

Máster Título Propio

Investigación Médica

» Modalidad: No escolarizada (100% en línea)

» Duración: 12 meses

» Titulación: TECH Universidad

» Horario: a tu ritmo» Exámenes: online

 ${\tt Acceso~web:} \textbf{ www.techtitute.com/medicina/master/master-investigacion-medica}$

Índice

 $\begin{array}{c|c} 01 & 02 \\ \hline Presentación del programa & i Por qué estudiar en TECH? \\ \hline 03 & 04 & 05 \\ \hline Plan de estudios & Objetivos docentes & Metodología de estudio \\ \hline & pág. 12 & 06 & 07 \\ \hline \end{array}$

Titulación

pág. 42

pág. 36

Cuadro docente

tech 06 | Presentación del programa

La Investigación Médica es el pilar sobre el que se construyen los avances en salud, permitiendo desarrollar nuevos tratamientos, mejorar diagnósticos y optimizar la prevención de enfermedades. En un contexto donde la Medicina evoluciona rápidamente gracias a tecnologías emergentes como la inteligencia artificial, los profesionales requieren estar altamente capacitados en el uso de la metodología científica más actualizada y el uso de sistemas de análisis de datos para impulsar descubrimientos que transformen la salud pública.

Con el fin de apoyarlos con dicha labor, TECH lanza un revolucionario Máster Título Propio en Investigación Médica. El plan de estudio ahondará en factores que van desde técnicas de análisis o biotecnología aplicada hasta las estrategias más innovadoras en Medicina de Precisión. De esta forma, los egresados obtendrán competencias avanzadas para liderar proyectos de alto impacto, integrando técnicas analíticas y biotecnología aplicada para contribuir a la creación de intervenciones terapéuticas personalizadas.

Por otro lado, La flexibilidad y accesibilidad de la modalidad online permiten compatibilizar la actualización de conocimientos con la labor asistencial a tiempo completo. Gracias a un ecosistema digital dinámico, es posible acceder a contenidos desde cualquier dispositivo con conexión a internet. De manera complementaria, en el Campus Virtual los egresados disfrutarán de una variedad de recursos multimedia como lecturas especializadas, vídeos explicativos o casos de estudio reales en entornos simulados. Esto garantizará que gocen de una experiencia inmersiva dinámica a la par que amena, donde asimilarán los conceptos de manera natural y progresiva gracias a la metodología *Relearning* de TECH.

Este **Máster Título Propio en Investigación Médica** contiene el programa universitario más completo y actualizado del mercado. Sus características más destacadas son:

- El desarrollo de casos prácticos presentados por expertos en Medicina
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que están concebidos recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- · Su especial hincapié en metodologías innovadoras en Medicina
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Domina las metodologías de Investigación más avanzadas y aplicarás métodos de análisis de datos para generar evidencia científica de alto impacto"

Presentación del programa | 07 tech

66

Profundizarás en la bioética y la regulación en Investigación Médica para garantizar el cumplimiento de los estándares internacionales"

Incluye en su cuadro docente a profesionales pertenecientes al ámbito de la Medicina, que vierten en este programa la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextualizado, es decir, un entorno simulado que proporcionará un estudio inmersivo programado para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el alumno deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, el profesional contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Analizarás el impacto de los ensayos clínicos en el desarrollo de nuevos tratamientos y su aplicación en la Medicina actual.

Un plan de estudios diseñado a la medida de tus necesidades académicas y que, con ayuda del Relearning, te facilitará la asimilación de conceptos complejos de un modo rápido y flexible.

La mejor universidad online del mundo según FORBES

La prestigiosa revista Forbes, especializada en negocios y finanzas, ha destacado a TECH como «la mejor universidad online del mundo». Así lo han hecho constar recientemente en un artículo de su edición digital en el que se hacen eco del caso de éxito de esta institución, «gracias a la oferta académica que ofrece, la selección de su personal docente, y un método de aprendizaje innovador orientado a formar a los profesionales del futuro».

El mejor claustro docente top internacional

El claustro docente de TECH está integrado por más de 6.000 profesores de máximo prestigio internacional. Catedráticos, investigadores y altos ejecutivos de multinacionales, entre los cuales se destacan Isaiah Covington, entrenador de rendimiento de los Boston Celtics; Magda Romanska, investigadora principal de MetaLAB de Harvard; Ignacio Wistuba, presidente del departamento de patología molecular traslacional del MD Anderson Cancer Center; o D.W Pine, director creativo de la revista TIME, entre otros.

La mayor universidad digital del mundo

TECH es la mayor universidad digital del mundo. Somos la mayor institución educativa, con el mejor y más amplio catálogo educativo digital, cien por cien online y abarcando la gran mayoría de áreas de conocimiento. Ofrecemos el mayor número de titulaciones propias, titulaciones oficiales de posgrado y de grado universitario del mundo. En total, más de 14.000 títulos universitarios, en once idiomas distintos, que nos convierten en la mayor institución educativa del mundo.

nº1 Mundial Mayor universidad online del mundo

Los planes de estudio más completos del panorama universitario

TECH ofrece los planes de estudio más completos del panorama universitario, con temarios que abarcan conceptos fundamentales y, al mismo tiempo, los principales avances científicos en sus áreas científicas específicas. Asimismo, estos programas son actualizados continuamente para garantizar al alumnado la vanguardia académica y las competencias profesionales más demandadas. De esta forma, los títulos de la universidad proporcionan a sus egresados una significativa ventaja para impulsar sus carreras hacia el éxito.

Un método de aprendizaje único

TECH es la primera universidad que emplea el *Relearning* en todas sus titulaciones. Se trata de la mejor metodología de aprendizaje online, acreditada con certificaciones internacionales de calidad docente, dispuestas por agencias educativas de prestigio. Además, este disruptivo modelo académico se complementa con el "Método del Caso", configurando así una estrategia de docencia online única. También en ella se implementan recursos didácticos innovadores entre los que destacan vídeos en detalle, infografías y resúmenes interactivos.

La universidad online oficial de la NBA

TECH es la universidad online oficial de la NBA. Gracias a un acuerdo con la mayor liga de baloncesto, ofrece a sus alumnos programas universitarios exclusivos, así como una gran variedad de recursos educativos centrados en el negocio de la liga y otras áreas de la industria del deporte. Cada programa tiene un currículo de diseño único y cuenta con oradores invitados de excepción: profesionales con una distinguida trayectoria deportiva que ofrecerán su experiencia en los temas más relevantes.

Líderes en empleabilidad

TECH ha conseguido convertirse en la universidad líder en empleabilidad. El 99% de sus alumnos obtienen trabajo en el campo académico que ha estudiado, antes de completar un año luego de finalizar cualquiera de los programas de la universidad. Una cifra similar consigue mejorar su carrera profesional de forma inmediata. Todo ello gracias a una metodología de estudio que basa su eficacia en la adquisición de competencias prácticas, totalmente necesarias para el desarrollo profesional.

Google Partner Premier

El gigante tecnológico norteamericano ha otorgado a TECH la insignia Google Partner Premier. Este galardón, solo al alcance del 3% de las empresas del mundo, pone en valor la experiencia eficaz, flexible y adaptada que esta universidad proporciona al alumno. El reconocimiento no solo acredita el máximo rigor, rendimiento e inversión en las infraestructuras digitales de TECH, sino que también sitúa a esta universidad como una de las compañías tecnológicas más punteras del mundo.

La universidad mejor valorada por sus alumnos

Los alumnos han posicionado a TECH como la universidad mejor valorada del mundo en los principales portales de opinión, destacando su calificación más alta de 4,9 sobre 5, obtenida a partir de más de 1.000 reseñas. Estos resultados consolidan a TECH como la institución universitaria de referencia a nivel internacional, reflejando la excelencia y el impacto positivo de su modelo educativo.

tech 14 | Plan de estudios

Módulo 1. El método científico aplicado a la Investigación sanitaria. Posicionamiento bibliográfico de la Investigación

- 1.1. Definición de la pregunta o el problema a resolver
- 1.2. Posicionamiento bibliográfico de la pregunta o problema a resolver
 - 1.2.1. La búsqueda de información
 - 1.2.1.1. Estrategias y palabras claves
 - 1.2.2. El PubMed y otros repositorios de artículos científicos
- 1.3. Tratamiento de fuentes bibliográficas
- 1.4. Tratamiento de fuentes documentales
- 1.5. Búsqueda avanzada de bibliografía
- 1.6. Generación de bases de referencias para uso múltiple
- 1.7. Gestores de bibliografía
- 1.8. Extracción de metadatos en búsquedas bibliográficas
- 1.9. Definición de la metodología científica a seguir
 - 1.9.1. Selección de las herramientas necesarias
 - 1.9.2. Diseño de controles positivos y negativos en una Investigación
- 1.10. Los proyectos traslacionales y los ensayos clínicos: similitudes y diferencias

Módulo 2. Generación de grupos de trabajo: la Investigación colaborativa

- 2.1. Definición de grupos de trabajo
- 2.2. Formación de equipos multidisciplinares
- 2.3. Distribución óptima de responsabilidades
- 2.4. Liderazgo
- 2.5. Control de consecución de actividades
- 2.6. Los equipos de Investigación hospitalaria
 - 2.6.1. Investigación clínica
 - 2.6.2. Investigación básica
 - 2.6.3. Investigación traslacional
- 2.7. Creación de redes colaborativas para la Investigación en salud
- 2.8. Nuevos espacios para la Investigación en salud
 - 2.8.1. Redes temáticas
- 2.9. Centros de Investigación biomédica en red
- 2.10. Los biobancos de muestras: Investigación colaborativa internacional

Módulo 3. Generación de proyectos de Investigación

- 3.1. Estructura general de un proyecto
- 3.2. Presentación de antecedentes y datos preliminares
- 3.3. Definición de la hipótesis
- 3.4. Definición de objetivos generales y específicos
- 3.5. Definición del tipo de muestra, número y variables a medir
- 3.6. Establecimiento de la metodología científica
- 3.7. Criterios de exclusión/inclusión en proyectos con muestras humanas
- 3.8. Establecimiento del equipo específico: balance y expertise
- 3.9. Expectativas: un elemento importante que olvidamos
- 3.10. Generación del presupuesto: un ajuste fino entre las necesidades y la realidad de la convocatoria
- 3.11. Aspectos éticos

Módulo 4. El ensayo clínico en la Investigación en salud

- 4.1. Tipos de ensayos clínicos (EC)
 - 4.1.1. Ensayos clínicos promovidos por la industria farmacéutica
 - 4.1.2. Ensayos clínicos independientes
 - 4.1.3. Reposición de fármacos
- 4.2. Fases de los EC
- 4.3. Principales figuras que intervienen en los EC
- 4.4. Generación de protocolos
 - 4.4.1. Aleatorización y enmascaramiento
 - 4.4.2. Estudios de no inferioridad
- 4.5. Aspectos éticos
- 4.6. Hoja de información al paciente
- 4.7. Consentimiento informado
- 4.8. Criterios de buenas prácticas clínicas
- 4.9. Comité Ético de Investigación con Medicamentos
- 4.10. Búsqueda de financiación para ensayos clínicos
 - 4.10.1. Pública. Principales agencias españolas, europeas, latinoamericanas y estadounidenses
 - 4.10.2. Privada. Principales farmacéuticas

Módulo 5. Financiación de proyectos

- 5.1. Búsqueda de oportunidades de financiación
- 5.2. ¿Cómo ajustar un proyecto al formato de una convocatoria?
 - 5.2.1. Claves para alcanzar el éxito
 - 5.2.2. Posicionamiento, preparación y escritura
- 5.3. Convocatorias públicas. Principales agencias europeas y americanas
- 5.4. Convocatorias específicas europeas
 - 5.4.1. Proyectos Horizonte 2020
 - 5.4.2. Movilidad de Recursos Humanos
 - 5.4.3. Programa Madame Curie
- 5.5. Convocatorias de colaboración intercontinentales: Oportunidades de interacción internacional
- 5.6. Convocatorias de colaboración con Estados Unidos
- 5.7. Estrategia de participación en proyectos internacionales
 - 5.7.1. Cómo definir una estrategia de participación en consorcios internacionales
 - 5.7.2. Estructuras de soporte y ayuda
- 5.8. Los lobbies científicos internacionales
 - 5.8.1. Acceso y networking
- 5.9. Convocatorias Privadas
 - 5.9.1. Fundaciones y organizaciones financiadoras de Investigación en salud en Europa y América
 - 5.9.2. Convocatorias de financiación privada de organizaciones estadounidenses
- 5.10. La fidelización de una fuente de financiación: claves para un apoyo económico duradero

Módulo 6. Estadística y R en Investigación sanitaria

- 6.1. Bioestadística
 - 6.1.1. Introducción al método científico
 - 6.1.2. Población y muestra. Medidas muestrales de centralización
 - 6.1.3. Distribuciones discretas y distribuciones continuas
 - 6.1.4. Esquema general de la inferencia estadística. Inferencia sobre una media de una población normal. Inferencia sobre una media de una población general
 - 6.1.5. Introducción a la inferencia no paramétrica

tech 16 | Plan de estudios

-	_							lucción a				
6	2.	Iъ	\cap	+	r	0		ш	100	ión	0	U
U.			- 1	ш		U	u	IU.		וועוו	a	1 \

- 6.2.1. Características básicas del programa
- 6.2.2. Principales tipos de objetos
- 6.2.3. Ejemplos sencillos de simulación e inferencia estadística
- 6.2.4. Gráficos
- 6.2.5. Introducción a la programación en R
- 6.3. Métodos de regresión con R
 - 6.3.1. Modelos de regresión
 - 6.3.2. Selección de variables
 - 6.3.3. Diagnóstico del modelo
 - 6.3.4. Tratamiento de datos atípicos
 - 6.3.5. Análisis de regresiones
- 6.4. Análisis multivariante con R
 - 6.4.1. Descripción de datos multivariantes
 - 6.4.2. Distribuciones multivariantes
 - 6.4.3. Reducción de la dimensión
 - 6.4.4. Clasificación no supervisada: análisis de conglomerados
 - 6.4.5. Clasificación supervisada: análisis discriminante
- 6.5. Métodos de regresión para la Investigación con R
 - 6.5.1. Modelos lineales generalizados (GLM): regresión de Poisson y binomial negativa
 - 6.5.2. Modelos lineales generalizados (GLM): regresiones logística y binomial
 - 6.5.3. Regresión de Poisson y binomial negativa infladas por ceros
 - 6.5.4. Ajustes locales y modelos aditivos generalizados (GAM)
 - 6.5.5. Modelos mixtos generalizados (GLMM) y generalizados aditivos (GAMM)

- 6.6. Estadística aplicada a la Investigación biomédica con R I
 - 6.6.1. Nociones básicas de R. Variables y objetos de R. Manejo de datos. Ficheros. Gráficos
 - 6.6.2. Estadística descriptiva y funciones de probabilidad
 - 6.6.3. Programación y funciones en R
 - 6.6.4. Análisis de tablas de contingencia
 - 6.6.5. Inferencia básica con variables continuas
- 6.7. Estadística aplicada a la Investigación biomédica con R II
 - 6.7.1. Análisis de la varianza
 - 6.7.2. Análisis de correlación
 - 6.7.3. Regresión lineal simple
 - 6.7.4. Regresión lineal múltiple
 - 6.7.5. Regresión logística
- 6.8. Estadística aplicada a la Investigación biomédica con R III
 - 6.8.1. Variables de confusión e interacciones
 - 6.8.2. Construcción de un modelo de regresión logística
 - 6.8.3. Análisis de supervivencia
 - 6.8.4. Regresión de Cox
 - 6.8.5. Modelos predictivos. Análisis de curvas ROC
- 6.9. Técnicas estadísticas de data mining con R I
 - 6.9.1. Introducción. *Data mining*. Aprendizaje supervisado y no supervisado. Modelos predictivos. Clasificación y regresión
 - 6.9.2. Análisis descriptivo. Preprocesamiento de datos
 - 6.9.3. Análisis de componentes principales (PCA)
 - 6.9.4. Análisis clúster. Métodos jerárquicos. K-means
- 6.10. Técnicas estadísticas de data mining con R II
 - 6.10.1. Medidas de evaluación de modelos. Medidas de capacidad predictiva. Curvas ROC
 - 6.10.2. Técnicas de evaluación de modelos. Validación cruzada. Muestras Bootstrap
 - 6.10.3. Métodos basados en árboles (CART)
 - 6.10.4. Support vector machines (SVM)
 - 6.10.5. Random forest (RF) y redes neuronales (NN)

Plan de estudios | 17 tech

Módulo 7. Representaciones gráficas de datos en la Investigación Sanitaria y otros análisis avanzados

- 7.1. Tipos de gráficos
- 7.2. Análisis de supervivencia
- 7.3. Curvas ROC
- 7.4. Análisis multivariante (tipos de regresión múltiple)
- 7.5. Modelos binarios de regresión
- 7.6. Análisis de datos masivos
- 7.7. Métodos para reducción de dimensionalidad
- 7.8. Comparación de los métodos: PCA, PPCA and KPCA
- 7.9. T-SNE (t-distributed stochastic neighbor embedding)
- 7.10. UMAP (uniform manifold approximation and projection)

Módulo 8. Difusión de los resultados I: informes, memorias y artículos científicos

- 8.1. Generación de un informe o memoria científica de un proyecto
 - 8.1.1. Abordaje óptimo de la discusión
 - 8.1.2. Exposición de las limitaciones
- 8.2. Generación de un artículo científico: ¿Cómo escribir un "paper" partiendo de los datos obtenidos?
 - 8.2.1. Estructura general
 - 8.2.2. ¿A dónde va el "paper"?
- 8.3. ¿Por dónde empezar?
 - 8.3.1. Representación adecuada de los resultados
- 8.4. La introducción: El error de comenzar por esta sección
- 8.5. La discusión: El momento cúspide
- 8.6. La descripción de los materiales y métodos: La reproducibilidad garantizada
- 8.7. Elección de la revista donde se enviará el "paper"
 - 8.7.1. Estrategia de elección
 - 8.7.2. Lista de prioridades
- 8.8. Adecuación del manuscrito a los diferentes formatos
- 8.9. La "cover letter": presentación concisa del estudio al editor
- 8.10. ¿Cómo responder a las dudas de los revisores? La "rebuttal letter"

tech 18 | Plan de estudios

Módulo 9. Difusión de los resultados II: simposios, congresos, difusión a la sociedad

- 9.1. Presentación de resultados en congresos y simposios
 - 9.1.1. ¿Cómo se genera un poster?
 - 9.1.2. Representación de los datos
 - 9.1.3. Focalización del mensaje
- 9.2. Comunicaciones cortas
 - 9.2.1. Representación de los datos para las comunicaciones cortas
 - 9.2.2. Focalización del mensaje
- 9.3. La conferencia plenaria: apuntes para mantener la atención del público especializado por más de 20 minutos
- 9.4. Difusión al gran público
 - 9.4.1. Necesidad vs. oportunidad
 - 9.4.2. Uso de las referencias
- 9.5. Uso de las redes sociales para la difusión de los resultados
- 9.6. ¿Cómo adecuar los datos científicos al lenguaje popular?
- 9.7. Pistas para resumir un trabajo científico en pocos caracteres
 - 9.7.1. La divulgación instantánea por Twitter
- 9.8. Cómo convertir un trabajo científico en material de divulgación
 - 9.8.1. Podcast
 - 9.8.2. Videos de YouTube
 - 9.8.3. TikTok
 - 9.8.4. El cómic
- 9.9. La literatura de divulgación
 - 9.9.1. Columnas
 - 9.9.2. Libros

Plan de estudios | 19 tech

Módulo 10. Protección y transferencias de los resultados

- 10.1. La protección de los resultados: generalidades
- 10.2. Valorización de los resultados de un proyecto de Investigación
- 10.3. La patente: pros y contras
- 10.4. Otras formas de protección de los resultados
- 10.5. Transferencia de los resultados a la práctica clínica
- 10.6. Transferencia de los resultados a la industria
- 10.7. El contrato de transferencia tecnológica
- 0.8. El secreto industrial
- 10.9. Generación de empresas Spin-off a partir de un proyecto de Investigación
- 10.10. Búsqueda de oportunidades de inversión en empresas Spin-off

Adquiere un conocimiento profundo sobre el diseño de estudios clínicos, desde la selección de muestras hasta el análisis de resultados"

tech 22 | Objetivos docentes

Objetivos generales

- Desarrollar competencias en el diseño, ejecución y análisis de estudios de Investigación Médica con un enfoque metodológico riguroso
- Aplicar herramientas estadísticas avanzadas para la interpretación de datos biomédicos y la generación de conclusiones científicamente válidas
- Comprender los principios éticos y normativos que rigen la Investigación en salud, garantizando su cumplimiento en proyectos científicos
- Analizar críticamente la literatura científica para evaluar la calidad y relevancia de estudios previos en el desarrollo de nuevas investigaciones
- Integrar innovaciones tecnológicas, como inteligencia artificial y biotecnología, en la Investigación biomédica para mejorar la precisión y eficiencia de los estudios
- Diseñar ensayos clínicos y estudios observacionales que respondan a preguntas relevantes en el ámbito sanitario y contribuyan a la toma de decisiones basada en evidencia
- Optimizar la gestión y financiación de proyectos de Investigación para asegurar su viabilidad y sostenibilidad a largo plazo
- Desarrollar habilidades en comunicación científica para la redacción y publicación de artículos en revistas especializadas y la presentación de hallazgos en congresos internacionales
- Evaluar el impacto de la Investigación Médica en la práctica clínica y la salud pública, promoviendo su aplicación en entornos reales
- Fomentar el pensamiento crítico y la capacidad de liderazgo en equipos de Investigación multidisciplinarios, impulsando el avance del conocimiento en el sector sanitario

Módulo 1. El método científico aplicado a la Investigación sanitaria. Posicionamiento bibliográfico de la Investigación

- Comprender las bases del método científico y su aplicación en la Investigación médica
- Analizar las fuentes bibliográficas relevantes para estructurar un marco teórico sólido
- Aplicar estrategias de búsqueda y selección de literatura científica en bases de datos especializadas
- Evaluar la calidad y validez de los estudios previos para fundamentar investigaciones propias

Módulo 2. Generación de grupos de trabajo: la Investigación colaborativa

- Identificar las ventajas y desafíos del trabajo colaborativo en proyectos de Investigación
- Desarrollar habilidades de liderazgo y gestión en equipos multidisciplinarios
- Fomentar la integración de distintos perfiles profesionales para optimizar la producción científica
- Implementar herramientas digitales para la coordinación eficiente de grupos de Investigación

Módulo 3. Generación de proyectos de Investigación

- Definir preguntas de Investigación claras y relevantes en el ámbito sanitario
- Estructurar proyectos de Investigación con objetivos, metodología y cronograma definidos
- Redactar propuestas de Investigación siguiendo estándares internacionales de calidad científica
- Determinar los recursos necesarios para la viabilidad y desarrollo de proyectos científicos

Módulo 4. El ensayo clínico en la Investigación en salud

- Diferenciar los tipos de ensayos clínicos y sus aplicaciones en la práctica sanitaria
- Diseñar protocolos de ensayos clínicos cumpliendo con normativas éticas y regulatorias
- Analizar los criterios de inclusión y exclusión para la selección de participantes en estudios clínicos
- Interpretar los resultados de ensayos clínicos para evaluar su impacto en la toma de decisiones médicas

Módulo 5. Financiación de proyectos

- Identificar fuentes de financiación nacionales e internacionales para proyectos de Investigación
- Elaborar propuestas de financiamiento atractivas y alineadas con las expectativas de los financiadores
- Gestionar presupuestos y recursos para garantizar la sostenibilidad de los proyectos científicos
- Optimizar la presentación y justificación de gastos en informes financieros de Investigación

Módulo 6. Estadística y R en Investigación sanitaria

- Aplicar métodos estadísticos para el análisis de datos en estudios de salud
- Utilizar R como herramienta para la manipulación, visualización e interpretación de datos
- Evaluar la significancia estadística de resultados en investigaciones biomédicas
- Automatizar procesos de análisis de datos mediante programación en R

tech 24 | Objetivos docentes

Módulo 7. Representaciones gráficas de datos en la Investigación Sanitaria y otros análisis avanzados

- Seleccionar técnicas adecuadas para la visualización efectiva de datos en estudios científicos
- Desarrollar gráficos y representaciones visuales claras y precisas para comunicar resultados
- Explorar modelos de análisis avanzado para mejorar la interpretación de datos complejos
- Optimizar la presentación de información científica mediante herramientas especializadas

Módulo 8. Difusión de los resultados I: Informes, memorias y artículos científicos

- Redactar informes técnicos y memorias científicas siguiendo estándares de calidad editorial
- Estructurar artículos científicos para su publicación en revistas indexadas
- Aplicar normas de citación y referencias bibliográficas en la redacción científica
- Revisar críticamente la escritura y argumentación para mejorar la claridad y precisión de los textos científicos

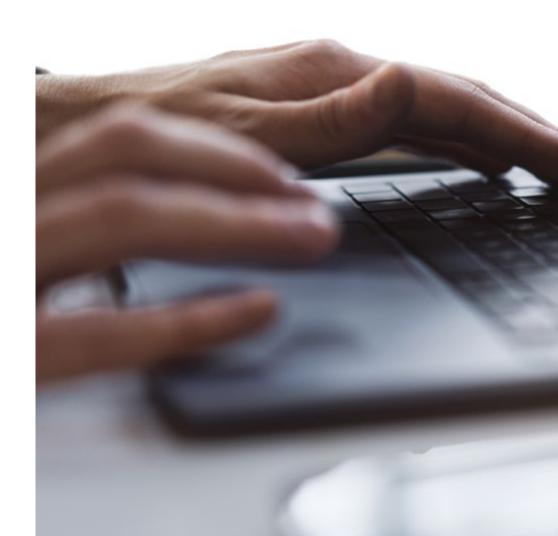
Módulo 9. Difusión de los resultados II: simposios, congresos, difusión a la sociedad

- Diseñar presentaciones científicas efectivas para congresos y simposios
- Elaborar estrategias de divulgación para acercar la Investigación a la sociedad
- Utilizar herramientas multimedia para la comunicación de resultados científicos
- Evaluar el impacto de la difusión científica en la comunidad académica y el público general

Módulo 10. Protección y transferencias de los resultados

- Identificar los mecanismos de protección de la propiedad intelectual en Investigación Médica
- Gestionar patentes y licencias para la transferencia de resultados científicos al sector productivo
- Analizar estrategias para la comercialización y aplicación de hallazgos científicos en la industria
- Fomentar la colaboración entre instituciones académicas y empresas para la innovación en salud

Dispondrás de un conocimiento profundo sobre los principios éticos, normativas y buenas prácticas en el desarrollo de estudios clínicos"



El alumno: la prioridad de todos los programas de TECH

En la metodología de estudios de TECH el alumno es el protagonista absoluto. Las herramientas pedagógicas de cada programa han sido seleccionadas teniendo en cuenta las demandas de tiempo, disponibilidad y rigor académico que, a día de hoy, no solo exigen los estudiantes sino los puestos más competitivos del mercado.

Con el modelo educativo asincrónico de TECH, es el alumno quien elige el tiempo que destina al estudio, cómo decide establecer sus rutinas y todo ello desde la comodidad del dispositivo electrónico de su preferencia. El alumno no tendrá que asistir a clases en vivo, a las que muchas veces no podrá acudir. Las actividades de aprendizaje las realizará cuando le venga bien. Siempre podrá decidir cuándo y desde dónde estudiar.

Los planes de estudios más exhaustivos a nivel internacional

TECH se caracteriza por ofrecer los itinerarios académicos más completos del entorno universitario. Esta exhaustividad se logra a través de la creación de temarios que no solo abarcan los conocimientos esenciales, sino también las innovaciones más recientes en cada área.

Al estar en constante actualización, estos programas permiten que los estudiantes se mantengan al día con los cambios del mercado y adquieran las habilidades más valoradas por los empleadores. De esta manera, quienes finalizan sus estudios en TECH reciben una preparación integral que les proporciona una ventaja competitiva notable para avanzar en sus carreras.

Y además, podrán hacerlo desde cualquier dispositivo, pc, tableta o smartphone.

El modelo de TECH es asincrónico, de modo que te permite estudiar con tu pc, tableta o tu smartphone donde quieras, cuando quieras y durante el tiempo que quieras"

tech 30 | Metodología de estudio

Case studies o Método del caso

El método del caso ha sido el sistema de aprendizaje más utilizado por las mejores escuelas de negocios del mundo. Desarrollado en 1912 para que los estudiantes de Derecho no solo aprendiesen las leyes a base de contenidos teóricos, su función era también presentarles situaciones complejas reales. Así, podían tomar decisiones y emitir juicios de valor fundamentados sobre cómo resolverlas. En 1924 se estableció como método estándar de enseñanza en Harvard.

Con este modelo de enseñanza es el propio alumno quien va construyendo su competencia profesional a través de estrategias como el *Learning by doing* o el *Design Thinking*, utilizadas por otras instituciones de renombre como Yale o Stanford.

Este método, orientado a la acción, será aplicado a lo largo de todo el itinerario académico que el alumno emprenda junto a TECH. De ese modo se enfrentará a múltiples situaciones reales y deberá integrar conocimientos, investigar, argumentar y defender sus ideas y decisiones. Todo ello con la premisa de responder al cuestionamiento de cómo actuaría al posicionarse frente a eventos específicos de complejidad en su labor cotidiana.

Método Relearning

En TECH los case studies son potenciados con el mejor método de enseñanza 100% online: el Relearning.

Este método rompe con las técnicas tradicionales de enseñanza para poner al alumno en el centro de la ecuación, proveyéndole del mejor contenido en diferentes formatos. De esta forma, consigue repasar y reiterar los conceptos clave de cada materia y aprender a aplicarlos en un entorno real.

En esta misma línea, y de acuerdo a múltiples investigaciones científicas, la reiteración es la mejor manera de aprender. Por eso, TECH ofrece entre 8 y 16 repeticiones de cada concepto clave dentro de una misma lección, presentada de una manera diferente, con el objetivo de asegurar que el conocimiento sea completamente afianzado durante el proceso de estudio.

El Relearning te permitirá aprender con menos esfuerzo y más rendimiento, implicándote más en tu especialización, desarrollando el espíritu crítico, la defensa de argumentos y el contraste de opiniones: una ecuación directa al éxito.

Un Campus Virtual 100% online con los mejores recursos didácticos

Para aplicar su metodología de forma eficaz, TECH se centra en proveer a los egresados de materiales didácticos en diferentes formatos: textos, vídeos interactivos, ilustraciones y mapas de conocimiento, entre otros. Todos ellos, diseñados por profesores cualificados que centran el trabajo en combinar casos reales con la resolución de situaciones complejas mediante simulación, el estudio de contextos aplicados a cada carrera profesional y el aprendizaje basado en la reiteración, a través de audios, presentaciones, animaciones, imágenes, etc.

Y es que las últimas evidencias científicas en el ámbito de las Neurociencias apuntan a la importancia de tener en cuenta el lugar y el contexto donde se accede a los contenidos antes de iniciar un nuevo aprendizaje. Poder ajustar esas variables de una manera personalizada favorece que las personas puedan recordar y almacenar en el hipocampo los conocimientos para retenerlos a largo plazo. Se trata de un modelo denominado *Neurocognitive context-dependent e-learning* que es aplicado de manera consciente en esta titulación universitaria.

Por otro lado, también en aras de favorecer al máximo el contacto mentoralumno, se proporciona un amplio abanico de posibilidades de comunicación, tanto en tiempo real como en diferido (mensajería interna, foros de discusión, servicio de atención telefónica, email de contacto con secretaría técnica, chat y videoconferencia).

Asimismo, este completísimo Campus Virtual permitirá que el alumnado de TECH organice sus horarios de estudio de acuerdo con su disponibilidad personal o sus obligaciones laborales. De esa manera tendrá un control global de los contenidos académicos y sus herramientas didácticas, puestas en función de su acelerada actualización profesional.

La modalidad de estudios online de este programa te permitirá organizar tu tiempo y tu ritmo de aprendizaje, adaptándolo a tus horarios"

La eficacia del método se justifica con cuatro logros fundamentales:

- 1. Los alumnos que siguen este método no solo consiguen la asimilación de conceptos, sino un desarrollo de su capacidad mental, mediante ejercicios de evaluación de situaciones reales y aplicación de conocimientos.
- 2. El aprendizaje se concreta de una manera sólida en capacidades prácticas que permiten al alumno una mejor integración en el mundo real.
- 3. Se consigue una asimilación más sencilla y eficiente de las ideas y conceptos, gracias al planteamiento de situaciones que han surgido de la realidad.
- **4.** La sensación de eficiencia del esfuerzo invertido se convierte en un estímulo muy importante para el alumnado, que se traduce en un interés mayor en los aprendizajes y un incremento del tiempo dedicado a trabajar en el curso.

La metodología universitaria mejor valorada por sus alumnos

Los resultados de este innovador modelo académico son constatables en los niveles de satisfacción global de los egresados de TECH.

La valoración de los estudiantes sobre la calidad docente, calidad de los materiales, estructura del curso y sus objetivos es excelente. No en valde, la institución se convirtió en la universidad mejor valorada por sus alumnos según el índice global score, obteniendo un 4,9 de 5.

Accede a los contenidos de estudio desde cualquier dispositivo con conexión a Internet (ordenador, tablet, smartphone) gracias a que TECH está al día de la vanguardia tecnológica y pedagógica.

Podrás aprender con las ventajas del acceso a entornos simulados de aprendizaje y el planteamiento de aprendizaje por observación, esto es, Learning from an expert.

tech 34 | Metodología de estudio

Así, en este programa estarán disponibles los mejores materiales educativos, preparados a conciencia:

Material de estudio

Todos los contenidos didácticos son creados por los especialistas que van a impartir el curso, específicamente para él, de manera que el desarrollo didáctico sea realmente específico y concreto.

Estos contenidos son aplicados después al formato audiovisual que creará nuestra manera de trabajo online, con las técnicas más novedosas que nos permiten ofrecerte una gran calidad, en cada una de las piezas que pondremos a tu servicio.

Prácticas de habilidades y competencias


Realizarás actividades de desarrollo de competencias y habilidades específicas en cada área temática. Prácticas y dinámicas para adquirir y desarrollar las destrezas y habilidades que un especialista precisa desarrollar en el marco de la globalización que vivimos.

Resúmenes interactivos

Presentamos los contenidos de manera atractiva y dinámica en píldoras multimedia que incluyen audio, vídeos, imágenes, esquemas y mapas conceptuales con el fin de afianzar el conocimiento.

Este sistema exclusivo educativo para la presentación de contenidos multimedia fue premiado por Microsoft como "Caso de éxito en Europa".

Lecturas complementarias

Artículos recientes, documentos de consenso, guías internacionales... En nuestra biblioteca virtual tendrás acceso a todo lo que necesitas para completar tu capacitación.

Case Studies

Completarás una selección de los mejores case studies de la materia.

Casos presentados, analizados y tutorizados por los mejores especialistas del panorama internacional.

Testing & Retesting

Evaluamos y reevaluamos periódicamente tu conocimiento a lo largo del programa. Lo hacemos sobre 3 de los 4 niveles de la Pirámide de Miller.

Clases magistrales

Existe evidencia científica sobre la utilidad de la observación de terceros expertos. El denominado *Learning from an expert* afianza el conocimiento y el recuerdo,

y genera seguridad en nuestras futuras decisiones difíciles.

Guías rápidas de actuación

TECH ofrece los contenidos más relevantes del curso en forma de fichas o guías rápidas de actuación. Una manera sintética, práctica y eficaz de ayudar al estudiante a progresar en su aprendizaje.

Dirección

Dr. López-Collazo, Eduardo

- Subdirector Científico en el Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Director del área de Respuesta Inmune y Enfermedades Infecciosas del IdiPAZ
- Director del Grupo de Respuesta Inmune y Tumor Inmunología del IdiPAZ
- Miembro del Comité Científico Externo del Instituto Murciano de Investigación Sanitaria
- Patrono de la Fundación para la Investigación Biomédica del Hospital La Paz
- Miembro de la Comisión Científica de FIDE
- Editor de la revista científica internacional *Mediators of Inflammation*
- Editor de la revista científica internacional Frontiers of Immunology
- Coordinador de Plataformas del IdiPAZ
- Coordinador de los Fondos de Investigación Sanitarias en las áreas de Cáncer, Enfermedades Infecciosas y VIH
- Doctor en Física Nuclear por la Universidad de La Habana
- Doctor en Farmacia por la Universidad Complutense de Madrid

Profesores

D. Arnedo Abad, Luis

- Data & Analyst Manager
- Data Scientist & Analyst Manager en Industrias Arnedo
- Data Scientist & Analyst Manager en Boustique Perfumes
- Data Scientist & Analyst Manager en Darecod
- Diplomado en Estadística
- Graduado en Psicología

Dr. Del Fresno, Carlos

- Investigador Experto en Bioquímica, Biología Molecular y Biomedicina
- Investigador Miguel Servet. Jefe de Grupo, Instituto de Investigación del Hospital la Paz (IdiPAZ)
- Investigador Asociación Española contra el Cáncer (AECC), Centro Nacional de Investigaciones Cardiovasculares (CNIC – ISCIII)
- Investigador Centro Nacional de Investigaciones Cardiovasculares (CNIC ISCIII)
- Investigador Sara Borrel, Centro Nacional de Biotecnología
- Doctor en Bioquímica, Biología molecular y Biomedicina por la Universidad Autónoma de Madrid
- Licenciado en Biología por la Universidad Complutense de Madrid

Dr. Avendaño Ortiz, José

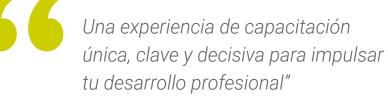
- Investigador Sara Borrell Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal (FIBioHRC/IRyCIS)
- Investigador Fundación para la Investigación Biomédica del Hospital Universitario La Paz (FIBHULP/IdiPAZ)
- Investigador Fundación HM hospitales (FiHM)
- Graduado en Ciencias Biomédicas por la Univesidad de Lleida
- Máster en Investigación Farmacológica por la Universidad Autónoma de Madrid
- Doctorado en Farmacología y Fisiología por la Universidad Autónoma de Madrid

Dr. Pascual Iglesias, Alejandro

- Coordinador de la Plataforma de Bioinformática en el Hospital La Paz
- Asesor del Comité de expertos COVID-19 de Extremadura
- Investigador en grupo de investigación respuesta inmune innata de Eduardo López-Collazo, Instituto de Investigación Sanitaras Hospital Universitario La Paz
- Investigador en grupo de investigación coronavirus de Luis Enjuanes en el Centro Nacional de Biotecnología CNB-CSIC
- Coordinador de Formación Continuada en Bioinformártica en el Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Doctor Cum Laude en Biociencias Moleculares por la Universidad Autónoma de Madrid
- Licenciado en Biología Molecular por la Universidad de Salamanca
- Máster en Fisiopatología y Farmacología Celular y Molecular por la Universidad de Salamanca

tech 40 | Cuadro docente

Dra. Gómez Campelo, Paloma


- Investigadora del Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Subdirectora Técnica del Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Directora del Biobanco del Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Docente colaboradora de la Universitat Oberta de Catalunya
- Doctora en Psicología por la Universidad Complutense de Madrid
- Licenciada en Psicología por la Universidad Complutense de Madrid

Dr. Martín Quirós, Alejandro

- Jefe del Grupo de Investigación de Patología Urgente y Emergente del Instituto de Investigación del Hospital Universitario La Paz
- Secretario de la Comisión de Docencia de Instituto de Investigación Hospital Universitario La Paz
- Adjunto del Servicio de Urgencias del Hospital Universitario de la Paz
- Adjunto de Medicina Interna/Infecciosas de la Unidad de Aislamiento de Alto Nivel del Hospital Universitario La Paz-Hospital Carlos III
- Médico Internista en Hospital Olympia Quirón

tech 44 | Titulación

Este **Máster Título Propio en Investigación Médica** contiene el programa universitario más completo y actualizado del mercado.

Tras la superación de la evaluación, el alumno recibirá por correo postal* con acuse de recibo su correspondiente título de **Máster Propio** emitido por **TECH Universidad**.

Este título expedido por **TECH Universidad** expresará la calificación que haya obtenido en el Máster Título Propio, y reunirá los requisitos comúnmente exigidos por las bolsas de trabajo, oposiciones y comités evaluadores de carreras profesionales.

Título: Máster Título Propio en Investigación Médica

Modalidad: No escolarizada (100% en línea)

Duración: 12 meses

^{*}Apostilla de La Haya. En caso de que el alumno solicite que su título en papel recabe la Apostilla de La Haya, TECH Universidad realizará las gestiones oportunas para su obtención, con un coste adicional.

tech

universidad

Máster Título Propio Investigación Médica

- » Modalidad: No escolarizada (100% en línea)
- » Duración: 12 meses
- » Titulación: TECH Universidad
- » Horario: a tu ritmo
- » Exámenes: online

