



## Mestrado

## Oncologia de Precisão: Genómica e Big Data

» Modalidade: online

» Duração: 12 meses

» Certificação: TECH Global University

» Acreditação: 60 ECTS

» Horário: no seu próprio ritmo

» Exames: online

Acesso ao site: www.techtitute.com/pt/medicina/mestrado/mestrado-oncologia-precisao-genomica-big-data

# Índice

02 Apresentação Objetivos pág. 4 pág. 8 05 03 Competências Direção do curso Estrutura e conteúdo pág. 14 pág. 18 pág. 26 06 Metodologia Certificação pág. 38 pág. 46





## tech 06 | Apresentação

Um objetivo fundamental do programa é aproximar os estudantes e divulgar os conhecimentos informáticos que já são aplicados noutras áreas do conhecimento, mas que têm uma implementação reduzida no mundo médico. Embora ainda falte algum caminho a percorrer antes da medicina genómica se tornar uma realidade, o enorme volume de informação clínica atualmente disponível precisa de ser interpretado com precisão e associado aos dados biológicos gerados pela análise bioinformática.

Embora este seja um desafio difícil, isto permitirá que os efeitos da variação genética e potenciais terapias sejam explorados rapidamente, de forma barata e com maior precisão do que é possível atualmente. Os seres humanos não possuem a capacidade natural de perceber e interpretar sequências genómicas, nem de compreender todos os mecanismos, caminhos e interações que ocorrem dentro de uma célula viva ou de tomar decisões médicas com dezenas ou centenas de variáveis. Para avançar, é necessário um sistema com capacidade analítica sobre-humana que simplifique o ambiente de trabalho e que mostre as relações e proximidades entre as variáveis.

Em genómica e biologia, sabe-se que é melhor gastar os recursos em novas técnicas computacionais do que na recolha de dados puros, algo que, provavelmente, também se aplica à medicina e, é claro, à oncologia.

Estão disponíveis milhões de dados ou publicações, mas quando são analisados por médicos ou biólogos, as conclusões são totalmente subjetivas em relação às publicações ou dados disponíveis que são arbitrariamente priorizados, resultando num conhecimento parcial e, naturalmente, cada vez mais distante do conhecimento genético e biológico disponível e apoiado pelo cálculo. Por isso, um passo gigantesco na implementação da medicina de precisão é reduzir esta distância, através da análise em massa da informação médica e farmacológica disponível.

Este **Mestrado em Oncologia de Precisão: Genómica e Big Data** conta com o conteúdo científico mais completo e atualizado do mercado. As suas principais características são:

- O desenvolvimento de mais de 75 casos práticos apresentados por especialistas em Oncologia de Precisão: Genómica e Big Data os seus conteúdos gráficos, esquemáticos e eminentemente práticos, concebidos para fornecer informação científica e de assistência sobre as disciplinas essenciais para a prática profissional
- As novidades em Oncologia de Precisão: Genómica e Big Data
- Exercícios práticos onde o processo de autoavaliação pode ser levado a cabo a fim de melhorar a aprendizagem
- Um sistema de aprendizagem interativo baseado em algoritmos para aa tomada de decisões sobre as situações clínicas propostas
- Com especial ênfase na medicina baseada em evidências e metodologias de investigação em Oncologia de Precisão: Genómica e Big Data
- Lições teóricas, questões ao especialista, fóruns de discussão sobre questões controversas e documentos individuais de reflexão
- Disponibilidade de acesso aos conteúdos a partir de qualquer dispositivo fixo ou portátil com ligação à *internet*



Atualize os seus conhecimentos através do programa em Oncologia de Precisão: Genómica e Big Data"



Este Mestrado poderá ser o melhor investimento que fará na seleção de um curso de atualização por duas razões: além de atualizar os seus conhecimentos em Oncologia de Precisão: Genómica e Big Data, obterá um certificado da TECH Global University"

O corpo docente deste curso é formado por profissionais da área da Oncologia de Precisão, que transferem toda a experiência do seu trabalho para esta capacitação, além de especialistas reconhecidos de sociedades científicas de referência e universidades de prestigio.

O seu conteúdo multimídia, desenvolvido com a mais recente tecnologia educacional, oferece ao profissional uma aprendizagem situada e contextual, ou seja, um ambiente simulado que proporcionará uma aprendizagem imersiva e programada para capacitar em situações reais.

A conceção deste programa centra-se na Aprendizagem Baseada em Problemas, pelo qual o médico deverá resolver as diferentes situações da prática profissional que surgirem ao longo do curso. Para isso, o médico contará com a ajuda de um inovador sistema de vídeo interativo, realizado por especialistas reconhecidos na área da Oncologia de Precisão e com uma vasta experiência de ensino.

O Mestrado permite-lhe praticar em ambientes simulados, que lhe proporcionam uma aprendizagem imersiva programada para a prática em situações reais.

Inclui casos clínicos visando aproximar ao máximo o desenvolvimento do programa à realidade do atendimento médico.







## tech 10 | Objetivos



## Objetivo geral

• Ser capaz de interpretar com precisão o volume de informações clínicas atualmente disponíveis e associadas aos dados biológicos gerados após a análise bioinformática.



Aproveite a oportunidade para ficar a par das últimas novidades sobre Oncologia de Precisão: Genómica e Big Data"





#### Objetivos específicos

#### Módulo 1. Biologia molecular

- Atualizar os conhecimentos sobre biologia molecular do cancro, em relação a diferentes conceitos como a heterogeneidade genética ou a reprogramação do microambiente
- Proporcionar e expandir o conhecimento sobre imunoterapia como exemplo de um claro avanço científico na investigação translacional
- Aprender sobre uma nova abordagem para classificar os tumores mais frequentes com base nos dados genómicos disponíveis em The Cancer Genome Atlas (TCGA) Research Network

#### Módulo 2. Oncologia Genómica ou de Precisão

- Discutir a mudança do panorama atual com a introdução dos dados genómicos no conhecimento biológico dos tumores.
- Explicar como a classificação genómica fornece informações independentes para prever resultados clínicos e proporcionar a base biológica para uma era de tratamentos personalizados contra o cancro
- Conhecer as novas tecnologias genómicas atualmente utilizadas no sequenciamento do ADN
  e RNA, baseadas na sequência do genoma humano e tornadas possíveis desde a conclusão
  do Projeto do Genoma Humano, o que significou uma expansão sem precedentes da
  capacidade da genética molecular na investigação do diagnóstico genético e clínico
- Discutir o processo bioinformático seguido pela interpretação e aplicação dos dados biológicos
- Analisar e interpretar a informação biológica a nível molecular, celular e genómico

#### Módulo 3. Mudanças na prática clínica atual e novas aplicações com a Oncologia Genómica

- Discutir e interpretar a carga mutacional tumoral (TMB) como um biomarcador genómico que tem um impacto significativo no cenário da imunoterapia contra o cancro
- Saber como a biopsia líquida do ADN em circulação nos permite compreender especificamente que tipo de mudanças moleculares estão a acontecer no tumor em tempo real
- Descrever o paradigma atual para incorporar dados genómicos na prática clínica atual

#### Módulo 4. Utilização de Unix e Linux em bioinformática

- Conheça o sistema operativo Linux, o qual é, atualmente, fundamental no mundo científico tanto para a interpretação de dados biológicos do sequenciamento quanto para a mineração de textos médicos quando se trata de dados em grande escala
- Proporcionar as bases de acesso a um servidor Linux e como encontrar e instalar os pacotes para a instalação do *software* no local
- Descrever os comandos básicos do Linux para: criar, renomear, mover e apagar diretórios; enumerar, ler, criar, editar, copiar e apagar ficheiros
- Compreender como funcionam as permissões e como decifrar com facilidade as permissões mais crípticas do Linux



## Módulo 5. Análise de dados em projetos de *Big Data*: linguagem de programação R

- Discutir como a adoção do sequenciamento de próxima geração (NGS) num contexto de diagnóstico, levanta inúmeras questões relativas à identificação e ao relatório de variantes em genes secundários à patologia do paciente
- Introduzir-se na linguagem de programação R, que tem as vantagens de ser uma linguagem de programação de código aberto e que dispõe de múltiplos pacotes de análise estatística
- Aprender conceitos básicos de programação R como tipos de dados, aritmética de vetores e indexação.
- Realização de operações em R, incluindo classificação, criação ou importação de dados
- Saber como a solução de problemas começa com uma decomposição modular e depois outras decomposições de cada módulo em um processo chamado de refinamento sucessivo.
- Aprender os conceitos básicos da inferência estatística para entender e calcular os valores p e intervalos de confiança enquanto analisa os dados com R
- Fornecer exemplos de programação R de uma forma que ajude a fazer a conexão entre os conceitos e a implementação.

#### Módulo 6. Ambiente gráfico em R

- Usar técnicas de visualização para explorar novos conjuntos de dados e determinar a abordagem mais apropriada
- Aprender a visualizar os dados para extrair informações, entendê-los melhor e tomar decisões mais efetivas
- Ensinar como obter dados que à primeira vista têm pouco significado e apresentar visualmente esses dados de uma maneira que faça sentido para análise
- Saber utilizar as três principais fontes gráficas em R: base, látice e ggplot2
- Saber em que se baseia cada pacote gráfico para definir qual utilizar e as vantagens oferecidas por um ou por outro

#### Módulo 7. Análise estatística em R

- Descrever as técnicas estatísticas mais apropriadas como uma alternativa, quando os dados não estiverem de acordo com as suposições exigidas pela abordagem padrão
- Aprender os conceitos básicos para realizar pesquisas reproduzíveis usando scripts de R para analisar dados

#### Módulo 8. Machine learning para a análise de Big Data

- Processar e analisar de forma rápida e automática grandes volumes de dados complexos estruturados, semi-estruturados e não estruturados em Big Data
- Entender o que é a aprendizagem automática e utilizar algumas das técnicas de classificação de dados (árvore de decisão, k-NN, máquinas de vetores de suporte, redes neurais, etc.)
- Saber dividir os dados num conjunto de teste e um conjunto de formação e descobrir os conceitos de viés e variação

#### Módulo 9. Extração de dados aplicada à genómica

- Saber como a extração de dados permite encontrar padrões e regularidades em bases de dados
- Aprender a aplicar os princípios de extração de dados à dissecação de grandes conjuntos de dados complexos (Big Data), incluindo aqueles em bases de dados muito grandes ou em páginas da web
- Explorar, analisar e aproveitar os dados, transformando-os em informações úteis e valiosas para a prática clínica



#### Módulo 10. Técnicas de extração de dados genómicos

- Entender como a maioria dos dados científicos aparece em documentos como páginas da web e arquivos PDF, que são difíceis de processar para análise posterior, mas que podem ser utilizados através de técnicas de scraping
- Aceder a muitas fontes de dados através da web para a implementação da medicina de precisão, permitindo a extração massiva de informação

#### Módulo 11. Novas técnicas na era genómica

- Colocar em prática os conhecimentos adquiridos na interpretação de um estudo genómico em vários casos de cancro, extraindo informações úteis para ajudar na tomada de decisões
- Uso de vários algoritmos utilizando a linguagem R para a extração de conhecimentos dos bancos de dados Pubmed, DGIdb e Clinical Trials, com base na busca de informações genéticas em determinados tumores

#### Módulo 12. Aplicações da bioinformática na genómica oncológica

- Compreender a função dos genes com pouca informação clínica baseada na proximidade ontológica
- Descobrir genes envolvidos em uma doença a partir de uma pesquisa massiva no Pubmed e da representação gráfica do nível de evidência científica



## tech 16 | Competências



### Competências gerais

- Possuir conhecimentos que proporcionem uma base ou oportunidade de ser original no desenvolvimento e/ou aplicação de ideias, muitas vezes no seu contexto de investigação
- Aplicar os conhecimentos adquiridos e as capacidades de resolução de problemas em ambientes novos ou desconhecidos dentro de contextos mais amplos (ou multidisciplinares) relacionados com o seu campo de estudo
- Integrar conhecimentos e lidar com as complexidades de fazer julgamentos com base em informações incompletas ou limitadas, incluindo reflexões sobre as responsabilidades sociais e éticas ligadas à aplicação dos seus conhecimentos e juízos
- Comunicar as suas conclusões e os últimos conhecimentos e fundamentos por detrás das mesmas a audiências especializadas e não especializadas de uma forma clara e inequívoca
- Adquirir as capacidades de aprendizagem que lhes permitirão continuar a estudar de forma autodirigida ou autónoma



Este programa de atualização lhe trará segurança no desempenho da prática clínica, além de contribuir para o seu crescimento pessoal e profissional"

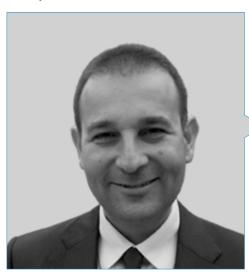








## Competências específicas


- Criar uma visão global e atualizada dos tópicos apresentados que permita ao estudante adquirir conhecimentos úteis e, ao mesmo tempo, gerar interesse em expandir a informação e descobrir a sua aplicação na sua prática diária
- Compreender o processo de descoberta de conhecimento, incluindo a seleção de dados, a limpeza, a codificação, o uso de diferentes técnicas estatísticas e de aprendizagem de máquinas, e a visualização das estruturas geradas
- Compreender como avaliar o desempenho de algoritmos de aprendizagem supervisionados e não supervisionados
- Aprender como as funções geralmente devolvem um único valor à unidade do programa, ao contrário dos procedimentos que podem retornar zero, um ou vários valores
- Conhecer os bancos de dados biológicos que surgiram em resposta à enorme quantidade de dados gerados pelas tecnologias de sequenciamento de ADN Saber que os dados armazenados em bancos de dados biológicos são organizados para uma análise otimizada e que se caracterizam por serem complexos, heterogéneos, dinâmicos e, no entanto, inconsistentes devido à falta de padrões ontológicos





## tech 20 | Direção do curso

#### Direção



#### Dr. Mauro Javier Oruezábal Moreno

- Chefe do Serviço de Oncologia Médica do Hospital Universitário Rey Juan Carlos
- Research Visitors at University of Southamptor
- Mestrado em Bioinformática e Bioestatística UOC-UB
- Mestrado em Análise Bioinformática pela Universidade Pablo de Olavide
- Doutoramento em Medicina pela Universidade Complutense de Madrid, qualificação com distinção Cum laude
- Membro da Sociedade Espanhola de Oncologia Médica e do Grupo GECP (Grupo Espanhol do Cancro do Pulmão)
- Especialista (MIR) em Medicina Oncológica, Hospital Universitário San Carlos de Madric
- Licenciatura em Medicina e Cirurgia pela Universidade de Navarra



#### Sr. Martin Krallinger

- Chefe da Unidade de Extração de Texto do Centro Espanhol de Investigação do Cancro (CNIO)
- Concluiu o processo de seleção para o eleger o cargo de Chefe da Unidade de Extração de Texto no Centro de Supercomputação de Barcelona (BSC)
- Especialista na área de Extração de Textos Biomédicos e Clínicos e Tecnologias Linguísticas
- Especialista em Aplicações Específicas de Extração de Textos direcionados à Segurança de Medicamentos, Biologia de Sistemas Moleculares e Oncologia
- Participou na implementação e avaliação de componentes biomédicos de reconhecimento de entidades nomeadas, sistemas de extração de informação, indexação semântica de grandes conjuntos de dados de tipos de documentos heterogéneos
- Participou do desenvolvimento do primeiro meta-servidor de anotação de texto biomédico (meta-servidor biocreativo BCMS) e do meta-servidor BeCalm
- Organizador dos desafios de avaliação da comunidade BioCreative para a avaliação de terramentas de processo de linguagem natural
  estando envolvido na organização de tarefas de mineração de textos biomédicos em vários desafios da comunidade internacional,
  incluindo IberEval e CLEF

## tech 22 | Direção do curso

#### **Professores**

#### Sr. Ricardo Alberich Martí

- Professor Titular Universitário de Ciências da Matemática e de Informática (Diretor)
- Ciência da Computação e Inteligência Artificial Universitat de les Illes Balears

#### Sra. María Jesús Álvarez Cubero

• Professora no Departamento de Bioquímica III e Imunologia na Universidade de Granada

#### Dr. Eduardo Andrés León

- Chefe da Unidade de Bioinformática do Instituto de Parasitologia e Biomedicina "Lopez-Neyra" - CSIC
- Licenciatura em Biologia e Biologia Molecular pela Universidade Autónoma de Madrid

#### Sra. Aurora Astudillo González

- Departamento de Anatomia Patológica
- Professora Titular na Universidade de Oviedo vinculada ao Hospital Universitário Central das Astúrias Diretora científica do Biobank do Principado das Astúrias

#### Sra. María del Rosario Burón Fernández

• Serviço de Medicina Interna, Hospital Universitário Infanta Cristina

#### Sr. Alberto Carmona Bayonas

• Serviço de Oncologia Médica, Hospital Geral Universitário Morales Meseguer

#### Doutora Eva M. Ciruelos

- Doutoramento em Serviço de Oncologia Médica, Hospital Universitário 12 de Octubre, Madrid
- HM CIOCC, Madrid

#### Sr. Enrique de Andrés Galiana

Departamento de Matemática, Universidade de Oviedo

#### Sr. Juan de la Haba Rodríguez

• Serviço de Oncologia Médica, Universidade de Córdoba, Hospital Universitário Reina Sofia

#### Sr. Juan Luis Fernández Martínez

• Diretor do Grupo de Problemas Inversos, Otimização e Aprendizagem Automática, Departamento de Matemática, Universidade de Oviedo

#### Sra. Angelica Figueroa

- Instituto de Investigação Biomédica da Corunha (INIBIC)
- Research Group Leader, Epithelial Plasticity and Metástasis

#### Sra. Zaida García Casado

· Laboratório de Biologia Molecular, Instituto Valenciano de Oncologia

#### Dr. Jesús García Foncillas

• Serviço de Medicina Oncológica, Fundación Jiménez Diaz

#### Sr. Juan Gabriel Gomila Salas

 Professor Universitário de Ciências da Matemática e Ciências da Computação e Inteligência Artificial, Universitat de les Illes Balears

#### Sr. José González Gomáriz

• IdiSNA (Instituto de Investigación Sanitaria de Navarra) Investigador em Formação

#### Sr. Sergio Hoyos Simón

• Serviço de Oncologia Médica, Hospital Universitário Rey Juan Carlos



#### Sr. Ander Intxaurrondo

- Life Sciences-Text Mining
- Barcelona Supercomputing Center

#### Sra. Paula Jiménez-Fonseca

 Coordenadora da Seção de Tumores Digestivos e Endócrinos de Medicina Oncológica Hospital Universitário Central de Astúrias

#### Sra. Yolanda Lage Alfranca

• Serviço de Oncologia Médica, Fundación Jiménez Diaz

#### Sr. José Antonio López Guerrero

• Serviço de Oncologia Médica, Instituto Valenciano de Oncologia

#### Sr. Rafael López López

- Chefe de Departamento de Oncologia Médica
- Complexo Hospitalar Universitário de Santiago de Compostela
- Grupo de Oncologia Médica Translacional, Instituto de Investigação Sanitária

#### **Doutor Luis Javier Martínez González**

- Doutoramento em Unidade Genómica | Genomic Unit
- Centro Pfizer, Universidade de Granada, Comité Andaluz de Genómica e Investigação Oncológica
- Pfizer, Universidade de Granada, Centro de Investigação Genómica e Oncológica do Comité Andaluz de Andaluzia (GENYO)

#### Sra. Olaia Martínez Iglesias

- Instituto de Investigação Biomédica da Corunha (INIBIC)
- Research Group Leader, Epithelial Plasticity and Metástasis

## tech 24 | Direção do curso

#### Sr. Jesús María Paramio Gonzalez

- Unidade de Oncologia Molecular do CIEMAT
- Instituto de Invesitgação do Hospital 12 de Octubre de Madrid

#### Sr. Tomás Pascual Martínez

- Hospital Clínico de Barcelona
- Translational Genomics and Targeted Therapeutics in Solid Tumours Lab (IDIBAPS)

#### Sra. Ana María Pérez Gutiérrez

- Estudante de Mestrado em Bioinformática Clínica da Fundación Progreso y Salud, FPS (Hospital Virgen del Rocío, Sevilha)
- Estudante de doutoramento (Phd) em Biomedicina, UGR

#### **Doutora Teresa Ribalta**

- Doutoramento em Chefe do Serviço de Patologia Anatómica, Hospital Sant Joan de Déu, Biobank
- Consultora, Anatomic Pathology Service, Hospital Clínic
- Professora de Patologia, Universitat de Barcelona

#### Sr. Javier Sánchez Rubio

• Serviço de Farmácia, Hospital Universitário de Getafe

#### Sr. José Ángel Olivas Varela

 Vice-Diretor do Departamento de Tecnologias e Sistemas de Informação, Escola Superior de Informática





## Direção do curso | 25 **tech**

#### Sr. Arnau Mir Torres

• Professor titular de Ciências da Matemática e Informática, Ciências da Computação e Inteligência Artificial, Universitat de les Illes Balears

#### Sr. Felipe Soares

- Engenheiro de Inteligência Artificial e Machine Learning Engineer na Apple
- Engenheiro de Investigação de Extração de Texto no Centro Nacional de Supercomputação em Barcelona

#### Sr. Daniel Rueda Fernández

• Unidade de Invesitgação do Hospital Universitário 12 de Octubre de Madrid

#### Sr. Victor Segura Ruiz

• CIMA Universidade de Navarra (Plataforma de Bioinformática), Diretor da Unidade

#### Sr. Miguel Vázquez García

- Genome Informatics Group Leader
- Barcelona Supercomputing Center

#### Sr. Alejandro Velastegui Ordoñez

• Serviço de Oncologia Médica, Hospit

05

# Estrutura e conteúdo

A estrutura do conteúdo foi desenvolvida por uma equipa de profissionais dos melhores hospitais e universidades do país, conscientes da importância de uma capacitação atualizada para poder intervir no diagnóstico e tratamento da patologia oncológica e comprometidos com a qualidade do ensino através das novas tecnologias educacionais.

```
"in")):b
                        expanded", !0),
                   ngth&&h?g.one("bsT
               ab.Constructor=c,a.fn.t
           ..bs.tab.data-api",'[data-t
       return this.each(function(){va
      c=function(b,d){this.options=a.
meckPosition, this)).on("click.bs.affix.
 ffset=null,this.checkPosition()};c.VER
        e=this.$target.scrollTon()
```

```
ggle="tab"]').att
                                            Estrutura e conteúdo | 27 tech
removeClass("fade')
e&&e()}var g=d.find(">
ransitionEnd",f).emulateTr
tab.noConflict=function
coggle="tab"]',e)
r d=a(this),e=d
extend({},
                               Este Mestrado em Oncologia de Precisão: Genómica
data-ap
                               e Big Data, conta com o programa científico mais
                               completo e atualizado do mercado"
```

## tech 28 | Estrutura e conteúdo

#### Módulo 1. Biologia molecular

- 1.1. Mecanismos moleculares do cancro
  - 1.1.1. Ciclo celular
  - 1.1.2. Destacamento de células tumorais
- 1.2. Reprogramação do microambiente tumoral
  - 1.2.1. O microambiente tumoral: uma visão geral
  - 1.2.2. O TME como um fator prognóstico no cancro de pulmão
  - 1.2.3. O TME na progressão e metástase do cancro de pulmão
    - 1.2.3.1. Fibroblastos associados ao cancro (CAF)
    - 1.2.3.2. Células endoteliais
    - 1.2.3.3. Hipoxia no cancro de pulmão
    - 1.2.3.4. Inflamação
    - 1.2.3.5. Células imunológicas
  - 1.2.4. Contribuição do TME na resistência terapêutica
    - 1.2.4.1. Contribuição do TME na resistência à radioterapia
  - 1.2.5. O TME como um alvo terapêutico no cancro de pulmão
    - 1.2.5.1. Direções futuras
- 1.3. Imunologia tumoral: a base da imunoterapia oncológica
  - 1.3.1. Introdução ao sistema imunológico
  - 1.3.2. Imunologia tumoral
    - 1.3.2.1. Antígenos associados aos tumores
    - 1.3.2.2. Identificação de antígenos associados aos tumores
    - 1.3.2.3. Tipos de antígenos associados aos tumores
  - 1.3.3. Fundamentos da imunoterapia contra o cancro
    - 1.3.3.1. Introdução às abordagens imunoterapêuticas
    - 1.3.3.2. Anticorpos monoclonais na terapia do cancro
      - 1.3.3.2.1. Produção de anticorpos monoclonais
      - 1.3.3.2.2. Tipos de anticorpos terapêuticos
      - 1.3.3.2.3. Mecanismos de ação dos anticorpos
      - 1.3.3.2.4. Anticorpos modificados

- 1.3.4. Moduladores imunes não específicos
  - 1.3.4.1. Bacilo de Calmette Guérin
  - 1.3.4.2. Interferon-a
  - 1.3.4.3. Interleucina-2
  - 1.3.4.4. Imiquimod
- .3.5. Outras abordagens da imunoterapia
  - 1.3.5.1. Vacinas contra células dendríticas
  - 1.3.5.2. Sipuleucel-T
  - 1.3.5.3. Bloqueio CTLA-4
  - 1.3.5.4. Terapia de células T adotivas
    - 1.3.5.4.1. Terapia celular adotiva com clones de células T
    - 1.3.5.4.2. Terapia celular adotiva com linfócitos infiltrantes tumorais
- 1.4. Mecanismos moleculares envolvidos no processo de invasão e metástase

#### Módulo 2. Oncologia Genómica ou de Precisão

- 2.1. Utilidade do perfil de expressão génica no cancro
- 2.2. Subtipos moleculares do cancro de mama
- 2.3. Plataformas genómicas de caracter prognóstico-preditivas no cancro da mama
- 2.4. Alvos terapêuticos no cancro do pulmão com células pequenas
  - 2.4.1. Introdução
  - 2.4.2. Técnicas de deteção molecular
  - 2.4.3. Mutação EGFR
  - 2.4.4. Translocação ALK
  - 2.4.5. Translocação ROS
  - 2.4.6. Mutação BRAF
  - 2.4.7. Rearranjos dos NRTK
  - 2.4.8. Mutação HER2
  - 2.4.9. Mutação/Amplificação de MET
  - 2.4.10. Rearranjos do RET
  - 2.4.11. Outros alvos moleculares

## Estrutura e conteúdo | 29 tech

- 2.5. Classificação molecular do cancro do cólon
- 2.6. Estudos moleculares no cancro gástrico
  - 2.6.1. Tratamento do cancro gástrico avançado
  - 2.6.2. Sobre-expressão do HER2 em cancro gástrico avançado
  - 2.6.3. Determinação e interpretação da Sobre-expressão do HER2 no cancro gástrico avançado
  - 2.6.4. Medicamentos com atividade direcionada ao HER2
  - 2.6.5. Trastuzumab de primeira linha no cancro gástrico avançado2.6.5.1. Tratamento do cancro gástrico avançado HER2+ após a progressão para regimes baseados em trastuzumab
  - 2.6.6. Atividade de outros medicamentos anti-HER2 no cancro gástrico avançado
- 2.7. GIST como modelo para a pesquisa translacional: 15 anos de experiência
  - 2.7.1. Introdução
  - 2.7.2. Mutações do KIT e PDGFRA como principais promotores no GIST
  - 2.7.3. Genótipo em GIST: valor prognóstico e preditivo
  - 2.7.4. Genótipo em GIST e resistência imatinib
  - 2.7.5. Conclusões
- 2.8. Biomarcadores moleculares e genómicos no melanoma
- 2.9. Classificação molecular dos tumores cerebrais
- 2.10. Biomarcadores moleculares e genómicos no melanoma
- 2.11. Imunoterapia e biomarcadores
  - 2.11.1. O cenário das terapias imunológicas no tratamento do cancro e a necessidade de definir o perfil mutacional de um tumor
  - 2.11.2. Biomarcadores de inibidor de ponto de controle: PD-L1 e mais
    - 2.11.2.1. O papel da PD-L1 na regulamentação imunológica
    - 2.11.2.2. Dados de ensajos clínicos e biomarcador PD-L1
    - 2.11.2.3. Os limites e ensaios para a expressão PD-L1: um quadro complexo
    - 2.11.2.4. Biomarcadores emergentes

2.11.2.4.1. Carga Mutacional Tumoral (TMB)

2.11.2.4.1.1. Quantificação da carga mutacional tumoral

2.11.2.4.1.2. Evidência da carga mutacional tumoral

2.11.2.4.1.3. A carga tumoral como um biomarcador preditivo

2.11.2.4.1.4. A carga tumoral como um biomarcador prognóstico

2.11.2.4.1.5. O futuro da carga mutacional

2.11.2.4.2. Instabilidade dos microssatélites

2.11.2.4.3. Análise de infiltração imune

2.11.2.4.4. Marcadores de toxicidade

- 2.11.3. Desenvolvimento de medicamentos de ponto de controlo imunológico no cancro
- 2.11.4. Medicamentos disponíveis

## **Módulo 3.** Mudanças na prática clínica atual e novas aplicações com a genómica oncológica

- 3.1. Biópsias líquidas: moda ou futuro?
  - 3.1.1. Introdução
  - 3.1.2. Células tumorais circulantes
  - 3.1.3. ctDNA
  - 3.1.4. Utilidades clínicas
  - 3.1.5. Limitações do ctDNA
  - 3.1.6. Conclusões e futuro
- 3.2. O papel do biobanco na investigação clínica
  - 3.2.1. Introdução
  - 3.2.2. Vale a pena o esforco para montar um Biobanco?
  - 3.2.3. Como começar a montar um Biobanco?
  - 3.2.4. Consentimento informado para o Biobanco
  - 3.2.5. Recolha de amostras para o Biobanco
  - 3.2.6. Controlo da qualidade
  - 3.2.7. Acesso às amostras

## tech 30 | Estrutura e conteúdo

- 3.3. Ensaios clínicos: novos conceitos baseados na medicina de precisão
  - 3.3.1. O que são ensaios clínicos? Como se diferenciam de outros tipos de pesquisa?
    - 3.3.1.1. Tipos de ensaios clínicos
      - 3.3.1.1.1. De acordo com os seus objetivos
      - 3.3.1.1.2. De acordo com o número de centros participantes
      - 3.3.1.1.3. De acordo com a metodologia
      - 3.3.1.1.4. De acordo com o grau de mascaramento
  - 3.3.2. Resultados de ensaios clínicos em oncologia torácica
    - 3.3.2.1. Relacionado ao tempo de sobrevivência
    - 3.3.2.2. Resultados relacionados a tumores
    - 3.3.2.3. Resultados relatados pelos pacientes
  - 3.3.3. Ensaios clínicos na era da medicina de precisão
    - 3.3.3.1. Medicina de precisão
    - 3.3.3.2. Terminologia relacionada ao desenho de ensaios na era da medicina de precisão
- 3.4. Incorporação de marcadores acionáveis na prática clínica
- 3.5. Aplicação da genómica na prática clínica por tipo de tumor
- 3.6. Sistemas de apoio à tomada de decisão em oncologia baseados em Inteligência Artificial

#### Módulo 4. Uso de Unix e Linux na bioinformática

- 4.1. Introdução ao sistema operacional Linux
  - 4.1.1. O que é um sistema operacional?
  - 4.1.2. Os benefícios do uso do Linux
- 4.2. Ambiente e instalação do Linux
  - 4.2.1. Distribuições do Linux?
  - 4.2.2. Instalação do Linux usando um dispositivo USB
  - 4.2.3. Instalação do Linux usando CD-ROM
  - 4.2.4. Instalação do Linux usando uma máquina virtual
- 4.3. A linha de comando
  - 4.3.1. Introdução
  - 4.3.2. O que é uma linha de comando?
  - 433 Trabalhando no terminal
  - 4.3.4. O Shell, Bash

- 4.4. Navegação básica
  - 4.4.1. Introdução
  - 4.4.2. Como saber a localização atual?
  - 4.4.3 Rotas absolutas e relativas
  - 4 4 4 Como movermo-nos no sistema?
- 1.5. Manipulação de arquivos
  - 4.5.1. Introdução
  - 4.5.2. Como construímos um diretório?
  - 4.5.3. Como mudar para um diretório?
  - 4.5.4. Como criar um arquivo vazio?
  - 4.5.5. Copiar um arquivo e diretório
  - 4.5.6. Eliminar um arquivo e diretório
- 4.6. Editor de texto Vi
  - 4.6.1. Introdução
  - 4.6.2. Como salvar e sair?
  - 4.6.3. Como navegar por um arquivo no editor de texto Vi?
  - 4.6.4. Apagando o conteúdo
  - 4.6.5. O comando desfazer
- 4.7. Wildcards
  - 4.7.1. Introdução
  - 4.7.2. O que são wildcards?
  - 4.7.3. Exemplos de wildcards
- 4.8. Autorizações
  - 4.8.1. Introdução
  - 4.8.2. Como visualizar as permissões de um arquivo?
  - 4.8.3. Como alterar as permissões?
  - 4.8.4. Definições de permissões
  - 4.8.5. Permissões para diretórios
  - 4.8.6. O usuário "root"



|         | H. | C8HIIII | - i40 |
|---------|----|---------|-------|
| 1. 8C3H |    | H.      |       |

| 4.9. | Filtros   |
|------|-----------|
| 1    | 1 1111 00 |

- 4.9.1. Introdução
- 4.9.2. Head
- 4.9.3. Tail
- 4.9.4. Sort
- 4.9.5. nl
- 4.9.6. wc
- 4.9.7. Cut
- 4.9.8. Sed
- 4.9.9. Unig
- 4.9.10. Tac
- 4.9.11. Outros filtros

#### 4.10. Grep e expressões regulares

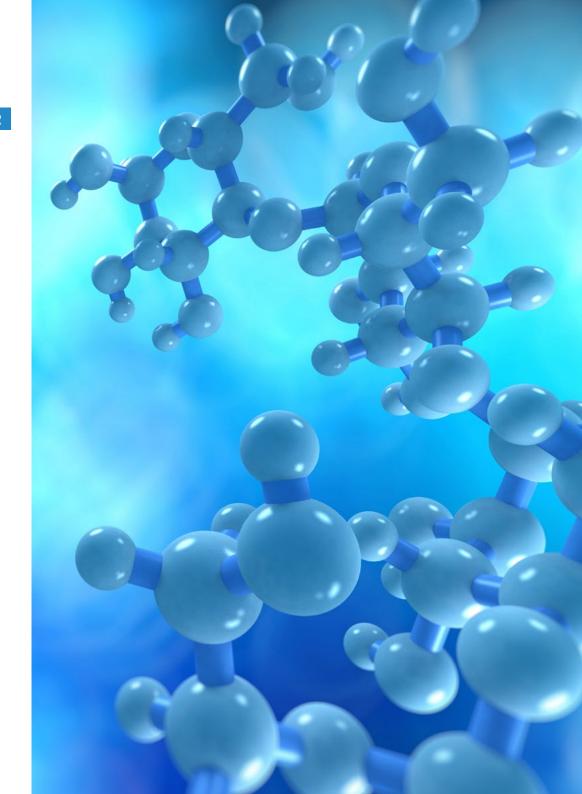
- 4.10.1. Introdução
- 4.10.2. eGrep
- 4.10.3. Expressões regulares
- 4.10.4. Alguns exemplos

#### 4.11. Canalização e redirecionamento

- 4.11.1. Introdução
- 4.11.2. Redirecionamento para um arquivo
- 4.11.3. Salvar em um arquivo
- 4.11.4. Redirecionamento a partir de um arquivo
- 4.11.5. Redirecionamento STDERR
- 4.11.6. Canalização (Pipelines)

#### 4.12. Manejo de processos

- 4.12.1. Introdução
- 4.12.2. Processos ativos
- 4.12.3. Encerrar um processo corrompido
- 4.12.4. Trabalho de primeiro e segundo plano


#### 4.13. Bash

- 4.13.1. Introdução
- 4.13.2. Pontos importantes
- 4.13.3. Porque é que ele"./ "?
- 4.13.4. Variáveis
- 4.13.5. As declarações

## tech 32 | Estrutura e conteúdo

#### **Módulo 5.** Análise de dados em projetos de *Big Data*: linguagem de programação R

- 5.1. Introdução à linguagem de programação R
  - 5.1.1. O que é R?
  - 5.1.2. Instalação de R e da interface gráfica de R
  - 5.1.3. Pacotes
    - 5.1.3.1. Pacotes standard
    - 5.1.3.2. Pacotes contribuídos e CRAN
- 5.2. Características básicas do R
  - 5.2.1. O ambiente R
  - 5.2.2. Software e documentação relacionados
  - 5.2.3. R e estatísticas
  - 5.2.4. R e o sistema de janelas
  - 5.2.5. Usando R interativamente
  - 5.2.6. Uma sessão introdutória
  - 5.2.7. Obtendo ajuda com funções e características
  - 5.2.8. Comandos R, sensibilidade a maiúsculas, etc.
  - 5.2.9. Recuperação e correção de comandos anteriores
  - 5.2.10. Executar comandos ou desviar a saída para um arquivo
  - 5.2.11. Permanência de dados e eliminação de objetos
- 5.3. Tipos de objetos R
  - 5.3.1. Manipulações simples; números e vetores
    - 5.3.1.1. Vetores e atribuições
    - 5.3.1.2. Aritmética vetorial
    - 5.3.1.3. Gerando sequências regulares
    - 5.3.1.4. Vetores lógicos
    - 5.3.1.5. Valores perdidos
    - 5.3.1.6. Vetores de caracteres
    - 5.3.1.7. Vetores de índice
      - 5.3.1.7.1. Seleção e modificação de subconjuntos de um conjunto de dados
    - 5.3.1.8. Outros tipos de objetos



| 5.3.2. | Objetos, modos e atributos                                        |
|--------|-------------------------------------------------------------------|
|        | 5.3.2.1. Atributos intrínsecos: modo e comprimento                |
|        | 5.3.2.2. Mudando o comprimento de um objeto                       |
|        | 5.3.2.3. Recolha e configuração de atributos                      |
|        | 5.3.2.4. A classe de um objeto                                    |
| 5.3.3. | Fatores ordenados e não ordenados                                 |
|        | 5.3.3.1. Um exemplo específico                                    |
|        | 5.3.3.2. A função tapply () e as matrizes desiguais               |
|        | 5.3.3.3. Fatores ordenados                                        |
| 5.3.4. | Matrizes                                                          |
|        | 5.3.4.1. Matrizes                                                 |
|        | 5.3.4.2. Indexação de matrizes Subseções de uma matriz            |
|        | 5.3.4.3. Matrizes do índice                                       |
|        | 5.3.4.4. A função array ()                                        |
|        | 5.3.4.5. Aritmética mista de vetor e matriz A regra da reciclagem |
|        | 5.3.4.6. O produto externo de duas matrizes                       |
|        | 5.3.4.7. Transposição de matriz generalizada                      |
|        | 5.3.4.8. Multiplicação de matrizes                                |
|        | 5.3.4.9. Valores próprios e vetores próprios                      |
|        | 5.3.4.10. Decomposição de valores singulares e determinantes      |
|        | 5.3.4.11. Formação de matrizes particionadas, cbind () e rbind () |
|        | 5.3.4.12. A função de concatenação, c (), com matrizes            |
| 5.3.5. | Tabelas de frequência de fatores                                  |
| 5.3.6. | Listas                                                            |
|        | 5.3.6.1. Construção e modificação de listas                       |
|        | 5.3.6.2. Listas de concatenação                                   |
| 5.3.7. | DataFrames                                                        |
|        | 5.3.7.1. Como criar DataFrames?                                   |
|        | 5.3.7.2. Anexar () e separar ()                                   |
|        | 5.3.7.3. Trabalhar com <i>DataFrames</i>                          |

|      |                                  | Estrutura e conteúc                                                 |  |
|------|----------------------------------|---------------------------------------------------------------------|--|
|      |                                  |                                                                     |  |
| 5.4. | Leitura                          | e escrita de dados                                                  |  |
|      | 5.4.1.                           | A função read.table ()                                              |  |
|      | 5.4.2.                           | A função scan()                                                     |  |
|      | 5.4.3.                           | Acesso aos conjuntos de dados incorporados                          |  |
|      | 5.4.4.                           | Carregando dados de outros pacotes R                                |  |
|      | 5.4.5.                           | Edição de dados                                                     |  |
| 5.5. | Agrupa                           | amento, <i>loops</i> e execução condicional                         |  |
|      | 5.5.1.                           | Expressões agrupadas                                                |  |
|      | 5.5.2.                           | Declarações de controle                                             |  |
|      |                                  | 5.5.2.1. Execução condicional: sentenças IF                         |  |
|      |                                  | 5.5.2.2. Execução repetitiva: para <i>loops</i> , repetição e tempo |  |
| 5.6. | Escrevendo suas próprias funções |                                                                     |  |
|      | 5.6.1.                           | Exemplos simples                                                    |  |
|      | 5.6.2.                           | Definição de novos operadores binários                              |  |
|      | 5.6.3.                           | Argumentos com nome e valores padrão                                |  |
|      | 5.6.4.                           | O argumento ""                                                      |  |

#### **Módulo 6.** Ambiente gráfico em R

| 6.1. | Procedimentos gráficos |                                  |  |
|------|------------------------|----------------------------------|--|
|      | 6.1.1.                 | Comandos de traçado de alto níve |  |

5.6.5. Atribuições dentro das funções

6.1.1.1. A função de plot ()

6.1.1.2. Visualização de dados multivariados

6.1.1.3. Gráficos de tela

6.1.1.4. Argumentos para funções de traçado de alto nível

6.1.2. Comandos de traçado de alto nível

6.1.2.1. Anotação matemática

6.1.2.2. Fontes vetoriais Hershey

6.1.3. Interagindo com os gráficos 6.1.4. Uso de parâmetros gráficos

6.1.4.1. Mudanças permanentes: a função par ()

6.1.4.2. Mudanças temporais: argumentos para as funções gráficas

## tech 34 | Estrutura e conteúdo

- 6.1.5. Lista de parâmetros gráficos
  - 6.1.5.1. Elementos gráficos
  - 6.1.5.2. Eixos e marcações
  - 6.1.5.3. Margens da figura
  - 6.1.5.4. Ambiente com múltiplas imagens
- 6.1.6. Estatística descritiva: representações gráficas

#### Módulo 7. Análise estatística em R

- 7.1. Distribuições de probabilidades discretas
- 7.2. Distribuições de probabilidades contínuas
- 7.3. Introdução à inferência e amostragem (estimativa de pontos)
- 7.4. Intervalos de confiança
- 7.5. Contrastes de hipóteses
- 7.6. ANOVA de um fator
- 7.7. Bondade de ajuste (teste de qui-quadrado)
- 7.8. Pacote fitdist
- 7.9. Introdução às estatísticas multivariadas

#### Módulo 8. Machine learning para a análise de Big Data

- 8.1. Introdução ao Machine Learning
- 8.2. Apresentação de problemas, carregamento de dados e bibliotecas
- 8.3. Limpeza de dados (NAs, categorias, variáveis dummy)
- 8.4. Análise de dados exploratórios (ggPlot) + validação cruzada
- 8.5. Algoritmos de previsão: regressão linear múltipla, Máquina de Suporte Vetorial, árvores de regressão, Random Forest, etc.
- 8.6. Algoritmos de classificação: regressão linear múltipla, Máquina de Suporte Vetorial, árvores de regressão, Random Forest, etc.
- 8.7. Ajuste dos hiperparâmetros do algoritmo
- 8.8. Predição de dados com os diferentes modelos
- 8.9. Curvas ROC e matrizes de confusão para avaliar a qualidade do modelo

#### Módulo 9. Extração de dados aplicada à genómica

- 9.1. Introdução
- 9.2. Inicialização de variáveis
- 9.3. Limpeza e condicionamento do texto
- 9.4. Geração da Matriz de Termos
  - 9.4.1. Criação da Matriz de Termos TDM
  - 9.4.2. Visualizações sobre a matriz de palavras TDM
- 9.5. Descrição da matriz de termos
  - 9.5.1. Representação gráfica das frequências
  - 9.5.2. Construção de uma nuvem de palavras
- 9.6. Criação de um *DataFrame* apto para K-NN
- 9.7. Construção do Modelo de Classificação
- 9.8. Validação do Modelo de Classificação
- 9.9. Exercício prático guiado sobre extração de dados em genómica do cancro

#### Módulo 10. Técnicas de extração de dados genómicos

- 10.1. Introdução ao "Scraping de dados"
- 10.2. Importação de arquivos de dados de folhas de cálculo armazenadas online
- 10.3. Scraping de texto HTML
- 10.4. Scraping de dados de uma tabela HTML
- 10.5. Aproveitando as APIs para Scraping de dados
- 10.6. Extraindo informações relevantes
- 10.7. Usando o pacote rvest em R
- 10.8. Obtenção de dados distribuídos em várias páginas
- 10.9. Extração de dados genómicos da plataforma "My Cancer Genome"
- 10.10. Extração de informações genéticas do banco de dados "HGNC HUGO Gene Nomenclature Committee"
- 10.11. Extração de dados farmacológicos da base de dados "OncoKB" (Precision Oncology Knowledge Base)

#### Módulo 11. Novas técnicas na era genómica

- 11.1. Entendendo a nova tecnologia: Next Generation Sequence (NGS) na prática clínica
  - 11.1.1. Introdução
  - 11.1.2. Antecedentes
  - 11.1.3. Problemas na aplicação do seguenciamento Sanger em Oncologia
  - 11.1.4. Novas técnicas de sequenciamento
  - 11.1.5. Vantagens do uso de NGS na prática clínica
  - 11.1.6. Limitações do uso de NGS na prática clínica
  - 11.1.7. Termos e definições relevantes
  - 11.1.8. Tipos de estudos de acordo com o tamanho e profundidade
    - 11.1.8.1. Genomas
    - 11.1.8.2. Exomas
    - 11.1.8.3. Painéis multigénicos
  - 11.1.9. Etapas no sequenciamento NGS
    - 11.1.9.1. Preparação de amostras e bibliotecas
    - 11.1.9.2. Preparação de templates e sequenciamento
    - 11.1.9.3. Processamento bioinformático
  - 11.1.10. Anotação e classificação de variantes
    - 11.1.10.1. Bases de dados demográficos
    - 11.1.10.2. Bases de dados específicas do local
    - 11 1 10 3 Preditores bioinformáticos de funcionalidade
- 11.2. Seguenciamento de DNA e análise bioinformática
  - 11.2.1. Introdução
  - 11.2.2. Software
  - 11.2.3. Procedimento
    - 11.2.3.1. Extração de sequências brutas
    - 11.2.3.2. Alinhamento de seguências
    - 11.2.3.3. Refinamento do alinhamento
    - 11.2.3.4. Chamada de variantes
    - 11.2.3.5. Filtragem de variantes

- 11.3. Seguenciamento de RNA e análise bioinformática
  - 11.3.1. Introdução
  - 11.3.2. Software
  - 11.3.3. Procedimento
    - 11.3.3.1. Avaliação de CQ de dados brutos
    - 11.3.3.2. Filtragem rRNA
    - 11.3.3.3. Dados de controlo de gualidade filtrados
    - 11.3.3.4. Corte de qualidade e remoção do adaptador
    - 11.3.3.5. Alinhamento de reads para uma referência
    - 11.3.3.6. Chamada de variantes
    - 11.3.3.7. Análise da expressão diferencial do gene
- 11.4. Tecnologia ChIP-Seq
  - 11.4.1. Introdução
  - 11.4.2. Software
  - 11.4.3. Procedimento
    - 11.4.3.1. Descrição do conjunto de dados CHiP-Seq
    - 11.4.3.2. Obter informações sobre o experimento utilizando os sites GEO e SRA
    - 11.4.3.3. Controle de qualidade dos dados de seguenciamento
    - 11.4.3.4. Corte e filtragem de reads
    - 11.4.3.5. Visualização de resultados com Integrated Genome Browser (IGV)
- 11.5. Big Data aplicado à Oncologia Genómica
  - 11.5.1. O processo de análise de dados
- 11.6. Servidores genómicos e bancos de dados de variantes genéticas
  - 11.6.1. Introdução
  - 11.6.2. Servidores genómicos em web
  - 11.6.3. Arquitetura de servidores genómicos
  - 11.6.4. Recuperação e análise de dados
  - 11.6.5. Personalização

## tech 36 | Estrutura e conteúdo

- 11.7. Anotação de variantes genéticas
  - 11.7.1. Introdução
  - 11.7.2. O que é a chamada de variante?
  - 11.7.3. Entender o formato do VCF
  - 11.7.4. Identificadores de variantes
  - 11.7.5. Análise de variantes
  - 11.7.6. Prevendo o efeito da variação na estrutura e função da proteína

#### Módulo 12. Aplicações da bioinformática na genómica oncológica

- 12.1. Enriquecimento clínico e farmacológico de variantes génicas
- 12.2. Procura massiva de informações genómicas em PubMed
- 12.3. Procura massiva de informações genómicas em DGIdb
- 12.4. Procura em massa de ensaios clínicos sobre dados genómicos em Clinical Trials
- 12.5. Busca de similaridade genética para interpretação de um painel genético ou de um exoma
- 12.6. Busca massiva de genes relacionados a doenças
- 12.7. Enrich-Gen: plataforma de enriquecimento clínico e farmacológico de genes
- 12.8. O procedimento do relatório genómico na era da Oncologia de Precisão







Uma experiência de aprendizagem única, fundamental e decisiva para impulsionar o seu desenvolvimento profissional"





# tech 40 | Metodologia

#### Na TECH utilizamos o Método de Caso

Numa dada situação, o que deve fazer um profissional? Ao longo do programa, os estudantes serão confrontados com múltiplos casos clínicos simulados com base em pacientes reais nos quais terão de investigar, estabelecer hipóteses e finalmente resolver a situação. Há abundantes provas científicas sobre a eficácia do método. Os especialistas aprendem melhor, mais depressa e de forma mais sustentável ao longo do tempo.

Com a TECH pode experimentar uma forma de aprendizagem que abala as fundações das universidades tradicionais de todo o mundo"



Segundo o Dr. Gérvas, o caso clínico é a apresentação anotada de um paciente, ou grupo de pacientes, que se torna um "caso", um exemplo ou modelo que ilustra alguma componente clínica peculiar, quer pelo seu poder de ensino, quer pela sua singularidade ou raridade. É essencial que o caso seja fundamentado na vida profissional actual, tentando recriar as condições reais da prática profissional do médico.



Sabia que este método foi desenvolvido em 1912 em Harvard para estudantes de direito? O método do caso consistia em apresentar situações reais complexas para que tomassem decisões e justificassem a forma de as resolver. Em 1924 foi estabelecido como um método de ensino padrão em Harvard"

### A eficácia do método é justificada por quatro realizações fundamentais:

- 1 Os estudantes que seguem este método não só conseguem a assimilação de conceitos, mas também desenvolvem a sua capacidade mental através de exercícios para avaliar situações reais e aplicar os seus conhecimentos.
- 2 A aprendizagem é solidamente traduzida em competências práticas que permitem ao educador integrar melhor o conhecimento na prática diária.
- 3 A assimilação de ideias e conceitos é facilitada e mais eficiente, graças à utilização de situações que surgiram a partir de um ensino real.
- 4 O sentimento de eficiência do esforço investido torna-se um estímulo muito importante para os estudantes, o que se traduz num maior interesse pela aprendizagem e num aumento do tempo passado a trabalhar no curso.





### Relearning Methodology

A TECH combina eficazmente a metodologia do Estudo de Caso com um sistema de aprendizagem 100% online baseado na repetição, que combina 8 elementos didáticos diferentes em cada lição.

Melhoramos o Estudo de Caso com o melhor método de ensino 100% online: o Relearning.

O profissional aprenderá através de casos reais e da resolução de situações complexas em ambientes de aprendizagem simulados. Estas simulações são desenvolvidas utilizando software de última geração para facilitar a aprendizagem imersiva.



# Metodologia | 43 tech

Na vanguarda da pedagogia mundial, o método Relearning conseguiu melhorar os níveis globais de satisfação dos profissionais que concluem os seus estudos, no que diz respeito aos indicadores de qualidade da melhor universidade online do mundo (Universidade de Columbia).

Utilizando esta metodologia, mais de 250.000 médicos foram formados com sucesso sem precedentes em todas as especialidades clínicas, independentemente da carga cirúrgica. Tudo isto num ambiente altamente exigente, com um corpo estudantil universitário com um elevado perfil socioeconómico e uma idade média de 43,5 anos.

O Relearning permitir-lhe-á aprender com menos esforço e mais desempenho, envolvendo-o mais na sua capacitação, desenvolvendo um espírito crítico, defendendo argumentos e opiniões contrastantes: uma equação direta ao sucesso.

No nosso programa, a aprendizagem não é um processo linear, mas acontece numa espiral (aprender, desaprender, esquecer e reaprender). Portanto, cada um destes elementos é combinado de forma concêntrica.

A pontuação global do nosso sistema de aprendizagem é de 8,01, de acordo com os mais elevados padrões internacionais.

# tech 44 | Metodologia

Este programa oferece o melhor material educativo, cuidadosamente preparado para profissionais:



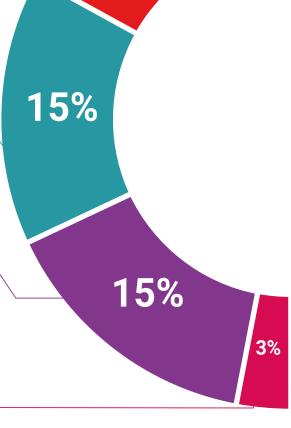
#### Material de estudo

Todos os conteúdos didáticos são criados pelos especialistas que irão ensinar o curso, especificamente para o curso, para que o desenvolvimento didático seja realmente específico e concreto.

Estes conteúdos são depois aplicados ao formato audiovisual, para criar o método de trabalho online da TECH. Tudo isto, com as mais recentes técnicas que oferecem peças de alta-qualidade em cada um dos materiais que são colocados à disposição do aluno.



#### Técnicas cirúrgicas e procedimentos em vídeo


A TECH traz as técnicas mais inovadoras, com os últimos avanços educacionais, para a vanguarda da atualidade em enfermagem. Tudo isto, na primeira pessoa, com o máximo rigor, explicado e detalhado para a assimilação e compreensão do estudante. E o melhor de tudo, pode observá-los quantas vezes quiser.



#### **Resumos interativos**

A equipa da TECH apresenta os conteúdos de uma forma atrativa e dinâmica em comprimidos multimédia que incluem áudios, vídeos, imagens, diagramas e mapas concetuais a fim de reforçar o conhecimento.

Este sistema educativo único para a apresentação de conteúdos multimédia foi premiado pela Microsoft como uma "História de Sucesso Europeu"





### **Leituras complementares**

Artigos recentes, documentos de consenso e diretrizes internacionais, entre outros. Na biblioteca virtual da TECH o aluno terá acesso a tudo o que necessita para completar a sua capacitação

## Análises de casos desenvolvidas e conduzidas por especialistas

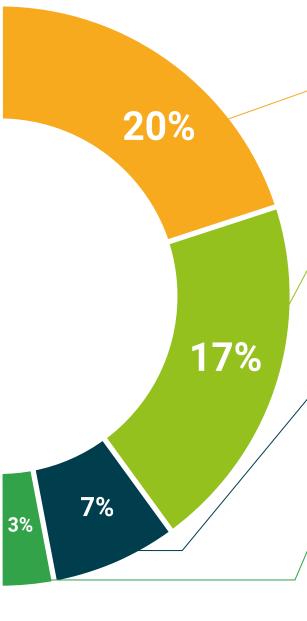
A aprendizagem eficaz deve necessariamente ser contextual. Por esta razão, a TECH apresenta o desenvolvimento de casos reais nos quais o perito guiará o estudante através do desenvolvimento da atenção e da resolução de diferentes situações: uma forma clara e direta de alcançar o mais alto grau de compreensão.

### **Testing & Retesting**



Os conhecimentos do aluno são periodicamente avaliados e reavaliados ao longo de todo o programa, através de atividades e exercícios de avaliação e auto-avaliação, para que o aluno possa verificar como está a atingir os seus objetivos.

#### **Masterclasses**




Há provas científicas sobre a utilidade da observação de peritos terceiros: Learning from an Expert fortalece o conhecimento e a recordação, e constrói confiança em futuras decisões difíceis.

### Guias rápidos de atuação



A TECH oferece os conteúdos mais relevantes do curso sob a forma de folhas de trabalho ou guias de ação rápida. Uma forma sintética, prática e eficaz de ajudar os estudantes a progredir na sua aprendizagem.







# tech 48 | Certificação

Este programa permitirá a obtenção do certificado próprio de **Mestrado em Oncologia de Precisão: Genómica e Big Data** reconhecido pela **TECH Global University**, a maior universidade digital do mundo.

A **TECH Global University**, é uma Universidade Europeia Oficial reconhecida publicamente pelo Governo de Andorra (*bollettino ufficiale*). Andorra faz parte do Espaço Europeu de Educação Superior (EEES) desde 2003. O EEES é uma iniciativa promovida pela União Europeia com o objetivo de organizar o modelo de formação internacional e harmonizar os sistemas de ensino superior dos países membros desse espaço. O projeto promove valores comuns, a implementação de ferramentas conjuntas e o fortalecimento de seus mecanismos de garantia de qualidade para fomentar a colaboração e a mobilidade entre alunos, pesquisadores e acadêmicos.

Esse título próprio da **TECH Global University**, é um programa europeu de formação contínua e atualização profissional que garante a aquisição de competências em sua área de conhecimento, conferindo um alto valor curricular ao aluno que conclui o programa.

Título: Mestrado em Oncologia de Precisão: Genómica e Big Data

Modalidade: online

Duração: 12 meses

Acreditação: 60 ECTS



| Distribuição Geral do Plano de Estudos |          | Distribuição Geral do Plano de Estudos |                                                      |      |          |
|----------------------------------------|----------|----------------------------------------|------------------------------------------------------|------|----------|
| Tipologia                              | ECTS     | Curso                                  | Disciplina                                           | ECTS | Carácter |
| Obrigatória (OB)                       | 60       | 1º                                     | Biologia molecular                                   | 5    | ОВ       |
| Opção (OP)                             | 0        | 1º                                     | Oncologia Genómica ou de Precisão                    | 5    | ОВ       |
| Estágio (PR)                           | 0        | 1º                                     | Mudanças na prática clínica atual e novas aplicações | 5    | ОВ       |
| Tese de Mestrado                       | 0        |                                        | com a Oncologia Genómica                             |      |          |
|                                        | Total 60 | 1°                                     | Utilização de Unix e Linux em bioinformática         | 5    | ОВ       |
|                                        |          | 1º                                     | Análise de dados em projetos de Big Data: linguagem  | 5    | OB       |
|                                        |          |                                        | de programação R                                     |      |          |
|                                        |          | 1º                                     | Ambiente gráfico em R                                | 5    | OB       |
|                                        |          | 1º                                     | Análise estatística em R                             | 5    | OB       |
|                                        |          | 1º                                     | Machine learning para a análise de Big Data          | 5    | OB       |
|                                        |          | 1º                                     | Extração de dados aplicada à genómica                | 5    | OB       |
|                                        |          | 1°                                     | Técnicas de extração de dados genómicos              | 5    | OB       |
|                                        |          | 1°                                     | Novas técnicas na era genómica                       | 5    | OB       |
|                                        |          | 1º                                     | Aplicações da bioinformática na genómica oncológica  | 5    | OB       |
| Dott, Pedro Na                         | :        | 10                                     | Aplicações da bioinformática na genómica oncológica  |      |          |

<sup>\*</sup>Apostila de Haia Caso o aluno solicite que o seu certificado seja apostilado, a TECH Global University providenciará a obtenção do mesmo com um custo adicional.

tech global university Mestrado Oncologia de Precisão: Genómica e Big Data » Modalidade: online

» Duração: 12 meses

» Certificação: TECH Global University

» Acreditação: 60 ECTS

» Horário: no seu próprio ritmo

» Exames: online

