

大学课程

核医学中的放射物理学

- » 模式:**在线**
- » 时长: 6周
- » 学位: TECH 科技大学
- » 课程表:自由安排时间
- » 考试模式:**在线**

网页链接: www.techtitute.com/cn/nursing/postgraduate-certificate/radiophysics-nuclea-medicine

目录

01		02			
介绍		目标			
	4		8		
03		04		05	
课程管理		结构和内容		学习方法	
	12		16		20
				06	
				学位	

30

tech 06 介绍

伽马相机已成为获取人体内部功能和诊断图像最常用的设备之一。它的使用正在世界各地的医疗系统中迅速扩大。这要求所有卫生人员了解其主要应用和优势,以成功开发核医学疗法。在这种情况下,护士必须做好特别准备,因为他们的职责包括监测接受这些治疗的患者,并在临床环境中采取安全措施来应对放射生物学风险。

为此,TECH设计了一门课程,使这些专业人员能够全面更新与这些医院服务相关的技能。在整个教学大纲中,学生将深入研究最复杂的护理技术,并详细了解该领域的最新技术及其优势。同时,他们将深入研究尖端应用,例如获取该领域的 3D 图像以进行放射诊断,以及促进医疗环境中的控制和安全的最先进的控制措施。

简而言之,通过这次培训,护士将能够更新他们在这个不断发展的领域的知识,为他们的日常实践获得新的技能。此外,他们将100%在线完成,因为TECH致力于以创新的虚拟校园提供的远程模式实现学术卓越,这将避免毕业生出门。此外,他们将有机会根据自己的日程安排或个人工作义务访问内容。尽管该课程的主要选择是从任何具有互联网连接的设备查阅材料,但事实是它们可以下载用于在线学习。这包括补充读物,实际案例等材料。

这个核医学中的放射物理学大学课程包含了市场上最完整和最新的科学课程。主要特点是:

- 放射物理学专家提出的案例研究的发展
- 这门课程的内容图文并茂示意性强,实用性强为那些视专业实践至关重要的学科提供了科学和实用的信息
- 可以进行自我评估的实践以促进学习
- 特别强调创新的方法论
- 理论知识,专家预论,争议主题讨论论坛和个人反思工作
- 可以从任何联网的固定或移动设备上观看内容

通过这个100%在线学位,您 将深入研究通过核医学获得 的诊断图像重建的校正形式" 66

您想成为一名核医学专业护士吗?通过此大纲扩展您对核反应堆和加速器功能的了解"

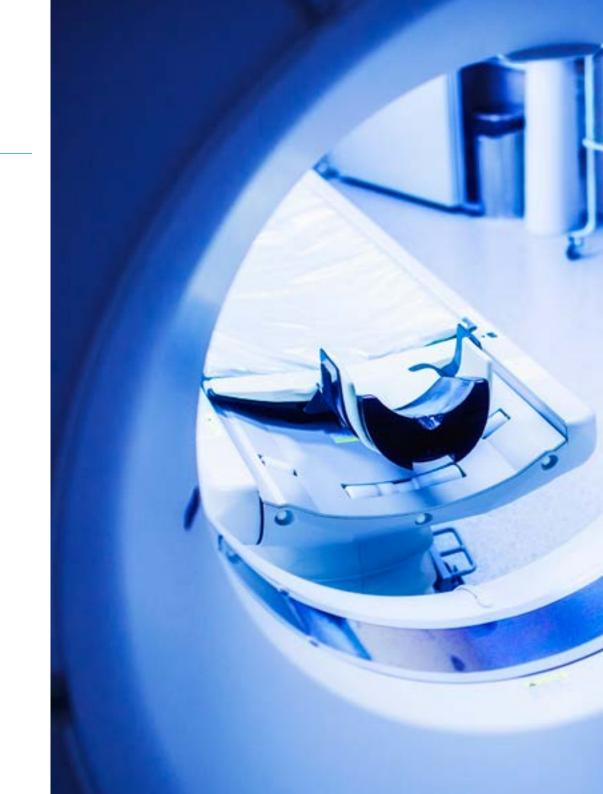
这门课程的教学人员包括来自这个行业的专业人士,他们将自己的工作经验带到了这一培训中还有来自领先公司和著名大学的公认专家。

通过采用最新的教育技术制作的多媒体内容,专业人士将能够进行情境化学习即通过模拟环境进行沉浸式培训以应对真实情况。

这门课程的设计集中于基于问题的学习,通过这种方式专业人士需要在整个学年中解决所遇到的各种实践问题。为此,你将得到由知名专家制作的新型交互式视频系统的帮助。

您将深入研究与放射性药物疗法发射精确剂量的辐射有关的技术的应用。

为您定制的学习计划, 并根据最有效的教学方 法设计: Relearning。



tech 10 | 目标

总体目标

- 分析电离辐射与组织的基本相互作用
- 在细胞水平上确定电离辐射的影响和风险
- 分析外部放射治疗中光子和电子束测量的要素
- 检查质量保证计划
- 识别外部放射治疗的不同计划技术
- 分析质子与物质的相互作用
- 检查质子治疗中的辐射防护和放射生物学
- 讨论术中放射治疗中使用的技术和设备
- 审查不同癌症背景下近距放射治疗的临床结果
- 分析辐射防护的重要性
- 吸收使用电离辐射所产生的现有风险
- 在辐射防护层面制定适用的国际法规

具体目标

- 区分通过放射性药物从患者获取图像的不同模式
- 培养患者剂量测定中 MIRD 方法的专业知识

当前核医学的重要性使得该大学课程成为一个 安全的选择,因为市场不 断增长且充满机遇"

03 **课程管理**

tech 14 | 课程管理

管理人员

De Luis Pérez, Francisco Javier 医生

- 阿利坎特、托雷维耶哈和穆尔西亚的 Quirónsalud 医院放射物理和辐射防护服务负责人
- 专长圣安东尼奥德穆尔西亚天主教大学个性化多学科肿瘤学研究小组
- 阿尔梅里亚大学应用物理学和可再生能源博士
- 格拉纳达大学物理科学学位,专攻理论物理学
- 成员:西班牙医学物理学会(SEFM),西班牙皇家物理学会(RSEF),杰出官方学院质子治疗中心(Quirónsalud)物理学家和咨询与联络委员会

教师

Rodríguez, Carlos Andrés 医生

- 巴利亚多利德大学临床医院核医学科主任
- 医院放射物理学专家
- 巴利亚多利德大学临床医院放射物理和辐射防护服务住院医师的主要导师
- 医院放射物理学学士
- 萨拉曼卡大学物理学学位

tech 18 | 结构和内容

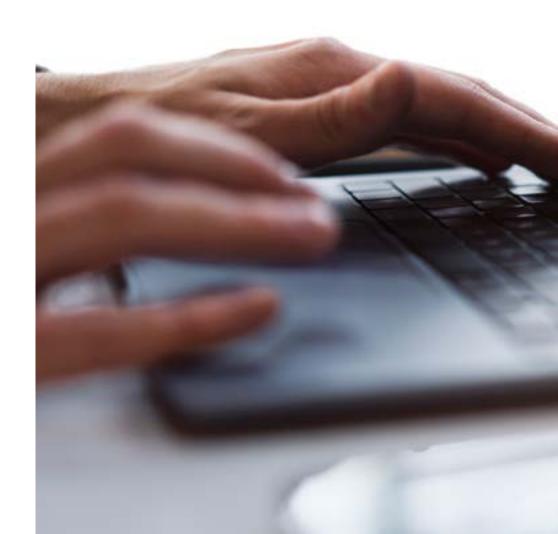
模块 1. 核医学

- 1.1. 核医学中使用的放射性核素
 - 1.1.1. 放射性核素
 - 1.1.2. 诊断中的典型放射性核素
 - 1.1.3. 治疗中的典型放射性核素
- 1.2. 获取人工放射性核素
 - 1.2.1. 核反应堆
 - 1.2.2. 回旋加速器
 - 1.2.3. 发电机
- 1.3. 核医学仪器
 - 1.3.1. 活动计。活动计校准
 - 1.3.2. 术中探头
 - 1.3.3. 伽马相机和SPECT
 - 1.3.4. PET
- 1.4. 核医学质量保证项目
 - 1.4.1. 核医学质量保证
 - 1.4.2. 验收,参考和恒定性测试
 - 1.4.3. 良好实践例程
- 1.5. 核医学设备:伽马相机
 - 1.5.1. 图像形成
 - 1.5.2. 成像模式
 - 1.5.3. 患者标准方案
- 1.6. 核医学设备: SPECT
 - 1.6.1. 断层扫描重建
 - 1.6.2. 投影图
 - 1.6.3. 重建修复
- 1.7. 核医学设备:PET
 - 1.7.1. 物理基地
 - 1.7.2. 探测器材料
 - 1.7.3. 2D和3D采集灵敏度
 - 1.7.4. 飞行时间

- 1.8. 核医学中的图像重建校正
 - 1.8.1. 调光校正
 - 1.8.2. 超时校正
 - 1.8.3. 随机事件校正
 - 1.8.4. 散射光子的校正
 - 1.8.5. 正常化
 - 1.8.6. 图像重建
- 1.9. 核医学设备的质量控制
 - 1.9.1. 国际准则和议定书
 - 1.9.2. 平面伽马相机
 - 1.9.3. 断层扫描伽马相机
 - 1.9.4. PET
- 1.10. 核医学患者的剂量测定
 - 1.10.1. MIRD形式主义
 - 1.10.2. 不确定性的估计
 - 1.10.3. 滥用放射性药物

现在就报名吧,您将通过创新的多媒体教学格式进行学习,这将优化您的更新过程"

tech 22 方法


学生:所有TECH课程的首要任务

在 TECH 的学习方法中,学生是绝对的主角。

每个课程的教学工具的选择都考虑到了时间,可用性和学术严谨性的要求,这些要求如今不仅是学生的要求也是市场上最具竞争力的职位的要求。

通过TECH的异步教育模式,学生可以选择分配学习的时间,决定如何建立自己的日常生活以及所有这一切,而这一切都可以在他们选择的电子设备上舒适地进行。学生不需要参加现场课程,而他们很多时候都不能参加。您将在适合您的时候进行学习活动。您始终可以决定何时何地学习。

国际上最全面的学习计划

TECH的特点是提供大学环境中最完整的学术大纲。这种全面性是通过创建教学大纲来实 现的,教学大纲不仅包括基本知识,还包括每个领域的最新创新。

通过不断更新,这些课程使学生能够跟上市场变化并获得雇主最看重的技能。通过这种 方式,那些在TECH完成学业的人可以获得全面的准备,为他们的职业发展提供显着的竞 争优势。

更重要的是,他们可以通过任何设备,个人电脑,平板电脑或智能手机来完成的。

TECH模型是异步的,因此将您 陈时陈地使用PC 亚板中脑或 随时随地使用PC,平板电脑或 智能手机学习,学习时间不限"

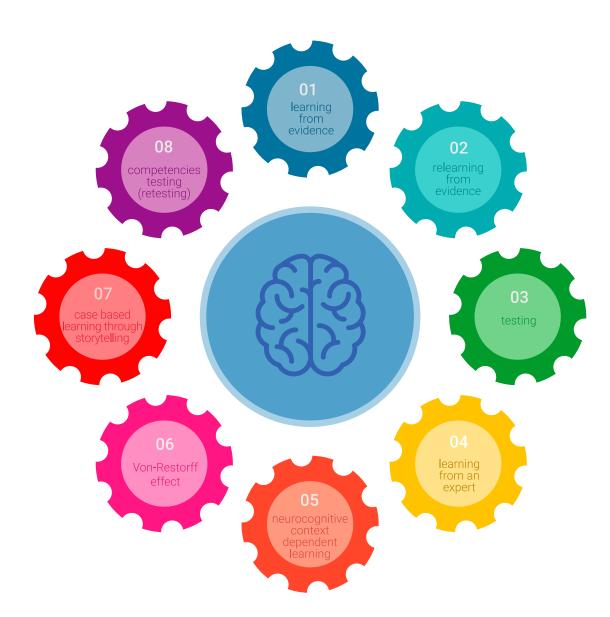
tech 24 方法

案例研究或案例方法

案例法一直是世界上最好的院系最广泛使用的学习系统。该课程于1912年开发,目的是让法学专业学生不仅能在理论内容的基础上学习法律,还能向他们展示复杂的现实生活情境。因此,他们可以做出决策并就如何解决问题做出明智的价值判断。1924年被确立为哈佛大学的一种标准教学方法。

在这种教学模式下,学生自己可以通过耶鲁大学或斯坦福大学等其他知名机构 使用的边做边学或设计思维等策略来建立自己的专业能力。

这种以行动为导向的方法将应用于学生在TECH进行的整个学术大纲。这样你将面临多种真实情况,必须整合知识,调查,论证和捍卫你的想法和决定。这一切的前提是回答他在日常工作中面对复杂的特定事件时如何定位自己的问题。


学习方法

在TECH,案例研究通过最好的100%在线教学方法得到加强:Relearning。

这种方法打破了传统的教学技术,将学生置于等式的中心,为他们提供不同格式的最佳内容。通过这种方式,您可以回顾和重申每个主题的关键概念并学习将它们应用到实际环境中。

沿着这些思路,根据多项科学研究,重复是最好的学习方式。因此,TECH在同一课程中以不同的方式重复每个关键概念8到16次,目的是确保在学习过程中充分巩固知识。

Relearning将使你的学习事半功倍,让你更多地参与到专业学习中,培养批判精神,捍卫论点,对比观点:这是通往成功的直接等式。

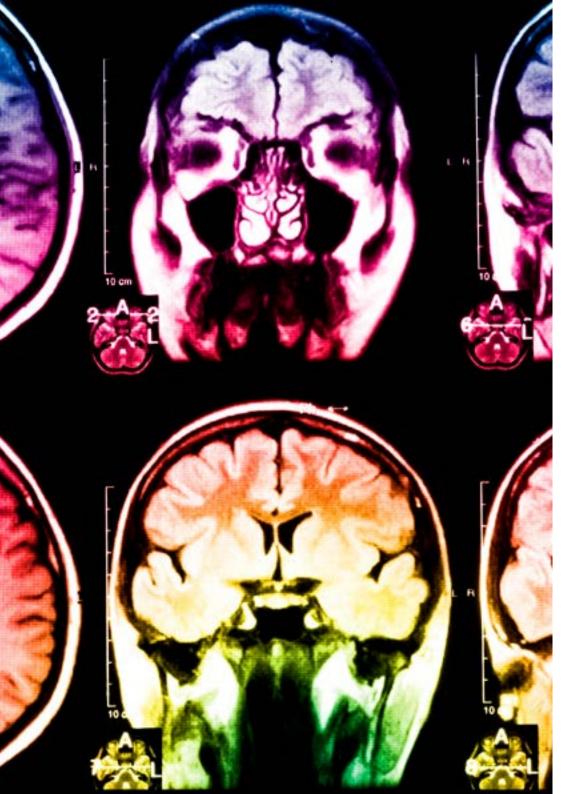
tech 26 方法

100%在线虚拟校园,拥有最好的教学材料

为了有效地应用其方法论,TECH 专注于为毕业生提供不同格式的教材:文本,互动视频,插图和知识图谱等。这些课程均由合格的教师设计,他们的工作重点是通过模拟将真实案例与复杂情况的解决结合起来,研究应用于每个职业生涯的背景并通过音频,演示,动画,图像等基于重复的学习。

神经科学领域的最新科学证据表明,在开始新的学习之前考虑访问内容的地点和背景非常重要。能够以个性化的方式调整这些变量可以帮助人们记住知识并将其存储在海马体中,以长期保留它。这是一种称为神经认知情境依赖电子学习的模型,有意识地应用于该大学学位。

另一方面,也是为了尽可能促进指导者与被指导者之间的联系,提供了多种实时和延迟交流的可能性(内部信息,论坛,电话服务,与技术秘书处的电子邮件联系,聊天和视频会议)。


同样,这个非常完整的虚拟校园将TECH学生根据个人时间或工作任务安排学习时间。通过这种方式,您将根据您加速的专业更新,对学术内容及其教学工具进行全局控制。

该课程的在线学习模式将您 安排您的时间和学习进度, 使其适应您的日程安排"

这个方法的有效性由四个关键成果来证明:

- 1. 遵循这种方法的学生不仅实现了对概念的吸收,而且还通过练习评估真实情况和应用知识来发展自己的心理能力。
- 2. 学习扎根于实践技能使学生能够更好地融入现实世界。
- 3. 由于使用了现实中出现的情况,思想和概念的学习变得更加容易和有效。
- 4. 感受到努力的成效对学生是一种重要的激励,这会转化为对学习更大的兴趣并增加学习时间。

最受学生重视的大学方法

这种创新学术模式的成果可以从TECH毕业生的整体满意度中看出。

学生对教学质量,教材质量,课程结构及其目标的评价非常好。毫不奇怪,在Trustpilot评议平台上,该校成为学生评分最高的大学,获得了4.9分的高分(满分5分)。

由于TECH掌握着最新的技术和教学前沿, 因此可以从任何具有互联网连接的设备(计 算机,平板电脑,智能手机)访问学习内容。

你可以利用模拟学习环境和观察学习法(即向专家学习)的优势进行学习。

tech 28 方法

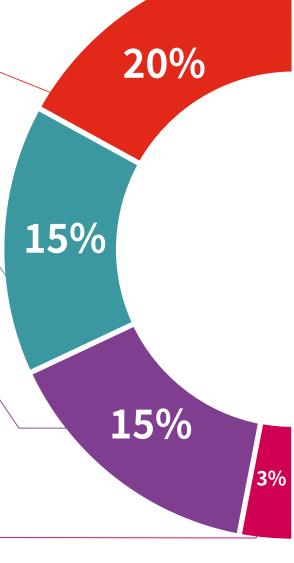
因此,在这门课程中,将提供精心准备的最好的教育材料:

学习材料

所有的教学内容都是由教授这门课程的专家专门为这门课程创作的,因此,教学的发展是具体的。

这些内容之后被应用于视听格式,这将创造我们的在线工作方式,采用最新的技术,使我们能够保证给你提供的每一件作品都有高质量。

技能和能力的实践


你将开展活动以发展每个学科领域的具体能力和技能。在我们所处的全球化框架内我们提供实践和氛围帮你获得成为专家所需的技能和能力。

互动式总结

我们以有吸引力和动态的方式将内容呈现在多媒体中,包括音频,视频,图像,图表和概念图,以巩固知识。

这一用于展示多媒体内容的独特教育系统被微软公司评为 "欧洲成功案例"。

延伸阅读

最新文章,共识文件,国际指南...在我们的虚拟图书馆中,您将可以访问完成培训所需的一切。

方法 | 29 tech

Testing & Retesting

在整个课程中,我们会定期评估和重新评估你的知识。我们在米勒金字塔的4个层次中的3个层次上这样做。

大师班

科学证据表明第三方专家观察的效果显著。

向专家学习可以增强知识和记忆力、,并为我们今后做出艰难的决定建立信心。

快速行动指南

TECH以工作表或快速行动指南的形式提供课程中最相关的内容。一种帮助学生在学习中进步的综合,实用和有效的方法。

7%

17%

tech 32 | 学位

这个核医学中的放射物理学大学课程包含了市场上最完整和最新的课程。

评估通过后,学生将通过邮寄收到TECH科技大学颁发的相应的大学课程学位。

TECH科技大学颁发的证书将表达在大学课程获得的资格,并将满足工作交流,竞争性考试和专业职业评估委员会的普遍要求。

学位:核医学中的放射物理学大学课程

模式:在线

时长: 6周

^{*}海牙加注。如果学生要求为他们的纸质资格证书提供海牙加注,TECH EDUCATION将采取必要的措施来获得,但需要额外的费用。

tech 科学技术大学 大学课程 核医学中的放射物理学 » 模式:**在线** » 时长: 6周 » 学位: TECH 科技大学 » 课程表:自由安排时间 » 考试模式:**在线**

大学课程

核医学中的放射物理学

