

Últimos Avances en Ambliopía Bioestadística, Métricas y Medidas de la Calidad Visual

» Modalidad: online» Duración: 3 meses

» Titulación: TECH Universidad

» Acreditación: 18 ECTS

» Horario: a tu ritmo» Exámenes: online

Acceso web: www.techtitute.com/medicina/experto-universitario/experto-ultimos-avances-ambliopia-bioestadistica-metricas-medidas-calidad-visual

Índice

 $\begin{array}{ccc} 01 & 02 \\ & \underline{\text{Presentación}} & \underline{\text{Objetivos}} \\ & & & \\ \hline 03 & 04 & 05 \\ \end{array}$

pág. 12

Estructura y contenido

Dirección del curso

pág. 12

Metodología de estudio

pág. 22

06

Titulación

pág. 32

tech 06 | Presentación

Entre las principales causas de disminución de visión en la población en general, se encuentran las ambliopías. Éstas aparecen como alteración en el desarrollo de la visión en edades tempranas afectando no solo a la agudeza visual sino a muchas funciones visuales. La importancia de la detección de las ambliopías radica en que, si no son tratadas, y cuanto antes mejor, seguirán afectando a la función visual durante toda la vida.

Este programa en Últimos Avances en Ambliopía abarca los principales campos de actuación del optometrista, siempre con la máxima actualización y con un profesorado de primer nivel. El plan de estudio ha sido diseñado desde la perspectiva y experiencia de expertos altamente especializados en su módulo, e inmersos en el mundo clínico.

Todo esto estará disponible en el campus virtual, al que se podrá acceder desde cualquier dispositivo con conexión a internet. De esta manera el médico podrá cursar el programa en sus horarios de preferencia, sin tener que trasladarse a centros presenciales.

Aumenta tu seguridad en la toma de decisiones actualizando tus conocimientos a través de este Experto Universitario"

Este Experto Universitario en Últimos Avances en Ambliopía Bioestadística, Métricas y Medidas de la Calidad Visual contiene el programa científico más completo y actualizado del mercado. Sus características más destacadas son:

- El desarrollo de más de 100 casos clínicos presentados por expertos en las diferentes especialidades
- Sus contenidos gráficos, esquemáticos y eminentemente prácticos con los que están concebidos, recogen una información científica y asistencial sobre aquellas disciplinas médicas indispensables para el ejercicio profesional
- Las novedades en Avances en Ambliopía. Bioestadística, Métricas y Medidas de la Calidad Visual más frecuentes
- La presentación de talleres prácticos sobre procedimientos, técnicas diagnósticas y terapéuticas
- El sistema interactivo de aprendizaje basado en algoritmos para la toma de decisiones sobre las situaciones clínicas planteadas
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Este Experto Universitario en Últimos Avances en Ambliopía te ayudará a mantenerte actualizado para prestar una atención completa y de calidad a los pacientes"

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Toda la metodología necesaria para el profesional médico no especialista en el ámbito de la optometría clínica, en un programa específico y concreto.

Contamos con el mejor material didáctico, una novedosa metodología y una formación 100% online, lo que te facilitará su estudio.

tech 10 | Objetivos

Objetivos generales

- Asesorar a los pacientes desde su puesto en los centros de óptica acerca de los diferentes procedimientos y sus indicaciones
- Analizar los datos de una investigación en el campo de las Ciencias de la Visión
- Aprender las anomalías de la visión binocular que, desde el punto de vista de la evidencia clínica, pueden tratarse mediante terapia visual
- Manejar las diferentes técnicas de terapia visual en las disfunciones acomodativas, oculomotoras y perceptuales, desde un punto de vista multidisciplinar
- Adquirir los conocimientos necesarios para poder evaluar un caso clínico, detectar las posibles aberraciones presentes, estudiar si entran dentro de la normalidad, y proponer un tratamiento
- Conocer el tipo de examen visual que requiere un paciente ambliope y las técnicas más avanzadas en su tratamiento, poniendo al día su bagaje formativo para aplicarlo directamente en su práctica clínica habitual
- Conocer las técnicas más avanzadas en el examen y tratamiento de la baja visión, poniendo al día conceptos nuevos, así como técnicas para aplicar directamente en su práctica clínica profesional
- Conocer las definiciones más importantes, los mecanismos de acción y vías de administración de los fármacos a nivel ocular
- Aprender todos los fármacos anestésicos, los que modifican el tamaño de la pupila y actúan sobre la acomodación
- Conocer en detalle cuáles son las características técnicas, las indicaciones de uso y las limitaciones de diferentes dispositivos específicamente diseñados para el análisis ocular

- Aprender los instrumentos de medida de la calidad y cantidad lagrimal, de caracterización de la córnea y de la esclera, la medida de la cámara anterior y el ángulo iridocorneal, etc, de tal manera que el profesional que realice este programa conocerá lo último en instrumental para la medida de las estructuras oculares
- Adquirir los conocimientos necesarios para valorar la estructura ocular y el desarrollo visual del niño, así como los procedimientos basados en guías clínicas y evidencia actual
- Evaluar y diagnosticar anomalías visuales, así como planificar una estrategia de prevención, evaluación e intervención adecuada a la edad y condición de cada paciente
- Afrontar la adaptación de todo tipo de lentes de contacto

Un impulso a tu CV que te aportará la competitividad de los profesionales mejor capacitados del panorama laboral"

Objetivos específicos

Módulo 1. Últimos avances en el manejo de la ambliopía

- Conocer en profundidad los tipos y características de las ambliopías
- Conocer en profundidad las alteraciones visuales que se producen en los distintos tipos de ambliopías
- Aprender el protocolo de examen visual que se debe realizar para la detección y seguimiento de las ambliopías
- Conocer en profundidad el protocolo de tratamiento a seguir con base científica
- Ampliar la proyección laboral del participante, siendo capaz de evaluar, diagnosticar y tratar a los pacientes con ambliopías, los cuales se encuentran actualmente desatendidos en ocasiones por los optometristas

Módulo 2. Bioestadística para la investigación en óptica y optometría

- Definir los conceptos de estadística, bioestadística y epidemiología
- · Comprender la necesidad de conocer la bioestadística para un clínico
- Saber aplicar la representación gráfica apropiada al tipo de datos resultantes de un estudio clínico
- Profundizar en los procedimientos de análisis paramétrico y no paramétrico de los datos resultantes de una investigación
- Saber realizar un análisis de regresión simple, múltiple y logística
- Conocer de manera profunda los procedimientos para la comparación de instrumentación clínica

Módulo 3. Métricas y medidas de la calidad visual

- Profundizar en los principios de la aberrometría
- Presentar el concepto de sistema óptico perfecto
- Saber que es imposible obtener un ojo sin aberraciones
- Manejar la clasificación de las aberraciones ópticas
- Describir la distribución de las aberraciones presentes en el ojo normal
- Conocer de manera profunda las principales métricas que se utilizan para evaluar la calidad visual
- Saber las superficies ópticas oculares susceptibles de ser afectadas por aberraciones
- Diferenciar entre aberraciones oculares externas e internas
- Especializarse en las aberraciones presentes en patología ocular corneal
- Conocer en profundidad los tipos de aberraciones inducidas por la cirugía refractiva corneal e intraocular
- Describir los instrumentos para la medida de las aberraciones
- Presentar estrategias de tratamiento para las aberraciones oculares

tech 14 | Dirección del curso

Dirección

Dr. Calvache Anaya, José Antonio

- Optometrista en Clínica Baviera de Palma de Mallorca
- Docente en cursos sobre Bioestadística, Queratometría y Topografía Corneal y Biometría Ocular
- Grado en Óptica y Optometría por la Universidad de Alicante
- Doctor en Optometría y Ciencias de la Visión por la Universidad de Valencia
- Máster en Optometría Avanzada y Ciencias de la Visión por la Universidad de Valencia
- Experto Universitario en Estadística Aplicada a las Ciencias de la Salud por la UNED
- Diplomado en Óptica y Optometría por la Universidad de Alicante

Profesores

Dra. De Lamo Requena, Mercedes

- Directora técnica de IVOP Institut Valencià d'Optometría
- Óptico-Optometrista en Centro CIOC y Visió-Teràpia E. Santolaria
- Óptico-Optometrista en Multiópticas Pérez Setien, Óptica Mercedes y Vissum Oftalmología
- Diplomada en Óptica y Optometría por la Universidad de Valencia
- Titulada en múltiples especialidades por el Pacific University Collegue of Optometry

tech 18 | Estructura y contenido

Módulo 1. Últimos avances en el manejo de la ambliopía

- 1.1. Información General
 - 1.1.1. Desarrollo de Agudeza Visual
 - 1.1.2. Periodo Crítico vs. Plasticidad
- 1.2. Definición
- 1.3. Tipos de Ambliopías
 - 1.3.1. Ambliopía Refractiva
 - 1.3.2. Ambliopía Estrábica
 - 1.3.3. Ambliopía por Deprivación
 - 1.3.4. Ambliopía por Combinación
- 1.4. Alteraciones Visuales
 - 1.4.1. Agudeza Visual
 - 1.4.2. Sensibilidad al contraste
 - 1 4 3 Sistema Acomodativo
 - 1.4.4. Motilidad Ocular
 - 1.4.5. Localización Espacial (Incertidumbre Espacial y Distorsiones)
 - 1.4.6. Efecto de Amontonamiento
 - 1.4.7. Supresión y Estereopsis
 - 148 Rendimiento de lectura
 - 1.4.9. Tareas visomotoras
 - 1.4.10. Actividad Neurológica y reacción pupilar
 - 1.4.11. Cambios anatómicos
- 1.5. Agudeza visual
 - 1.5.1. Sensibilidad al contraste
 - 1.5.2. Sistema acomodativo
 - 1.5.3. Motilidad ocular
 - 1.5.4. Localización espacial (incertidumbre espacial y distorsiones)
 - 1.5.5. Efecto de amontonamiento
 - 1.5.6. Supresión y estereopsis
 - 1.5.7. Rendimiento de lectura
 - 1.5.8. Tareas visomotoras
 - 1.5.9. Actividad Neurológica y Reacción Pupilar
 - 1.5.10. Cambios anatómicos

- 1.6. Evaluación y Diagnóstico de Inclusión y Exclusión
 - 1.6.1. Valoración de la Agudeza Visual
 - 1.6.2. Evaluación del Estado Refractivo
 - 1.6.3. Evaluación del Sistema Binocular
 - 1.6.4. Evaluación del Sistema Acomodativo
 - 1.6.5. Valoración de la Motilidad Ocular
 - 1.6.6. Evaluación de la Salud Ocular
- 1.7. Tratamiento con Corrección del Estado Refractivo. Últimos estudios
 - 1.7.1. Corrección Óptica a Prescribir
 - 1.7.2. Tiempo necesario para el efecto
 - 1.7.3. Efectividad
- 1.8. Tratamiento con Oclusión y Penalización Farmacológica. Últimos estudios
 - 1.8.1. Oclusión
 - 1.8.1.1. Tipos de oclusión
 - 1.8.1.2. Tiempo de oclusión
 - 1.8.1.3. Efectividad
 - 1.8.2. Penalización Farmacológica
 - 1.8.2.1. Dosis de Atropina
 - 1.8.2.2. Efectividad
 - 1.8.2.3. Comparativa de tratamiento con oclusión vs. Penalización Farmacológica
 - 1.8.2.4. Cumplimiento del Tratamiento
 - 1.8.2.5. Regresión del tratamiento
 - 1.8.3. Tratamiento con Terapia Visual. Últimos estudios
 - 1.8.3.1. Ventajas e Inconvenientes
 - 1.8.3.2. Actividades Monoculares
 - 1.8.3.3. Actividades en visión de Cerca y Lejos
 - 1.8.3.4. Técnicas Antisupresoras y Terapia Binocular

Estructura y contenido | 19 tech

- 1.8.4. Otros tratamientos actuales y futuros
 - 1.8.4.1. Tratamiento farmacológico
 - 1.8.4.2. Acupuntura
 - 1.8.4.3. Otros tratamientos futuros
- 1.8.5. Manejo Integral del paciente con ambliopía
 - 1.8.5.1. Protocolo de Actuación
 - 1.8.5.2. Evaluación de Seguimiento
 - 1.8.5.3. Calendario de revisiones

Módulo 2. Bioestadística para la investigación en óptica y optometría

- 2.1. Concepto de bioestadística y epidemiología
 - 2.1.1. Definición de estadística y bioestadística
 - 2.1.2. La investigación clínica
 - 2.1.3. Niveles de evidencia
 - 2.1.4. Óptica y Optometria basadas en la evidencia
- 2.2. Un experimento de medida de agudezas visuales
 - 2.2.1. La duda de la profesora
 - 2.2.2. El error aleatorio y el error sistemático
 - 2.2.3. Responder a una pregunta desde la intuición o desde la ciencia
 - 2.2.4. La estimación puntual o por intervalo
 - 2.2.5. El intervalo de confianza: concepto y utilidad
 - 2.2.6. El contraste de hipótesis: concepto y utilidad
- 2.3. Estadística descriptiva
 - 2.3.1. Tipos de variables
 - 2.3.2. Medidas de tendencia central
 - 2.3.3. Medidas de dispersión
 - 2.3.4. Representación gráfica de los resultados de una investigación
 - 2.3.5. Uso de software
 - 2.3.6. Ejemplos aplicados a la Óptica y la Optometría

tech 20 | Estructura y contenido

2.4.	Distribuciones de probabilidad		
	2.4.1.	Concepto de probabilidad	
	2.4.2.	Concepto de distribución de probabilidad	
	2.4.3.	Distribución binomial	
	2.4.4.	Distribución normal	
	2.4.5.	Concepto de normalidad y homocedasticidad	
		2.4.5.1. Distribución normal tipificada	
	2.4.6.	Uso de software	
	2.4.7.	Ejemplos aplicados a la Óptica y la Optometría	
2.5.	Intervalos de confianza		
	2.5.1.	Estimación puntual o por intervalo	
	2.5.2.	El intervalo de confianza del 95%	
	2.5.3.	Estimación del tamaño muestral	
	2.5.4.	Estimación de una media	
	2.5.5.	Estimación de una proporción	
	2.5.6.	Intervalo de confianza para una diferencia de medias	
	2.5.7.	Intervalo de confianza para una diferencia de proporciones	
	2.5.8.	Uso de software	
	2.5.9.	Ejemplos aplicados a la Óptica y la Optometría	
2.6.	Contraste de hipótesis		
	2.6.1.	El p-valor	
	2.6.2.	Análisis crítico del p-valor	
	2.6.3.	Test de normalidad	
		2.6.3.1. Kolmoronov-Smirnov	
		2.6.3.2. Test de Shapiro-Wilk	
	2.6.4.	Test de homocedasticidad	
	2.6.5.	Uso de software	
	2.6.6.	Ejemplos aplicados a la Óptica y la Optometría	

2.7.	Test para la comparación de dos muestras y dos proporciones		
	2.7.1.	Test paramétricos y no paramétricos	
	2.7.2.	Test de la T de Student	
	2.7.3.	Test de Welch	
	2.7.4.	Test de Wilcoxon	
	2.7.5.	Test de Mann-Whitney	
	2.7.6.	Intervalo de confianza para la diferencia de medias	
	2.7.7.	Uso de software	
	2.7.8.	Ejemplos aplicados a la Óptica y la Optometría	
2.8.	Test para la comparación de más de dos muestras o proporciones		
	2.8.1.	ANOVA	
	2.8.2.	Kruskal-Wallis	
	2.8.3.	Análisis post-hoc	
	2.8.4.	Uso de software	
	2.8.5.	Ejemplos aplicados a la Óptica y la Optometría	
2.9.	Análisis de regresión		
	2.9.1.	Lineal simple	
	2.9.2.	Lineal múltiple	
	2.9.3.	Logística	
	2.9.4.	Uso de software	
	2.9.5.	Ejemplos aplicados a la Óptica y la Optometría	
2.10.	Análisis de comparación y concordancia entre métodos de medida		
	2.10.1.	Diferencia entre concordancia y correlación	
	2.10.2.	Método gráfico de Bland-Altman	

2.10.4. Ejemplos aplicados a la Óptica y la Optometría

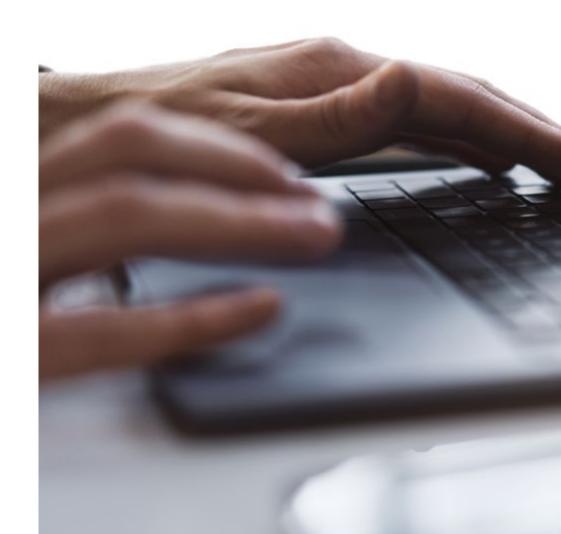
2.10.3. Uso de software

Módulo 3. Métricas y medidas de la calidad visual

- 3.1. Principios de Aberrometría
 - 3.1.1. Frente de onda
 - 3.1.1.1. Frente de onda perfecto
 - 3.1.1.2. Frente de onda aberrado
 - 3.1.2. Sistema óptico perfecto y difracción
 - 3.1.2.1. Anillos de difracción
 - 3.1.3. Clasificación de las aberraciones ópticas
 - 3.1.3.1. De alto orden
 - 3.1.3.2. De bajo orden
 - 3.1.4. Descomposición en polinomios de Zernike
 - 3.1.4.1. Coeficientes de Zernike
 - 3.1.4.2. Valores normales
- 3.2. Aberraciones ópticas clínicamente significativas
 - 3.2.1. Aberración esférica
 - 3.2.1.1. Fundamento óptico
 - 3.2.1.2. Aberración esférica positiva
 - 3.2.1.3. Aberración esférica negativa
 - 3.2.1.4. Valores normales
 - 3.2.2. Coma
 - 3.2.2.1. Valores normales
- 3.3. Métricas para la medida de la calidad visual
 - 3.3.1. Coeficientes de Zernike
 - 3.3.2. Ratio de Strehl
 - 3.3.3. CSF y MTF
 - 334 RMS
- 3.4. Aberraciones oculares externas
 - 3.4.1. Geometría corneal
 - 3.4.2. Asfericidad
 - 3.4.2.1 Coeficientes de asfericidad
 - 3.4.2.2. Aberración esférica y asfericidad
 - 3.4.3. Distribución normal de las aberraciones corneales
 - 3.4.3.1. Asfericidad en el ojo normal
 - 3.4.3.2. Coma en el ojo normal

- 3.5. Aberraciones oculares internas
 - 3.5.1 Cristalino
 - 3.5.2. Medios
- 3.6. Aberraciones en la córnea irregular
 - 3.6.1. Queratocono
 - 3.6.2. Ectasia corneal
- 3.7. Cambios aberrométricos inducidos sobre la córnea
 - 3.7.1. Ortoqueratología
 - 3.7.1.1. Caso de tratamiento centrado
 - 3.7.1.2. Caso de tratamiento descentrado
 - 3.7.2. Cambios aberrométricos inducidos por la cirugía refractiva corneal
 - 3.7.2.1. Cirugía de la miopía
 - 3.7.2.2. Cirugía de la hipermetropía
 - 3.7.2.3. Ablaciones descentradas
- 3.8. Cambios aberrométricos inducidos por la cirugía de cristalino e implante de lente intraocular
 - 3.8.1 Aberraciones de las lentes intraoculares
 - 3.8.2. Asfericidad y aberraciones en el ojo pseudofáguico
- 3.9. Instrumentos de medida de la calidad visual
 - 3.9.1. Topógrafos
 - 3.9.2. Aberrometría Hartman-Shack
- 3.10. Compensación de las aberraciones oculares
 - 3.10.1. Lentes de contacto
 - 3.10.2. Ablación láser guiada por topografía corneal

Una experiencia de capacitación única, clave y decisiva para impulsar tu desarrollo profesional"



El alumno: la prioridad de todos los programas de TECH

En la metodología de estudios de TECH el alumno es el protagonista absoluto. Las herramientas pedagógicas de cada programa han sido seleccionadas teniendo en cuenta las demandas de tiempo, disponibilidad y rigor académico que, a día de hoy, no solo exigen los estudiantes sino los puestos más competitivos del mercado.

Con el modelo educativo asincrónico de TECH, es el alumno quien elige el tiempo que destina al estudio, cómo decide establecer sus rutinas y todo ello desde la comodidad del dispositivo electrónico de su preferencia. El alumno no tendrá que asistir a clases en vivo, a las que muchas veces no podrá acudir. Las actividades de aprendizaje las realizará cuando le venga bien. Siempre podrá decidir cuándo y desde dónde estudiar.

Los planes de estudios más exhaustivos a nivel internacional

TECH se caracteriza por ofrecer los itinerarios académicos más completos del entorno universitario. Esta exhaustividad se logra a través de la creación de temarios que no solo abarcan los conocimientos esenciales, sino también las innovaciones más recientes en cada área.

Al estar en constante actualización, estos programas permiten que los estudiantes se mantengan al día con los cambios del mercado y adquieran las habilidades más valoradas por los empleadores. De esta manera, quienes finalizan sus estudios en TECH reciben una preparación integral que les proporciona una ventaja competitiva notable para avanzar en sus carreras.

Y además, podrán hacerlo desde cualquier dispositivo, pc, tableta o smartphone.

El modelo de TECH es asincrónico, de modo que te permite estudiar con tu pc, tableta o tu smartphone donde quieras, cuando quieras y durante el tiempo que quieras"

tech 26 | Metodología de estudio

Case studies o Método del caso

El método del caso ha sido el sistema de aprendizaje más utilizado por las mejores escuelas de negocios del mundo. Desarrollado en 1912 para que los estudiantes de Derecho no solo aprendiesen las leyes a base de contenidos teóricos, su función era también presentarles situaciones complejas reales. Así, podían tomar decisiones y emitir juicios de valor fundamentados sobre cómo resolverlas. En 1924 se estableció como método estándar de enseñanza en Harvard.

Con este modelo de enseñanza es el propio alumno quien va construyendo su competencia profesional a través de estrategias como el *Learning by doing* o el *Design Thinking*, utilizadas por otras instituciones de renombre como Yale o Stanford.

Este método, orientado a la acción, será aplicado a lo largo de todo el itinerario académico que el alumno emprenda junto a TECH. De ese modo se enfrentará a múltiples situaciones reales y deberá integrar conocimientos, investigar, argumentar y defender sus ideas y decisiones. Todo ello con la premisa de responder al cuestionamiento de cómo actuaría al posicionarse frente a eventos específicos de complejidad en su labor cotidiana.

Método Relearning

En TECH los case studies son potenciados con el mejor método de enseñanza 100% online: el Relearning.

Este método rompe con las técnicas tradicionales de enseñanza para poner al alumno en el centro de la ecuación, proveyéndole del mejor contenido en diferentes formatos. De esta forma, consigue repasar y reiterar los conceptos clave de cada materia y aprender a aplicarlos en un entorno real.

En esta misma línea, y de acuerdo a múltiples investigaciones científicas, la reiteración es la mejor manera de aprender. Por eso, TECH ofrece entre 8 y 16 repeticiones de cada concepto clave dentro de una misma lección, presentada de una manera diferente, con el objetivo de asegurar que el conocimiento sea completamente afianzado durante el proceso de estudio.

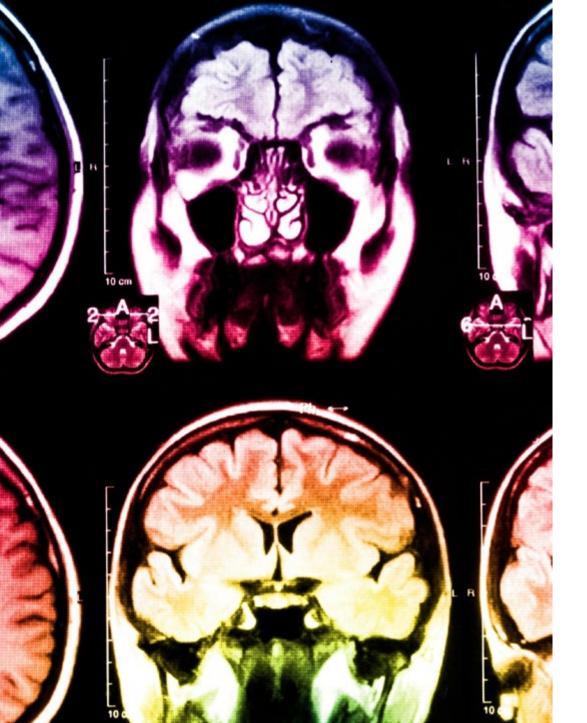
El Relearning te permitirá aprender con menos esfuerzo y más rendimiento, implicándote más en tu especialización, desarrollando el espíritu crítico, la defensa de argumentos y el contraste de opiniones: una ecuación directa al éxito.

Un Campus Virtual 100% online con los mejores recursos didácticos

Para aplicar su metodología de forma eficaz, TECH se centra en proveer a los egresados de materiales didácticos en diferentes formatos: textos, vídeos interactivos, ilustraciones y mapas de conocimiento, entre otros. Todos ellos, diseñados por profesores cualificados que centran el trabajo en combinar casos reales con la resolución de situaciones complejas mediante simulación, el estudio de contextos aplicados a cada carrera profesional y el aprendizaje basado en la reiteración, a través de audios, presentaciones, animaciones, imágenes, etc.

Y es que las últimas evidencias científicas en el ámbito de las Neurociencias apuntan a la importancia de tener en cuenta el lugar y el contexto donde se accede a los contenidos antes de iniciar un nuevo aprendizaje. Poder ajustar esas variables de una manera personalizada favorece que las personas puedan recordar y almacenar en el hipocampo los conocimientos para retenerlos a largo plazo. Se trata de un modelo denominado *Neurocognitive context-dependent e-learning* que es aplicado de manera consciente en esta titulación universitaria.

Por otro lado, también en aras de favorecer al máximo el contacto mentoralumno, se proporciona un amplio abanico de posibilidades de comunicación, tanto en tiempo real como en diferido (mensajería interna, foros de discusión, servicio de atención telefónica, email de contacto con secretaría técnica, chat y videoconferencia).


Asimismo, este completísimo Campus Virtual permitirá que el alumnado de TECH organice sus horarios de estudio de acuerdo con su disponibilidad personal o sus obligaciones laborales. De esa manera tendrá un control global de los contenidos académicos y sus herramientas didácticas, puestas en función de su acelerada actualización profesional.

La modalidad de estudios online de este programa te permitirá organizar tu tiempo y tu ritmo de aprendizaje, adaptándolo a tus horarios"

La eficacia del método se justifica con cuatro logros fundamentales:

- 1. Los alumnos que siguen este método no solo consiguen la asimilación de conceptos, sino un desarrollo de su capacidad mental, mediante ejercicios de evaluación de situaciones reales y aplicación de conocimientos.
- 2. El aprendizaje se concreta de una manera sólida en capacidades prácticas que permiten al alumno una mejor integración en el mundo real.
- 3. Se consigue una asimilación más sencilla y eficiente de las ideas y conceptos, gracias al planteamiento de situaciones que han surgido de la realidad.
- **4.** La sensación de eficiencia del esfuerzo invertido se convierte en un estímulo muy importante para el alumnado, que se traduce en un interés mayor en los aprendizajes y un incremento del tiempo dedicado a trabajar en el curso.

La metodología universitaria mejor valorada por sus alumnos

Los resultados de este innovador modelo académico son constatables en los niveles de satisfacción global de los egresados de TECH.

La valoración de los estudiantes sobre la calidad docente, calidad de los materiales, estructura del curso y sus objetivos es excelente. No en valde, la institución se convirtió en la universidad mejor valorada por sus alumnos según el índice global score, obteniendo un 4,9 de 5.

Accede a los contenidos de estudio desde cualquier dispositivo con conexión a Internet (ordenador, tablet, smartphone) gracias a que TECH está al día de la vanguardia tecnológica y pedagógica.

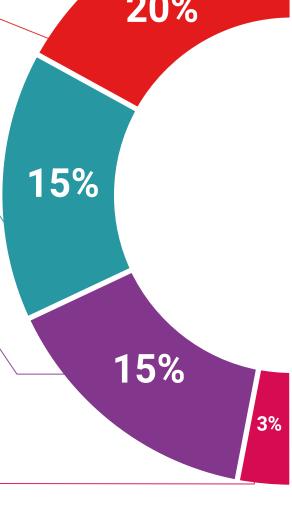
Podrás aprender con las ventajas del acceso a entornos simulados de aprendizaje y el planteamiento de aprendizaje por observación, esto es, Learning from an expert. Así, en este programa estarán disponibles los mejores materiales educativos, preparados a conciencia:

Material de estudio

Todos los contenidos didácticos son creados por los especialistas que van a impartir el curso, específicamente para él, de manera que el desarrollo didáctico sea realmente específico y concreto.

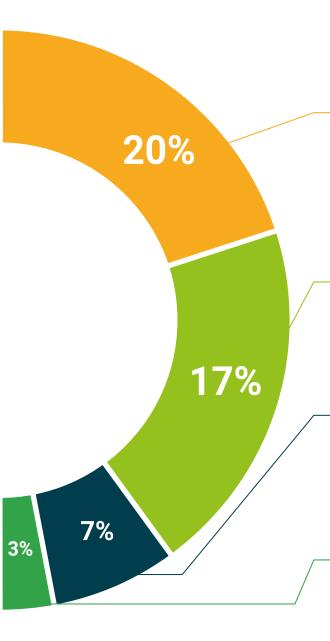
Estos contenidos son aplicados después al formato audiovisual que creará nuestra manera de trabajo online, con las técnicas más novedosas que nos permiten ofrecerte una gran calidad, en cada una de las piezas que pondremos a tu servicio.

Prácticas de habilidades y competencias


Realizarás actividades de desarrollo de competencias y habilidades específicas en cada área temática. Prácticas y dinámicas para adquirir y desarrollar las destrezas y habilidades que un especialista precisa desarrollar en el marco de la globalización que vivimos.

Resúmenes interactivos

Presentamos los contenidos de manera atractiva y dinámica en píldoras multimedia que incluyen audio, vídeos, imágenes, esquemas y mapas conceptuales con el fin de afianzar el conocimiento.


Este sistema exclusivo educativo para la presentación de contenidos multimedia fue premiado por Microsoft como "Caso de éxito en Europa".

Lecturas complementarias

Artículos recientes, documentos de consenso, guías internacionales... En nuestra biblioteca virtual tendrás acceso a todo lo que necesitas para completar tu capacitación.

Case Studies

Completarás una selección de los mejores case studies de la materia.

Casos presentados, analizados y tutorizados por los mejores especialistas del panorama internacional.

Testing & Retesting

Evaluamos y reevaluamos periódicamente tu conocimiento a lo largo del programa. Lo hacemos sobre 3 de los 4 niveles de la Pirámide de Miller.

Clases magistrales

Existe evidencia científica sobre la utilidad de la observación de terceros expertos.

El denominado *Learning from an expert* afianza el conocimiento y el recuerdo,

y genera seguridad en nuestras futuras decisiones difíciles.

Guías rápidas de actuación

TECH ofrece los contenidos más relevantes del curso en forma de fichas o guías rápidas de actuación. Una manera sintética, práctica y eficaz de ayudar al estudiante a progresar en su aprendizaje.

tech 34 | Titulación

Este programa te permitirá obtener el título de **Experto Universitario en Últimos Avances en Ambliopía Bioestadística, Métricas y Medidas de la Calidad Visual** emitido por TECH Universidad.

TECH es una Universidad española oficial, que forma parte del Espacio Europeo de Educación Superior (EEES). Con un enfoque centrado en la excelencia académica y la calidad universitaria a través de la tecnología.

Este título propio contribuye de forma relevante al desarrollo de la educación continua y actualización del profesional, garantizándole la adquisición de las competencias en su área de conocimiento y aportándole un alto valor curricular universitario a su formación. Es 100% válido en todas las Oposiciones, Carrera Profesional y Bolsas de Trabajo de cualquier Comunidad Autónoma española.

Además, el riguroso sistema de garantía de calidad de TECH asegura que cada título otorgado cumpla con los más altos estándares académicos, brindándole al egresado la confianza y la credibilidad que necesita para destacarse en su carrera profesional.

Título: Experto Universitario en Últimos Avances en Ambliopía Bioestadística, Métricas y Medidas de la Calidad Visual

Modalidad: **online**Duración: **3 meses**

Acreditación: 18 ECTS

salud confianza personas
salud confianza personas
educación información tutores
garantía acreditación enseñanza
instituciones tecnología aprendiza

Experto Universitario

Últimos Avances en Ambliopía Bioestadística, Métricas y Medidas de la Calidad Visual

- » Modalidad: online
- » Duración: 3 meses
- » Titulación: TECH Universidad
- » Acreditación: 18 ECTS
- » Horario: a tu ritmo
- » Exámenes: online

