrobien
	5.7.5.	Utilisations thérapeutiques		6.2.4.	Pharmacocinétique et pharmacodynamique
	5.7.6.	Effets indésirables		6.2.5.	Utilisations thérapeutiques
	5.7.7.	Présentation et dosage		6.2.6.	Effets indésirables
5.8.	Carbapénèmes			6.2.7.	Présentation et dosage
	5.8.1.		6.3.	Macro	lides: leur rôle immunomodulateur dans le système respiratoire
	5.8.2.	Mécanisme d'action		6.3.1.	Classification
	5.8.3.	Spectre antimicrobien		6.3.2.	Mécanisme d'action
	5.8.4.			6.3.3.	Spectre antimicrobien
	5.8.5.	Utilisations thérapeutiques		6.3.4.	Pharmacocinétique et pharmacodynamique
	5.8.6.	Effets indésirables		6.3.5.	Utilisations thérapeutiques
	5.8.7.	Ÿ		6.3.6.	Effets indésirables
5.9.	Batalactamases: découverte récente de souches et leur rôle dans la			6.3.7.	Présentation et dosage
	5.9.1.	Classification	6.4.	Cétolic	
	5.9.2.	Action sur les bêta-lactames		6.4.1.	Classification
5.10.		nhibiteurs de bêta-lactamase		6.4.2.	Mécanisme d'action
		Classification		6.4.3.	Spectre antimicrobien
		Mécanisme d'action		6.4.4.	Pharmacocinétique et pharmacodynamique
		Spectre antimicrobien		6.4.5.	Utilisations thérapeutiques
		Pharmacocinétique et pharmacodynamique		6.4.6.	Effets indésirables
		Utilisations thérapeutiques		6.4.7.	Présentation et dosage
		Effets indésirables			
	5.10.7.	Présentation et dosage			

Tétracyclines: anciennes et nouvelles indications en fonction des dernières évolutions des maladies 6.5.1. Classification 6.5.2. Mécanisme d'action 6.5.3. Spectre antimicrobien 6.5.4. Pharmacocinétique et pharmacodynamique 6.5.5. Utilisations thérapeutiques 6.5.6. Effets indésirables 6.5.7. Présentation et dosage Aminoglycosides: faits et réalités de l'utilisation actuelle et 6.6.1. Classification 6.6.2. Mécanisme d'action 6.6.3. Spectre antimicrobien 6.6.4. Pharmacocinétique et pharmacodynamique 6.6.5. Utilisations thérapeutiques actuelles et tendances futures 6.6.6. Effets indésirables 6.6.7. Présentation et dosage Quinolones: toutes les générations et utilisation pratique 6.7.1. Classification 6.7.2. Mécanisme d'action 6.7.3. Spectre antimicrobien 6.7.4. Pharmacocinétique et pharmacodynamique 6.7.5. Utilisations thérapeutiques 6.7.6. Effets indésirables 6.7.7. Présentation et dosage Quinolones respiratoires: dernières recommandations sur leur utilisation 6.8.1. Classification 6.8.2. Mécanisme d'action 6.8.3. Spectre antimicrobien

6.8.4. Pharmacocinétique et pharmacodynamique

6.8.5. Utilisations thérapeutiques

6.8.6. Effets indésirables

6.8.7. Présentation et dosage

- 6.9. Streptogramines
 - 6.9.1. Classification
 - 6.9.2. Mécanisme d'action
 - 6.9.3. Spectre antimicrobien
 - 6.9.4. Pharmacocinétique et pharmacodynamique
 - 6.9.5. Utilisations thérapeutiques
 - 6.9.6. Effets indésirables
 - 6.9.7. Présentation et dosage

Module 7. Antibiotiques III

- 7.1. Oxazolidinones
 - 7.1.1. Classification
 - 7.1.2. Mécanisme d'action
 - 7.1.3. Spectre antimicrobien
 - 7.1.4. Pharmacocinétique et pharmacodynamique
 - 7.1.5. Utilisations thérapeutiques
 - 7.1.6. Effets indésirables
 - 7.1.7. Présentation et dosage
- 7.2. Sulphas
 - 7.2.1. Classification
 - 7.2.2. Mécanisme d'action
 - 7.2.3. Spectre antimicrobien
 - 7.2.4. Pharmacocinétique et pharmacodynamique
 - 7.2.5. Utilisations thérapeutiques
 - 7.2.6. Effets indésirables
 - 7.2.7. Présentation et dosage
- 7.3. Lincosamides
 - 7.3.1. Classification
 - 7.3.2 Mécanisme d'action
 - 7.3.3. Spectre antimicrobien
 - 7.3.4. Pharmacocinétique et pharmacodynamique
 - 7.3.5. Utilisations thérapeutiques
 - 7.3.6. Effets indésirables
 - 7.3.7. Présentation et dosage

tech 34 | Structure et contenu

- 7.4. Rifamycines: leur utilisation pratique dans la tuberculose et d'autres infections aujourd'hui
 - 7.4.1. Classification
 - 7.4.2. Mécanisme d'action
 - 7.4.3. Spectre antimicrobien
 - 7.4.4. Pharmacocinétique et pharmacodynamique
 - 7.4.5. Utilisations thérapeutiques
 - 7.4.6. Effets indésirables
 - 7.4.7. Présentation et dosage
- 7.5. Antifolates
 - 7.5.1. Classification
 - 7.5.2. Mécanisme d'action
 - 7.5.3. Spectre antimicrobien
 - 7.5.4. Pharmacocinétique et pharmacodynamique
 - 7.5.5. Utilisations thérapeutiques
 - 7.5.6 Effets indésirables
 - 7.5.7. Présentation et dosage
- 7.6. Antibiotiques pour la Lèpre: progrès récents
 - 7.6.1. Classification
 - 7.6.2 Mécanisme d'action
 - 7.6.3. Spectre antimicrobien
 - 7.6.4. Pharmacocinétique et pharmacodynamique
 - 7.6.5. Utilisations thérapeutiques
 - 7.6.6. Effets indésirables
 - 7.6.7. Présentation et dosage
- 7.7. Médicaments antituberculeux: dernières recommandations d'utilisation
 - 7.7.1 Classification
 - 7.7.2. Mécanisme d'action
 - 7.7.3. Spectre antimicrobien
 - 7.7.4. Pharmacocinétique et pharmacodynamique
 - 7.7.5. Utilisations thérapeutiques
 - 7.7.6. Effets indésirables
 - 7.7.7. Présentation et dosage

- 7.8. Utilisation d'antibiotiques par voie parentérale chez les patients ambulatoires: dernières recommandations
 - 7.8.1. Principales indications des antibiotiques parentéraux chez les patients ambulatoires
 - 7.8.2. Suivi des patients ambulatoires ayant reçu une antibiothérapie parentérale
- 7.9. Mise à jour sur les antibiotiques pour les bactéries multirésistantes
 - 7.9.1. Antibiotiques pour les bactéries Gram-positives multirésistantes
 - 7.9.2. Antibiotiques pour les bactéries Gram-négatives multirésistantes

Module 8. Antimycotiques

- 8.1. Éléments généraux
 - 8.1.1. Concept
 - 8.1.2. Émergence et développement
- 8.2. Classification
 - 8.2.1. Classification selon la structure chimique
 - 8.2.2. Classification selon l'action: locale et systémique
- 8.3. Mécanismes d'action
 - 8.3.1. Mécanismes d'action des agents antifongiques
- 8.4. Antifongiques systémiques: nouveaux développements en matière de toxicité et d'indications actuelles et futures
 - 8.4.1. Spectre antimicrobien
 - 8.4.2. Pharmacocinétique et pharmacodynamique
 - 8.4.3. Utilisations thérapeutiques
 - 8.4.4. Effets indésirables
 - 8.4.5. Présentation et dosage
- 8.5. Amphotéricine B: nouveaux concepts dans son utilisation
 - 8.5.1. Mécanisme d'action
 - 8.5.2. Spectre antimicrobien
 - 8.5.3. Pharmacocinétique et pharmacodynamique
 - 8.5.4. Utilisations thérapeutiques
 - 8.5.5. Effets indésirables
 - 8.5.6. Présentation et dosage
- 8.6. Traitement des mycoses profondes: situation actuelle et perspectives d'avenir
 - 8.6.1. Aspergillose
 - 8.6.2. Coccidioidomycose
 - 8.6.3. Cryptococcose
 - 8.6.4. Histoplasmose

Structure et contenu | 35 tech

- 8.7. Agents antifongiques locaux
 - 8.7.1. Spectre antimicrobien
 - 8.7.2. Pharmacocinétique et pharmacodynamique
 - 8.7.3. Utilisations thérapeutiques
 - 8.7.4. Effets indésirables
 - 8.7.5. Présentation et dosage
- 8.8. Traitement des mycoses de la peau et des mugueuses
 - 8.8.1. Tinea capitis
 - 8.8.2. Anatomie de la peau
 - 8.8.3. Onychomycose
- 8.9. Toxicité hépatique des antifongiques systémiques: défis futurs
 - 8.9.1. Métabolisme hépatique des médicaments antifongiques
 - 8.9.2. Hépatotoxicité des agents antifongiques

Module 9. Antiparasitaires

- 9.1. Éléments généraux
 - 9.1.1. Concept
 - 9.1.2. Émergence et développement
- 9.2. Classification
 - 9.2.1. Classification selon la structure chimique
 - 9.2.2. Classification par action contre différents parasites
- 9.3. Mécanismes d'action
 - 9.3.1. Mécanismes d'action des médicaments antiparasitaires
- 9.4. Antiparasitaires pour le parasitisme intestinal: nouveaux développements
 - 9.4.1. Classification
 - 9.4.2. Mécanisme d'action
 - 9.4.3. Spectre antimicrobien
 - 9.4.4. Pharmacocinétique et pharmacodynamique
 - 9.4.5. Utilisations thérapeutiques
 - 9.4.6. Effets indésirables
 - 9.4.7. Présentation et dosage

- 9.5. Antimalariques: dernières recommandations de l'OMS
 - 9.5.1. Classification
 - 9.5.2. Mécanisme d'action
 - 9.5.3. Spectre antimicrobien
 - 9.5.4. Pharmacocinétique et pharmacodynamique
 - 9.5.5. Utilisations thérapeutiques
 - 9.5.6. Effets indésirables
 - 9.5.7. Présentation et dosage
- 9.6. Mise à jour sur les vermifuges pour Filariose
 - 9.6.1. Classification
 - 9.6.2. Mécanisme d'action
 - 9.6.3. Spectre antimicrobien
 - 9.6.4. Pharmacocinétique et pharmacodynamique
 - 9.6.5. Utilisations thérapeutiques
 - 9.6.6. Effets indésirables
 - 9.6.7. Présentation et dosage
- 9.7. Dernières avancées en matière d'antiparasitaires pour la Trypanosomiase
 - 9.7.1. Classification
 - 9.7.2. Mécanisme d'action
 - 9.7.3. Spectre antimicrobien
 - 9.7.4. Pharmacocinétique et pharmacodynamique
 - 9.7.5. Utilisations thérapeutiques
 - 9.7.6. Effets indésirables
 - 9.7.7. Présentation et dosage
- 9.8. Antiparasitaires pour la Schistosomiase
 - 9.8.1. Classification
 - 9.8.2. Mécanisme d'action
 - 9.8.3. Spectre antimicrobien
 - 9.8.4. Pharmacocinétique et pharmacodynamique
 - 9.8.5. Utilisations thérapeutiques
 - 9.8.6. Effets indésirables
 - 9.8.7. Présentation et dosage

tech 36 | Structure et contenu

- 9.9. Antiparasitaires pour la Leishmaniose
 - 9.9.1. Classification
 - 9.9.2. Mécanisme d'action
 - 9.9.3. Spectre antimicrobien
 - 9.9.4. Pharmacocinétique et pharmacodynamique
 - 9.9.5. Utilisations thérapeutiques
 - 9.9.6. Effets indésirables
 - 9.9.7. Présentation et dosage
- 9.10. Traitement d'autres maladies parasitaires moins courantes
 - 9.10.1. Dracunculose
 - 9.10.2. Kyste hydatique
 - 9.10.3. Autres parasites des tissus

Module 10. Résistance aux antibiotiques

- 10.1. Émergence et développement de la résistance aux antibiotiques
 - 10.1.1. Concept
 - 10.1.2. Classification
 - 10.1.3. Émergence et développement
- 10.2. Mécanismes de la résistance aux antibiotiques: une mise à jour
 - 10.2.1. Mécanismes de la résistance aux antimicrobiens
 - 10.2.2. Nouveaux mécanismes de résistance
- 10.3. La résistance des staphylocoques: hier, aujourd'hui et demain
 - 10.3.1. Évolution de la résistance des staphylocoques
 - 10.3.2. Mécanismes de la résistance des staphylocogues
- 10.4. Résistance des germes gram-positifs: Recommandations
 - 10.4.1. Évolution et résistance des germes Gram-positifs
 - 10.4.2. Mécanismes de résistance des germes gram-positifs
- 10.5. Résistance des germes gram-négatifs: implications cliniques actuelles
 - 10.5.1. Évolution de la résistance aux germes gram-négatifs
 - 10.5.2. Mécanismes de la résistance des germes gram-négatifs
- 10.6. Résistance aux virus
 - 10.6.1. Évolution de la résistance aux virus
 - 10.6.2. Mécanismes de résistance aux virus

- 10.7. Résistance fongique
 - 10.7.1. Évolution de la résistance fongique
 - 10.7.2. Mécanismes de la résistance fongique
- 10.8. La résistance des parasites: un problème émergent
 - 10.8.1. Évolution de la résistance des parasites
 - 10.8.2. Mécanismes de résistance des parasites
 - 10.8.3. Résistance aux antipaludiques
- 10.9. Nouveaux mécanismes de résistance aux antibiotiques et superbactéries
 - 10.9.1. Émergence et développement des superbactéries
 - 10.9.2. Nouveaux mécanismes de résistance des superbactéries
- 10.10. Mécanismes et programmes pour le contrôle de la résistance aux antibiotiques
 - 10.10.1. Stratégies de contrôle de la résistance aux antibiotiques
 - 10.10.2. Programme mondial et expériences internationales en matière de contrôle de la résistance aux antimicrobiens

Module 11. Surveillance et contrôle de l'utilisation des antimicrobiens

- 11.1. Durée de l'antibiothérapie dans le traitement des infections: le rôle nouveau des biomarqueurs
 - 11.1.1. Mise à jour sur la durée appropriée des infections les plus courantes
 - 11.1.2. Paramètres cliniques et de laboratoire pour déterminer la durée du traitement
- 11.2. Études sur l'utilisation des antimicrobiens: les impacts les plus récents
 - 11.2.1. L'importance des études sur l'utilisation des antimicrobiens
 - 11.2.2. Résultats des études sur l'utilisation des antimicrobiens ayant eu un impact majeur ces dernières années
- 11.3. Les comités antibiotiques dans les hôpitaux: leur rôle dans le futur
 - 11.3.1. Structure et fonctionnement
 - 11.3.2. Objectifs
 - 11.3.3. Activités
 - 11.3.4. Impacts
- 11.4. Politiques d'utilisation des antimicrobiens: l'impact actuel sur la consommation d'antimicrobiens
 - 11.4.1. Concepts
 - 11.4.2. Types de politiques
 - 11.4.3. Objectifs
 - 11.4.4. Impacts

- 11.5. Les comités pharmacothérapeutiques: importance pratique
 - 11.5.1. Structure et fonction
 - 11.5.2. Objectifs
 - 11.5.3. Activités
 - 11.5.4. Impacts
- 11.6. L'infectiologue et son rôle dans l'utilisation rationnelle des antimicrobiens
 - 11.6.1. Rôles et activités de l'infectiologue pour promouvoir et soutenir l'utilisation rationnelle des antimicrobiens
- 11.7. Impact de la formation et du développement professionnel sur l'utilisation des antimicrobiens
 - 11.7.1. Importance de la formation et du développement professionnel
 - 11.7.2. Types
 - 11.7.3. Impacts
- 11.8. Stratégies hospitalières pour une utilisation rationnelle des antimicrobiens: ce que disent les données probantes
 - 11.8.1. Stratégies hospitalières pour le contrôle de l'utilisation rationnelle des antimicrobiens
 - 11.8.2. Impacts
- 11.9. Recherche scientifique pour le contrôle et la surveillance futurs de l'antibiothérapie chez les patients atteints de septicémie
 - 11.9.1. Recherche de nouveaux paramètres et marqueurs pour le suivi et le contrôle de la thérapeutique antibiotique

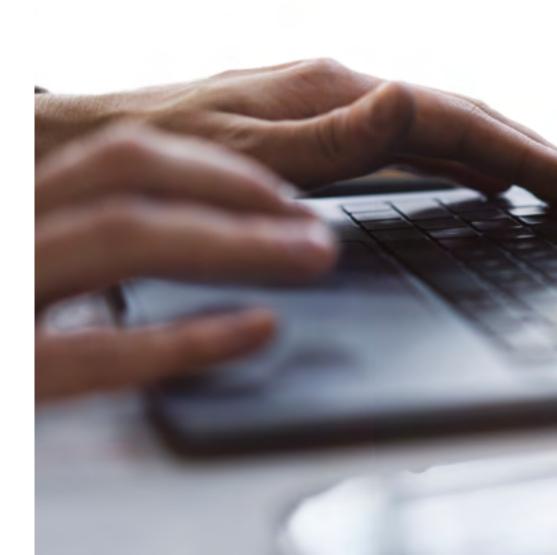
Module 12. Antibiotiques et thérapies antimicrobiennes du futur

- 12.1. La recherche, approbation et commercialisation de nouveaux antibiotiques
 - 12.1.1. La recherche antimicrobienne
 - 12.1.2. Le processus d'approbation des antimicrobiens
 - 12.1.3. Le marketing antimicrobien et les grandes entreprises pharmaceutiques
- 12.2. Essais cliniques en cours pour l'approbation de nouveaux antibiotiques
 - 12.2.1. Nouveaux essais cliniques sur les antimicrobiens
- 12.3. Des antibiotiques anciens aux nouveaux usages
 - 12.3.1. Le rôle des anciens antibiotiques avec de nouvelles utilisations
 - 12.3.2. Rétrospective antimicrobienne
 - 12.3.3. Modifications chimiques d'anciens antimicrobiens

- 12.4. Cibles thérapeutiques et nouveaux moyens de lutte contre les infections: les nouveautés de la recherche
 - 12.4.1. Nouvelles cibles thérapeutiques
 - 12.4.2. De nouveaux moyens de combattre la septicémie
- 12.5. Les anticorps monoclonaux dans les infections: présent et avenir
 - 12.5.1. Origine et émergence des anticorps monoclonaux
 - 12.5.2. Classification
 - 12.5.3. Utilisations cliniques
 - 12.5.4. Résultats de l'impact sur les maladies infectieuses
- 12.6. Autres médicaments pour réguler et stimuler la réponse immunitaire contre les infections
 - 12.6.1. Médicaments destinés à réguler et à contrôler la réponse immunitaire
- 12.7. Antibiotiques futuristes
 - 12.7.1. L'avenir des antimicrobiens
 - 12.7.2. Antibiotiques du futur

Obtenez un aperçu des antibiotiques futuristes grâce à un diplôme universitaire flexible auquel vous pouvez accéder quand vous le souhaitez depuis votre ordinateur"

L'étudiant: la priorité de tous les programmes de **TECH Euromed University**


Dans la méthodologie d'étude de TECH Euromed University, l'étudiant est le protagoniste absolu.

Les outils pédagogiques de chaque programme ont été sélectionnés en tenant compte des exigences de temps, de disponibilité et de rigueur académique que demandent les étudiants d'aujourd'hui et les emplois les plus compétitifs du marché.

Avec le modèle éducatif asynchrone de TECH Euromed University, c'est l'étudiant qui choisit le temps qu'il consacre à l'étude, la manière dont il décide d'établir ses routines et tout cela dans le confort de l'appareil électronique de son choix. L'étudiant n'a pas besoin d'assister à des cours en direct, auxquels il ne peut souvent pas assister. Les activités d'apprentissage se dérouleront à votre convenance. Vous pouvez toujours décider quand et où étudier.

À TECH Euromed University, vous n'aurez PAS de cours en direct (auxquelles vous ne pourrez jamais assister)"

Méthodologie d'étude | 41 **tech**

Les programmes d'études les plus complets au niveau international

TECH Euromed University se caractérise par l'offre des itinéraires académiques les plus complets dans l'environnement universitaire. Cette exhaustivité est obtenue grâce à la création de programmes d'études qui couvrent non seulement les connaissances essentielles, mais aussi les dernières innovations dans chaque domaine.

Grâce à une mise à jour constante, ces programmes permettent aux étudiants de suivre les évolutions du marché et d'acquérir les compétences les plus appréciées par les employeurs. Ainsi, les diplômés de TECH Euromed University reçoivent une préparation complète qui leur donne un avantage concurrentiel significatif pour progresser dans leur carrière.

De plus, ils peuvent le faire à partir de n'importe quel appareil, PC, tablette ou smartphone.

Le modèle de TECH Euromed University est asynchrone, de sorte que vous pouvez étudier sur votre PC, votre tablette ou votre smartphone où vous voulez, quand vous voulez et aussi longtemps que vous le voulez"

tech 42 | Méthodologie d'étude

Case studies ou Méthode des cas

La méthode des cas est le système d'apprentissage le plus utilisé par les meilleures écoles de commerce du monde. Développée en 1912 pour que les étudiants en Droit n'apprennent pas seulement le droit sur la base d'un contenu théorique, sa fonction était également de leur présenter des situations réelles et complexes. De cette manière, ils pouvaient prendre des décisions en connaissance de cause et porter des jugements de valeur sur la manière de les résoudre. Elle a été établie comme méthode d'enseignement standard à Harvard en 1924.

Avec ce modèle d'enseignement, ce sont les étudiants eux-mêmes qui construisent leurs compétences professionnelles grâce à des stratégies telles que *Learning by doing* ou le *Design Thinking*, utilisées par d'autres institutions renommées telles que Yale ou Stanford.

Cette méthode orientée vers l'action sera appliquée tout au long du parcours académique de l'étudiant avec TECH Euromed University. Vous serez ainsi confronté à de multiples situations de la vie réelle et devrez intégrer des connaissances, faire des recherches, argumenter et défendre vos idées et vos décisions. Il s'agissait de répondre à la question de savoir comment ils agiraient lorsqu'ils seraient confrontés à des événements spécifiques complexes dans le cadre de leur travail quotidien.

Méthode Relearning

À TECH Euromed University, les *case studies* sont complétées par la meilleure méthode d'enseignement 100% en ligne: le *Relearning*.

Cette méthode s'écarte des techniques d'enseignement traditionnelles pour placer l'apprenant au centre de l'équation, en lui fournissant le meilleur contenu sous différents formats. De cette façon, il est en mesure de revoir et de répéter les concepts clés de chaque matière et d'apprendre à les appliquer dans un environnement réel.

Dans le même ordre d'idées, et selon de multiples recherches scientifiques, la répétition est le meilleur moyen d'apprendre. C'est pourquoi TECH Euromed University propose entre 8 et 16 répétitions de chaque concept clé au sein d'une même leçon, présentées d'une manière différente, afin de garantir que les connaissances sont pleinement intégrées au cours du processus d'étude.

Le Relearning vous permettra d'apprendre plus facilement et de manière plus productive tout en développant un esprit critique, en défendant des arguments et en contrastant des opinions: une équation directe vers le succès.

tech 44 | Méthodologie d'étude

Un Campus Virtuel 100% en ligne avec les meilleures ressources didactiques

Pour appliquer efficacement sa méthodologie, TECH Euromed University se concentre à fournir aux diplômés du matériel pédagogique sous différents formats: textes, vidéos interactives, illustrations et cartes de connaissances, entre autres. Tous ces supports sont conçus par des enseignants qualifiés qui axent leur travail sur la combinaison de cas réels avec la résolution de situations complexes par la simulation, l'étude de contextes appliqués à chaque carrière professionnelle et l'apprentissage basé sur la répétition, par le biais d'audios, de présentations, d'animations, d'images, etc.

Les dernières données scientifiques dans le domaine des Neurosciences soulignent l'importance de prendre en compte le lieu et le contexte d'accès au contenu avant d'entamer un nouveau processus d'apprentissage. La possibilité d'ajuster ces variables de manière personnalisée aide les gens à se souvenir et à stocker les connaissances dans l'hippocampe pour une rétention à long terme. Il s'agit d'un modèle intitulé *Neurocognitive context-dependent e-learning* qui est sciemment appliqué dans le cadre de ce diplôme d'université.

D'autre part, toujours dans le but de favoriser au maximum les contacts entre mentors et mentorés, un large éventail de possibilités de communication est offert, en temps réel et en différé (messagerie interne, forums de discussion, service téléphonique, contact par courrier électronique avec le secrétariat technique, chat et vidéoconférence).

De même, ce Campus Virtuel très complet permettra aux étudiants TECH Euromed University d'organiser leurs horaires d'études en fonction de leurs disponibilités personnelles ou de leurs obligations professionnelles. De cette manière, ils auront un contrôle global des contenus académiques et de leurs outils didactiques, mis en fonction de leur mise à jour professionnelle accélérée.

Le mode d'étude en ligne de ce programme vous permettra d'organiser votre temps et votre rythme d'apprentissage, en l'adaptant à votre emploi du temps"

L'efficacité de la méthode est justifiée par quatre acquis fondamentaux:

- 1. Les étudiants qui suivent cette méthode parviennent non seulement à assimiler les concepts, mais aussi à développer leur capacité mentale au moyen d'exercices pour évaluer des situations réelles et appliquer leurs connaissances.
- 2. L'apprentissage est solidement traduit en compétences pratiques ce qui permet à l'étudiant de mieux s'intégrer dans le monde réel.
- 3. L'assimilation des idées et des concepts est rendue plus facile et plus efficace, grâce à l'utilisation de situations issues de la réalité.
- 4. Le sentiment d'efficacité de l'effort investi devient un stimulus très important pour les étudiants, qui se traduit par un plus grand intérêt pour l'apprentissage et une augmentation du temps passé à travailler sur le cours.

Méthodologie d'étude | 45 tech

La méthodologie universitaire la mieux évaluée par ses étudiants

Les résultats de ce modèle académique innovant sont visibles dans les niveaux de satisfaction générale des diplômés de TECH Euromed University.

L'évaluation par les étudiants de la qualité de l'enseignement, de la qualité du matériel, de la structure du cours et des objectifs est excellente. Il n'est pas surprenant que l'institution soit devenue l'université la mieux évaluée par ses étudiants selon l'indice global score, obtenant une note de 4,9 sur 5.

Accédez aux contenus de l'étude depuis n'importe quel appareil disposant d'une connexion Internet (ordinateur, tablette, smartphone) grâce au fait que TECH Euromed University est à la pointe de la technologie et de l'enseignement.

Vous pourrez apprendre grâce aux avantages offerts par les environnements d'apprentissage simulés et à l'approche de l'apprentissage par observation: le Learning from an expert.

tech 46 | Méthodologie d'étude

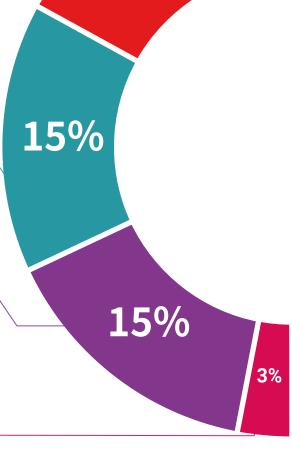
Ainsi, le meilleur matériel pédagogique, minutieusement préparé, sera disponible dans le cadre de ce programme:

Matériel didactique

Tous les contenus didactiques sont créés par les spécialistes qui enseignent les cours. Ils ont été conçus en exclusivité pour le programme afin que le développement didactique soit vraiment spécifique et concret.

Ces contenus sont ensuite appliqués au format audiovisuel afin de mettre en place notre mode de travail en ligne, avec les dernières techniques qui nous permettent de vous offrir une grande qualité dans chacune des pièces que nous mettrons à votre service.

Pratique des aptitudes et des compétences


Vous effectuerez des activités visant à développer des compétences et des aptitudes spécifiques dans chaque domaine. Pratiques et dynamiques permettant d'acquérir et de développer les compétences et les capacités qu'un spécialiste doit acquérir dans le cadre de la mondialisation dans laquelle nous vivons.

Résumés interactifs

Nous présentons les contenus de manière attrayante et dynamique dans des dossiers multimédias qui incluent de l'audio, des vidéos, des images, des diagrammes et des cartes conceptuelles afin de consolider les connaissances.

Ce système éducatif unique de présentation de contenu multimédia a été récompensé par Microsoft en tant que »European Success Story".

Lectures complémentaires

Articles récents, documents de consensus, guides internationaux, etc... Dans notre bibliothèque virtuelle, vous aurez accès à tout ce dont vous avez besoin pour compléter votre formation.

Case Studies

Vous réaliserez une sélection des meilleures case studies dans le domaine.

Des cas présentés, analysés et encadrés par les meilleurs spécialistes internationaux.

Testing & Retesting

Nous évaluons et réévaluons périodiquement vos connaissances tout au long du programme. Nous le faisons sur 3 des 4 niveaux de la Pyramide de Miller.

Cours magistraux

Il existe des preuves scientifiques de l'utilité de l'observation par un tiers expert.

La méthode Learning from an Expert permet au professionnel de renforcer ses connaissances ainsi que sa mémoire, puis lui permet d'avoir davantage confiance en lui concernant la prise de décisions difficiles.

Guides d'action rapide

TECH Euromed University propose les contenus les plus pertinents du programme sous forme de fiches de travail ou de guides d'action rapide. Un moyen synthétique, pratique et efficace pour vous permettre de progresser dans votre apprentissage.

20%

17%

Le programme du **Mastère Spécialisé en Avancées en Antibiothérapie et de la Résistance** est le programme le plus complet sur la scène académique actuelle. Après avoir obtenu leur diplôme, les étudiants recevront un diplôme d'université délivré par TECH Global University et un autre par Université Euromed de Fès.

Ces diplômes de formation continue et et d'actualisation professionnelle de TECH Global University et d'Université Euromed de Fès garantissent l'acquisition de compétences dans le domaine de la connaissance, en accordant une grande valeur curriculaire à l'étudiant qui réussit les évaluations et accrédite le programme après l'avoir suivi dans son intégralité.

Ce double certificat, de la part de deux institutions universitaires de premier plan, représente une double récompense pour une formation complète et de qualité, assurant à l'étudiant l'obtention d'une certification reconnue au niveau national et international. Ce mérite académique vous positionnera comme un professionnel hautement qualifié, prêt à relever les défis et à répondre aux exigences de votre secteur professionnel.

iplôme: Mastère Spécialisé en Avancées en Antibiothérapie et de la Résistance

Modalité: en ligne

Durée: 12 mois

Accréditation: 60 ECTS

tech Euromed University

Mastère Spécialisé

Avancées en Antibiothérapie et Résistance aux Antibiotiques

- » Modalité: en ligne
- » Durée: 12 mois
- » Qualification: TECH Euromed University
- » Accréditation: 60 ECTS
- » Horaire: à votre rythme
- » Examens: en ligne

