

Mastère Spécialisé Avancé Économie de la Blockchain et NFT dans les Jeux vidéo

» Modalité: en ligne

» Durée: 2 ans

» Qualification: TECH Global University

» Accréditation: 120 ECTS

» Horaire: à votre rythme

» Examens: en ligne

Accès au site web: www.techtitute.com/fr/jeux-video/mastere-specialise-avance/mastere-specialise-avance-blockchain-nft-economie-jeu-video

Sommaire

02 Objectifs Présentation page 4 page 8 03 05 Compétences Direction de la formation Structure et contenu page 16 page 20 page 28 06 Méthodologie Diplôme

page 44

page 52

tech 06 | Présentation

La technologie *Blockchain* fait partie de l'industrie du jeu vidéo depuis quelques années, Sky Mavis ayant été le pionnier de son utilisation avec le lancement d'Axie Infinity. Cependant, le développement des NFT et les possibilités qui découlent de leur application dans le monde des crypto-monnaies et des actifs numériques ont conduit des géants de l'industrie du *Gaming* tels que SEGA, Square Enix et Zynga, entre autres, à intégrer ces techniques dans leurs stratégies de conception et de marketing.

Il s'agit d'un secteur en expansion continue qui nécessite des connaissances spécialisées et spécifiques, non seulement en termes de technologie impliquée dans la *Blockchain*, mais aussi en termes d'application commerciale et de services DeFi. Pour cette raison, et afin que le diplômé trouve en un seul diplôme toutes les informations qui lui permettent de répondre à la demande du secteur pour des professionnels hautement qualifiés dans le domaine, TECH et son équipe d'experts ont décidé de lancer ce Mastère Spécialisé Avancé en Économie de la *Blockchain* et NFT dans les Jeux vidéo.

Grâce à une formation pluridisciplinaire, vous plongerez dans le développement des blockchains publiques et leur application dans l'industrie du *Gaming*, en mettant l'accent sur les meilleurs outils pour des projets sécurisés et réussis. En bref, il s'agit d'un programme qui rassemble, en un seul programme intensif, théorique et pratique, les spécifications de la programmation de la *Blockchain* et son économie basée sur le *Crypto-Gaming*.

En outre, parmi les caractéristiques qui font de ce diplôme le meilleur du marché, il y a son format 100 % en ligne, adapté à chaque diplômé. Grâce à cela, vous pourrez accéder à la classe virtuelle 24 heures sur 24 et depuis n'importe quel appareil doté d'une connexion Internet, ce qui vous permettra de personnaliser cette expérience académique en fonction de vos propres disponibilités, sans horaires ni cours en face à face.

Ce Mastère Spécialisé Avancé en Économie de la Blockchain et NFT dans les Jeux vidéo contient le programme le plus complet et le plus actuel du marché. Ses principales caractéristiques sont :

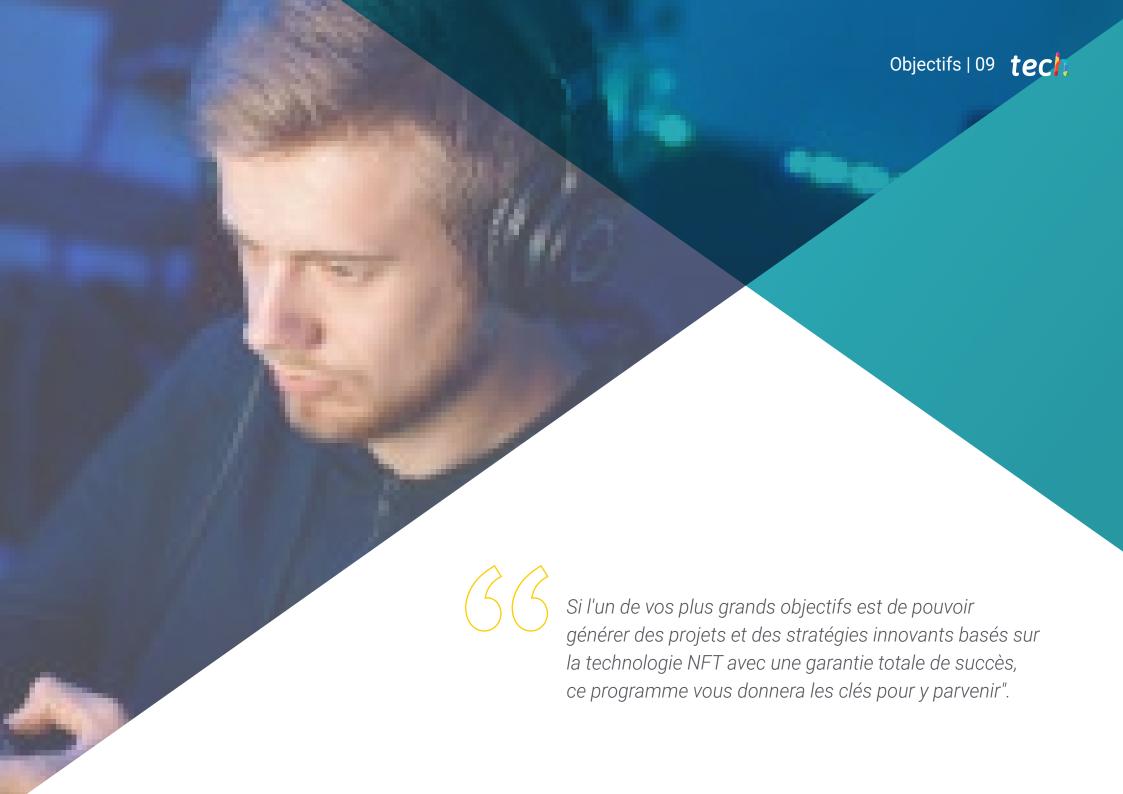
- Le développement d'études de cas présentées par des experts en Économie de la Blockchain et développement de jeux vidéo.
- Le contenu graphique, schématique et éminemment pratique du programme fournit des informations scientifiques et pratiques sur les disciplines essentielles à la pratique professionnelle
- Exercices pratiques permettant de réaliser le processus d'auto-évaluation afin d'améliorer l'apprentissage
- L'accent est mis sur les méthodologies innovantes dans la Industrie de l'informatique et la Programmation.
- Les cours théoriques, des questions à l'expert, des forums de discussion sur des sujets controversés et un travail de réflexion individuel
- La possibilité d'accéder au contenu à partir de n'importe quel appareil fixe ou portable doté d'une connexion internet

Grâce aux compétences que vous développerez dans le cadre de cette formation, vous serez en mesure de maîtriser parfaitement Hyperledger Besu et Fabric pour adapter les spécifications de la Blockchain au monde de l'entreprise".

L'utilisation d'une méthodologie pédagogique de pointe dans la conception de cette qualification vous aidera à comprendre en détail les implications juridiques de la Blockchain et à générer des connaissances spécialisées sur le Whitepaper"

Il comprend dans son corps enseignant des professionnels appartenant au domaine de l'informatique et au développement de jeux vidéo, qui versent dans ce programme l'expérience de leur travail, ainsi que des spécialistes reconnus issus de grandes entreprises et d'universités prestigieuses.

Son contenu multimédia, développé avec les dernières technologies éducatives, permettra au professionnel un apprentissage situé et contextuel, c'est-à-dire un environnement simulé qui fournira un étude immersif programmé pour s'entraîner dans des situations réelles.


La conception de ce programme est axée sur l'Apprentissage par les Problèmes, grâce auquel l'étudiant doit essayer de résoudre les différentes situations de la pratique professionnelle qui se présentent tout au long du Certificat Avancé. Pour ce faire, le professionnel aura l'aide d'un système vidéo interactif innovant créé par des experts reconnus.

Un programme 100% en ligne sans horaires ni classes en présentiel avec lequel vous pourrez gérer la conception de l'architecture Blockchain d'où vous voulez et quand vous voulez.

Vous disposerez d'une multitude de matériel supplémentaire dans différents formats pour approfondir, par exemple, les caractéristiques de la gestion d'Ethereum, Stellar et Polkadot.

tech 10 | Objectifs

Objectifs généraux

- Tirer des conclusions sur les bonnes pratiques de sécurité
- Prendre conscience des vulnérabilités dont peut souffrir une Blockchain
- Analyser l'impact futur du développement sur les Blockchain publiques
- Élaborer des critères de conception pour les applications sur les clients Hyperledger Besu en production
- Acquérir des connaissances sur la gestion et la configuration des réseaux basés sur Hyperledger Besu
- Promouvoir les bonnes pratiques lors du développement d'applications qui reposent sur des réseaux *Blockchain*, en particulier celles basées sur Ethereum et sur le client *Hyperledger Besu*
- Intégrer les connaissances existantes de l'apprenant d'une manière raffinée basée sur les besoins de l'industrie et des entreprises avec leurs notions de qualité, de mesure de l'effort et d'évaluation du développement, en augmentant leur valeur en tant que développeur d'applications *Blockchain*
- Générer des connaissances spécialisées sur ce qu'englobe Hyperledger Fabric et comment il fonctionne
- Examiner les ressources fournies par Hyperledger gratuitement
- Analyser les caractéristiques de Hyperledger Fabric
- Développer les principaux cas d'utilisation actuels de Fabric
- Déterminer ce qu'est Open Finance
- Analyser l'évolution du monde crypto à ce jour
- Identifier la réglementation applicable aux différents modèles commerciaux offerts par la technologie

- Établir les bases de connaissances du monde crypté et de ses aspects clés
- Identification des risques juridiques potentiels dans les projets réels
- Déterminer les processus logistiques afin de définir les principaux besoins et et gaps du processus logistique actuel
- Démontrer le potentiel de la technologie et valider la solution qui répond au besoin
- Mettre en œuvre la solution en plusieurs phases afin d'en extraire la valeur dès le début du projet et de pouvoir l'adapter en fonction de l'utilisation et de l'apprentissage
- Analyser pourquoi appliquer ou non une solution Blockchain dans notre environnement
- Générer une expertise sur le concept logique des technologies distribuées en tant gu'avantage comparatif
- Identifier systématiquement et en profondeur le fonctionnement de la technologie Blockchain, en développant comment ses avantages et ses inconvénients sont liés au fonctionnement de son architecture
- Analyser les principales caractéristiques de la finance décentralisée dans le contexte de l'économie Blockchain
- Établir les caractéristiques fondamentales des jetons non fongibles, leur fonctionnement et leur déploiement depuis leur émergence jusqu'à aujourd'hui.
- Comprendre le lien entre les NFT et de la *Blockchain* et examiner les stratégies de génération et d'extraction de valeur des jetons non fongibles.
- Exposer les caractéristiques des principales cryptomonnaies, leur utilisation, niveau d'intégration dans l'économie mondiale et les projets de gamification virtuelle

Objectifs spécifiques

Module 1 Développement de *Blockchain* publiques : *Ethereum*, Stellar et Polkadot

- Élargir les compétences dans le monde du Développement de la *Blockchain*
- Développer des exemples de cas pratiques
- Compiler les connaissances génériques sur les *Blockchain* en pratique
- Analyser le fonctionnement d'une *Blockchain* publique
- Acquérir de l'expérience dans Solidity
- Établir des relations entre les différentes *Blockchain* publiques
- Créer un projet sur une Blockchain publique

Module 2 Technologie de la Blockchain Cryptographie et Sécurité

- Établir des méthodologies pour analyser l'information et détecter la tromperie sur Internet
- Planifier une stratégie de recherche sur Internet
- Déterminer les outils les plus appropriés pour réaliser l'attribution d'une action criminelle sur Internet
- Déployer un environnement utilisant les outils Logstash, Elasticsearch et Kibana
- Traiter les risques auxquels sont confrontés les analystes lors d'un exercice d'enquête
- Mener des processus de vérification basés sur la disponibilité des Wallet ou des adresses
- Identifier les indices possibles de l'utilisation de Mixers pour brouiller la piste des transactions

tech 12 Objectifs

Module 3 Développement de Blockchain en Entreprise : Hyperledger Besu

- Identifier les points de configuration clés des protocoles de consensus disponibles avec Hyperledger besu
- Dimensionner correctement un service Hyperledger besu pour supporter des applications d'entreprise
- Développer des protocoles de tests automatisés pour la validation de la qualité dans les environnement Hyperledger besu
- Établir les critères de sécurité d'un environnement productif avec Hyperledger besu
- Compiler les différents types de configurations sur les clients de Hyperledger besu
- Déterminer les critères de Dimensionnement d'une application avec Hyperledger besu
- Renforcer la connaissance du fonctionnement des mécanismes de consensus mis en œuvre dans Hyperledger besu
- Définir le *Stack* technologique la plus intéressante dans la mise en œuvre de l'infrastructure et le développement d'applications basées sur Hyperledger besu

Module 4 Développement de Blockchain en Entreprise : Hyperledger Fabric

- Générer des connaissances spécialisées sur Hyperledger y Fabric
- Déterminer le fonctionnement interne des transactions
- Résoudre un problème avec Fabric
- Déployer Fabric
- · Acquérir une expérience dans les déploiements de Fabric

Module 5 Identité souveraine basée sur la Blockchain

- Analyser les différentes technologies Blockchain qui permettent de développer des modèles d'identité numérique
- Analyser les propositions d'Identité Numérique Auto-Souveraine
- Évaluer l'impact sur l'administration publique de la mise en œuvre des modèles d'Identité Numérique Auto-Souveraine

- Établir les bases du développement de solutions d'identité numérique basées sur Blockchain
- Générer des connaissances spécialisées sur l'identité numérique
- Déterminer le fonctionnement interne des identités en *Blockchain*

Module 6 Blockchain et ses nouvelles applications : DeFi et NFT

- Évaluer l'importance des Stable Coins
- Examiner les protocoles Maker, Augur et Gnosis
- Déterminer le protocole AAVe
- Identifier l'importance de Uniswap
- Approfondir la philosophie des Sushiswap
- Analyser dY/dX et Synthetix
- Identifier les meilleurs marchés pour les échanges de NFT

Module 7 Blockchain. Implications juridiques

- Générer des connaissances spécialisées sur le concept Whitepaper
- Déterminer les exigences juridiques des crypto-actifs
- Établir les implications juridiques de la réglementation des crypto-monnaies
- Développer la réglementation des tokens et des ICOs
- Contraster et comparer la réglementation actuelle avec la réglementation EIDAS
- Examiner la réglementation actuelle des NFT

Module 8 Conception d'Architecture Blockchain

- Développer les bases de l'architecture
- Générer des connaissances spécialisées dans les réseaux Blockchain
- Évaluer les acteurs impliqués
- Déterminer les besoins en infrastructure
- Identifier les options de déploiement
- Former pour la mise en production

Module 9 Blockchain appliquée à la logistique

- Examiner la réalité des opérations de l'entreprise pour comprendre les besoins d'amélioration et les solutions futures avec la *Blockchain*
- Identifier le modèle *To Be* avec la solution la mieux adaptée aux besoins et aux défis de l'entreprise
- Analyser un Business Case avec un plan et une macro-solution approuvée par la direction
- Démontrer le potentiel et la portée de l'application ainsi que ses avantages au moyen d'un POC en vue d'une approbation opérationnelle
- Établir un plan de projet avec le *Owner* et les *Stackholders* pour commencer à travailler sur la définition fonctionnelle et la priorisation des *Sprints*
- Développer la solution conformément aux récits de l'utilisateur pour commencer les tests et les validations pour mettre en production
- Réaliser un plan concret de *Change Management* et de mise en œuvre de la *Blockchain* pour amener l'ensemble de l'équipe à un nouvel état d'esprit numérique et à une culture plus collaborative

Module 10 Blockchain et entreprise

- Analyser mentalement les raisons pour lesquelles nous devrions ou non mettre en œuvre un projet Blockchain dans notre environnement
- Examiner les défis auxquels nous sommes confrontés lors de la mise en œuvre d'un produit basé sur la DLT
- Adapter nos connaissances et nos outils mentaux pour comprendre le concept de Blockchain axé sur les projets
- Conjuguer toutes les possibilités que nous offre le vaste univers Blockchain, distribué,
 DeFi, etc. Déterminer guand un projet Blockchain est correct ou non

tech 14 Objectifs

• Discerner entre un projet qui a du sens et le hype associé à cette technologie

Module 11 Blockchain

- Identifier les composantes de la technologie *Blockchain*
- Déterminer les avantages de la Blockchain dans les projets d'entrepreneuriat
- Sélectionner les types de réseaux Ad Hoc en fonction des objectifs proposés lors de la planification d'un projet d'économie gamifié
- Choisir et gérer un Wallet (Digital Wallet)

Module 12 DeFi

- Acquérir les connaissances nécessaires à l'utilisation des projets basés sur le DeFi
- Identifier les avantages qu'offre la finance décentralisée à l'économie gamifié
- Identifier les différents niveaux de risque qui peuvent être pris dans l'utilisation de DeFi
- Décrire comment les marchés décentralisés constituent des applications dans le cadre de DeFi
- Identifier les strates pertinentes pour le secteur de l'économie gamifiée

Module 13 NFT

- Exploiter les nouveaux NFT
- Déterminer les propriétés des NFT
- Générer des stratégies d'innovation à partir de la technologie NFT
- Introduire les NFT dans les économies gamifiées
- Comprendre le fonctionnement du système d'exploitation des NFT dans les économies gamifiées
- Identifier la valeur d'une NFT sur le marché
- Employer des stratégies de valorisation des NFT

Module 14 Analyse des Cryptomonnaies

• Discriminer les crypto-monnaies les plus adaptées à des projets futurs

- Estimer le comportement des cryptomonnaies
- Interpréter les hausses et les baisses des crypto-monnaies
- Établir des critères pour la sélection des Stablecoins

Module 15 Réseaux

- Discriminer la sélection optimale des réseaux pour les objectifs proposés dans une future entreprise, à travers les exemples d'utilisation et les principales caractéristiques de chacun d'entre eux
- Comprendre le fonctionnement des réseaux et élaborer une stratégie autour d'eux
- Élaborer des plans pour améliorer l'accessibilité des réseaux au niveau de l'utilisateur

Module 16 Métaverse

- Analyser la forme immersive du jeu à travers l'analyse des coûts, des ressources technologiques et des objectifs d'avenir
- Catégoriser les espaces d'un métaverse en fonction de leur place dans le système économique
- Formuler des emplois liés au système économique du métaverse
- Administrer les systèmes de *Landing* dans un métaverse

Module 17 Plateformes externes

- Connaître les outils des principales plateformes qui offrent des services liés aux cryptocurrencies, à la *Blockchain*, aux économies décentralisées et aux NFT
- Utiliser les plateformes externes pour augmenter la génération de valeur au sein d'un projet de jeu *Blockchain*
- Comprendre le fonctionnement des DEX

Module 18 Analyse des variables dans les économies gamifiées

• Catégoriser les éléments d'un jeu en fonction de leur incidence sur l'économie

- finale du jeu
- Identifier les degrés auxquels les variables économiques d'un jeu peuvent être classées dans leur catégorie
- Comprendre les relations proportionnelles et inversement proportionnelles entre deux ou plusieurs variables économiques

Module 19 Systèmes économiques gamifiés

- Systèmes économiques gamifiés Construire l'économie d'un jeu
- Élaborer un environnement économique durable à long terme
- Décrire les points critiques de l'économie Blockchain dans un projet d'entreprise.
- Identifier le comportement du réseau d'éléments qui composent le système économique d'un jeu *Blockchain*
- Orienter l'économie d'un jeu en fonction des objectifs de rentabilité proposés.

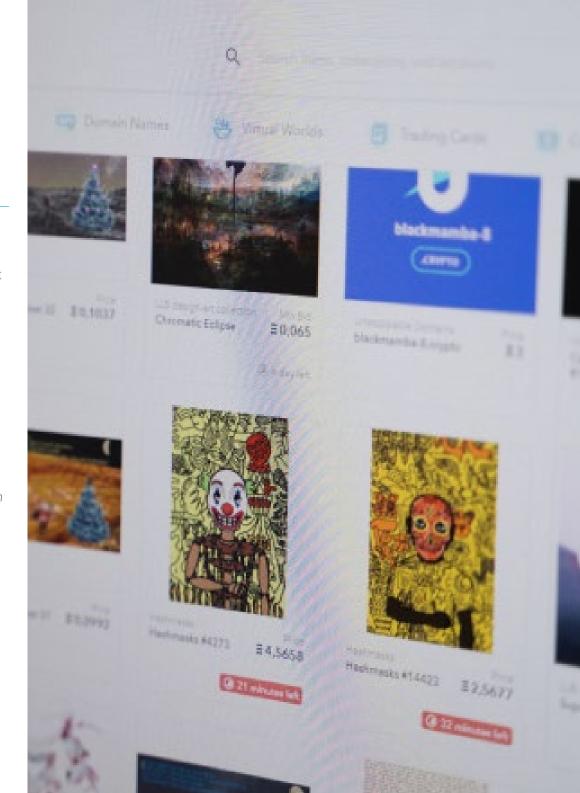
Module 20 Analyse des Jeux Vidéo sur la Blockchain

- Discerner les stratégies économiques qui ont montré la plus grande stabilité et rentabilité dans les projets du marché actuel
- Identifier les marges de stabilité et de rentabilité des projets d'économie gamifiée
- Maîtriser les tendances du marché des jeux Blockchain en fonction de leur participation, stabilité et rentabilité

Se pencher sur les stratégies de monétisation des NFT dans les économies gamifiées par le biais des consommables et de l'exploitation minière vous permettra de développer des projets plus ambitieux avec une plus grande garantie de succès".

03 Compétences

Pendant la période universitaire, l'étudiant apprend tout ce qui est nécessaire pour mener à bien une praxis professionnelle adaptée aux spécifications du secteur, qui peut ensuite être améliorée sur le marché du travail. Cependant, dans des environnements tels que ceux liés à la *Blockchain* et à l'industrie des jeux vidéo, il est nécessaire d'actualiser constamment leurs connaissances, afin que les compétences qu'ils développent sur le lieu de travail soient les plus appropriées, sur la base de l'actualité immédiate de la profession. Par conséquent, cette qualification vous aidera à éviter de développer des projets dépassés et obsolètes, en développant et en perfectionnant vos compétences créatives et spécialisées dans le domaine des technologies de l'information.



tech 18 | Compétences

Compétences générales

- Déterminer dans quelle mesure les informations peuvent être collectées à partir des Wallets que nous détenons physiquement et dans quelle mesure les informations peuvent être collectées uniquement lorsque nous avons une adresse
- Gérer le déploiement d'un projet Hyperledger Fabric
- Évaluer l'impact des modèles actuels d'identité numérique sur la vie privée et la sécurité des données
- Identifier les avantages de l'utilisation de la technologie *Blockchain* pour le déploiement de solutions basées sur l'identité numérique
- Évaluer les nouvelles formes de revenus passifs
- Examiner les principaux avantages pour les citoyens liés à la mise en œuvre de modèles d'identité numérique auto-souveraine
- Compiler des cas d'utilisation où les modèles d'identité numérique basés sur la *Blockchain* transforment les processus des organisations
- Comprendre la nature révolutionnaire de la *Blockchain* et planifier les objectifs entrepreneuriaux en fonction de son fonctionnement.
- Identifier le potentiel et les avantages du modèle DeFi pour de futures entreprises tout en gérant les principales différences avec d'autres modèles économiques.
- Analyser la relation et les moyens de mettre en œuvre des Tokens non fongibles avec les économies gamifiées.
- Comprendre le fonctionnement et la constitution du Métaverse.
- Planifier les moyens d'intégrer des plateformes *Blockchain* externes à notre projet de gamification.

Compétences spécifiques

- Générer des connaissances spécialisées sur Ethereum en tant que Blockchain publique
- Maîtriser la plateforme Stellar
- Se spécialiser dans Polkadot et Substrate
- Déterminer le réseau Blockchain approprié pour chaque projet
- Obtenir un réseau Blockchain sécurisé, stable et évolutif
- Établir la meilleure solution et l'applicabilité de la *Blockchain* pour les besoins de l'entreprise et de toutes les parties prenantes
- Analyser la meilleure façon de mettre en œuvre un développement Blockchain en mettant l'accent sur les bases de la technologie
- Analyser la meilleure façon de mettre en œuvre un développement *Blockchain* en mettant l'accent sur les bases de la technologie
- Évaluer les niveaux de risque dans les projets DeFi
- Décrire les stratégies de prêt et de Trading en DeFi
- Comprendre les différentes manières de construire un espace virtuel décentralisé et analyser les opportunités économiques liées à ce phénomène de marché.
- Établir les différences entre Bitcoin et Altcoins.
- Diagnostiquer le degré d'utilité des plateformes externes dans un projet de gamification Blockchaindonné

- Différencier le niveau d'impact des différentes variables dans les économies gamifiées.
- Identifier les types d'actifs dans la création d'une économie gamifiée.
- Établir des économies basées sur des variables économiques gamifiées et générer des économies durables à long terme.
- Analyser les possibilités de réussite d'un système économique à partir de l'étude de son économie interne.
- Sélectionner des projets dont les caractéristiques sont similaires à notre entreprise comme objet d'étude et de validation des stratégies futures pour générer de la rentabilité et de la valeur dans nos actifs numériques.

Dans ce titre, vous trouverez un module dédié à l'analyse des crypto-monnaies, afin que vous puissiez inclure cet actif numérique de manière argumentée dans vos projets Blockchain"

Directeur invité international

Rene Stefancic est un professionnel de premier plan des technologies Blockchain et Web3, connu pour son approche innovante et son leadership stratégique dans les écosystèmes numériques émergents. Il occupe actuellement le poste de Chief Operating Officer (COO) chez Enjin, une plateforme pionnière de Blockchain et de NFT, où il gère des tâches telles que l'adoption de nouveaux outils et favorise les partenariats stratégiques afin de mettre en place des solutions informatiques de pointe. Avec une approche pratique et axée sur les résultats, il applique sa philosophie « nager ou couler » et « tout essayer » à chaque projet, cherchant toujours à résoudre les défis les plus complexes d'une manière évolutive et efficace.

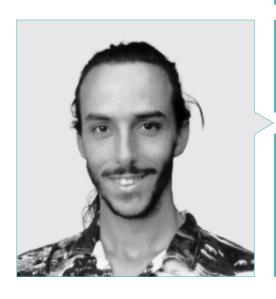
Avant de rejoindre Enjin, Stefancic a occupé le poste de Head of Marketing chez CoinCodex, une plateforme d'agrégation de données sur les crypto-monnaies. C'est dans cet environnement qu'il a consolidé son expertise en marketing numérique et en stratégies de croissance, jouant un rôle décisif dans l'expansion de la visibilité et de la portée de l'entreprise. Sa transition vers le monde de la Blockchain a commencé lorsqu'il a décidé de quitter sa carrière dans la finance traditionnelle pour se concentrer sur la modélisation et l'analyse des données dans ce nouveau secteur, jetant ainsi les bases de sa carrière dans un marché en constante évolution.

Avec une vision axée sur le développement de produits et la stratégie Informatique, l'expert excelle à diriger des équipes vers la création de solutions innovantes et applicables dans le contexte de la technologie Blockchain. Sa capacité à nouer des relations d'affaires solides et durables lui a permis d'établir des partenariats stratégiques clés dans l'industrie, cimentant sa réputation internationale de leader dynamique dans le domaine de la technologie et des actifs numériques.

M. Stefancic, Rene

- Directeur Opérationnel (COO, Chief Operating Officer) chez Enjin, Singapour, Singapour
- Conseiller en Blockchain chez NFTFrontier
- Consultant en IT chez RS IT Consulting
- Directeur du Marketing chez CoinCodex
- Consultant chez NextCash
- Spécialiste du Marketing Numérique au sein du Groupe Piaggio Slovénie
- Master en Gestion à la Faculté de Gestion de l'Université de Primorska
- Diplôme en Économie à la Faculté d'Économie et de Commerce de l'Université de Ljubljana

Grâce à TECH, vous pourrez apprendre avec les meilleurs professionnels du monde"


tech 24 | Direction de la formation

Direction

M. Torres Palomino, Sergio

- Ingénieur Informatique Spécialisé en Blockchain
- Blockchain Lead à Telefónica
- Architecte Blockchain en Signeblock
- Développeur Blockchain à Blocknitive
- Écrivain et Vulgarisateur de O'Really Media Books
- Conférencier dans le Cadre des Etudes de 3ème Cycle et des cours liés à la Blockchair
- Diplômé en Ingénieur Informatique à l'Université San Pablo CEL
- Master en Architecture Big Data
- Master en Big Data et Business Analytics

M. Olmo Cuevas, Alejandro

- Concepteur de Jeux Vidéo et Économies de Blockchain pour les Jeux Vidéo
- Fondateur de Seven Moons Studios Blockchain Gaming
- Fondateur du projet Niide
- Auteur de récits fantastiques et de prose poétique

Professeurs

M. Triguero Tirado, Enrique

- Responsable Technique en Infrastructure Blockchain à UPC-Threepoints
- Chief Technical Officer à Ilusiak
- Project Management Officer à Ilusiak et Deloitte
- Ingénieur ELK à Everis
- Architecte de Systèmes à Everis
- Diplômés en Génie Technique Informatique des Systèmes de l'Université Polytechnique de Valence
- Master en Blockchain et ses Applications aux Entreprises à ThreePoints et Université Polytechnique de Valence

M. Callejo Gonzáles, Carlos

- PDG et Fondateur de Block Impulse
- Directeur de la Technologie chez Stoken Capital
- Conseiller au Club Crypto Actual
- Conseiller chez Cryptocurrencies for All Plus
- Master en Blockchain Appliquée
- Diplôme Supérieur en Systèmes d'Information et de Télécommunication

M. De Araujo, Rubens Thiago

- Manager de Projets Blockchain de la Chaîne d'Approvisionnement Informatique à Telefónica Global Technology
- Responsable des Projets Logistiques et Innovation à Telefónica Brésil
- Enseignant de Programmes Universitaires dans sa spécialité
- Master en Gestion de Projet PMI de l'Université SENAC Brésil
- Diplôme en Logistique Technologique de l'Université SENAC Brésil

Mme Foncuberta, Marina

- Avocate Senior Associate en ATH21, Blockchain, Cybersécurité, IT, Confidentialité et Protection des Données.
- Maître de conférences à l'Université San Pablo CEU : sujet "Droit et nouvelles technologies
 : Blockchain
- Avocate Pinsent Masons, département Cybersécurité Blockchain, IT, Confidentialité et Protection des Données.
- Avocate dans le cadre du Programme de Secondment, Département Technologie, IT, Vie Privée et Protection des Données, Wizink
- Avocate dans le cadre du Programme de Secondment, Département Cybersécurité, IT, Vie privée et Protection des données, IBM
- Licence en Droit et diplôme d'études commerciales de l'Université Pontificale de Comillas (ICADE), Madrid.
- Master en Propriété Intellectuelle et Industrielle, de l'Université Pontificale de Comillas (ICADE), Madrid.
- Programme sur le Droit et la Blockchain : Blockchain: Implications juridiques

M. Olalla Bonal, Martín

- Responsable de la Pratique Blockchain chez EY
- Spécialiste Technique Client Blockchain pour IBM
- Directeur de l'Architecture de Blocknitive
- Coordinateur de l'Équipe Bases de Données Distribuées non Relationnelles pour wedolT (Filiale d'IBM)
- Architecte d'Infrastructure chez Bankia
- Chef du Département Mise en Page chez T-Systems
- Coordinateur de Département pour Bing Data Espagne S.L.

tech 26 | Direction de la formation

M. Vaño Francés, Juan Francisco

- Ingénieur en Sciences Informatiques
- Ingénieur Solidity à Vivatopia
- Technicien Supérieur en Informatique à R. Belda Lloréns
- Ingénieur en Sciences Informatiques à l'Université Polytechnique de Valence
- Spécialisation en Programmation DApp et Développement de Smart Contract avec Solidity
- Cours sur les Outils de Science des Données.

Mme Salgado Iturrino, María

- Ingénieur en Software Spécialisé en Blockchain
- Blockchain Manager Iberia & LATAM à Inetum
- Identity Comission Core Team Leader à Alastria Blockchain Ecosystem
- Software Developer à Indra
- Professeur d'Etudes Universitaires en Blockchain
- Diplôme en Génie Software de l'Université Complutense de Madrid
- Master en Génie Informatique de l'Université Polytechnique de Madrid
- DU en Développement des Applications Blockchain Blockchain

M. Olmo Cuevas, Víctor

- Co-fondateur, Concepteur de Jeux et Économiste de Jeux à Seven Moons Studios Blockchain Gaming
- Designer Web et Joueur Professionnel
- Joueur Professionnel de Poker en ligne et Enseignant
- Designer Graphique à Arvato Services Bertelsmann
- Analyste de Projets et Investisseur dans Crypto Play to Earn Gaming Scene
- Technicien de Laboratoire Chimique
- Graphiste

M. García de la Mata, Íñigo

- Senior Manager et Architecte Software de l'Équipe Innovation à Grant Thornton
- Ingénieur Blockchain à Alastria Blockchain Ecosystem
- Enseignant en DU en Blockchain à l'UNIR
- Enseignant en Blockchain Bootcamp à Geekshub
- Consultant à Ascendo Consulting Healthcare & Pharma
- Ingénieur à ARTECHE
- Licence en Ingénierie Industrielle avec Spécialisation en Electronique
- Master en Électronique et Contrôle de l'Université Pontificale de Comillas
- Diplôme Universitaire en Ingénierie en Informatique de l'UNED
- Tutorat TFG à l'Université Pontificale de Comillas

M. Gálvez González, Danko Andrés

- Conseiller Commercial à Niide, un projet d'économie gamifiée sur *Blockchain*
- Programmeur HTML et CCS dans les projets de didactique de l'apprentissage
- Cadre Commercial à Movistar et Virgin Mobile
- Cadre Commercial à Movistar et Virgin Mobile

Licence en Sciences de l'Éducation à l'Université de Playa Ancha Sciences

Mme Gálvez González, María Jesús

- Conseillère de Dideco et Responsable du Département des Femmes de la Municipalité d'El Tabo
- Professeur à l'Institut Professionnel AIEP
- Chef du Département Social de la Municipalité d'El Tabo
- Licence en Travail Social à l'Université Santo Tomás
- Master en Gestion Stratégique des Personnes et Gestion Organisationnelle des Talents

Direction de la formation | 27 tech

Humains

• Diplôme en Économie Sociale de l'Université de Santiago du Chili

Mme Carrascosa Cobos, Cristina

- Avocate spécialisée dans le Droit des Technologies et l'utilisation des TIC
- Directrice et Fondatrice d'ATH21
- Chroniqueuse à CoinDesk
- Avocate au Cabinet Cuatrecasas
- Avocate au Cabinet Broseta
- Avocate au Cabinet Pinsent Masons
- Master en Conseil aux Entreprises de la IE Law School
- Master en Fiscalité et Impôts par le CEF
- Diplôme de Droit de l'Université de Valence

M. Herencia, Jesús

- Directeur des Actifs Numériques à OARO
- Fondateur et Consultant Blockchain au sein de Shareyourworld
- Directeur TI à Crédit Agricole Leasing & Factoring
- CEO de Blockchain Open Lab
- IT Manager de Mediasat
- Certificat en Génie Informatique des Systèmes de l'Université Polytechnique de Madrid
- Secrétaire Général d'AECHAIN
- Membre de : Comité Académique de Promotion de la Recherche en Cryptoassets et Technologie DLT, Ethereum Madrid et AECHAIN

tech 30 | Structure et contenu

Module 1 Développement avec la *Blockchain* Publique: *Ethereum*, Stellar et Polkadot

- 1.1. Ethereum Blockchain Publique
 - 1.1.1. Ethereum
 - 1.1.2. EVM et GAS
 - 1.1.3. Etherescan
- 1.2. Développement Ethereum Solidity
 - 1.2.1. Solidity
 - 1.2.2. Remix
 - 1.2.3. Compilation et exécution
- 1.3. Framework Ethereum Brownie
 - 1.3.1. Brownie
 - 1.3.2. Ganache
 - 1.3.3. Déploiement dans Brownie
- 1.4. Testing smart contracts
 - 1.4.1. Test Driven Development (TDD)
 - 1.4.2. Pytest
 - 1.4.3. Smart contracts
- 1.5. Connexion du site web
 - 1.5.1. Metamask
 - 1.5.2. web3.js
 - 1.5.3. Ether.js
- 1.6. Un projet réel. Token fungible
 - 1.6.1. ERC20
 - 1.6.2. Création de notre token
 - 1.6.3. Déploiement et validation
- 1.7. Stellar Blockchain
 - 1.7.1. Stellar blockchain
 - 1.7.2. Éco-système
 - 1.7.3. Comparaison avec Ethereum

- 1.8. Programmation en Stellar
 - 1.8.1. Horizon
 - 1.8.2. Stellar SDK
 - 1.8.3. Projet token fungible
- 1.9. Polkadot Project
 - 1.9.1. Polkadot Project
 - 1.9.2. Écosystème
 - 1.9.3. Interaction entre Ethereum et d'autres Blockchain
- 1.10. Programmation en Polkadot
 - 1.10.1. Substrate
 - 1.10.2. Création de Parachain de Substrate
 - 1.10.3. Intégration avec Polkadot

Module 2 Technologie Blockchain. Cryptographie et Sécurité

- 2.1. Cryptographie en *Blockchain*
- 2.2. Le Hash en Blockchain
- 2.3. Private Sharing Multi-Hasing (PSM Hash)
- 2.4. Signatures en Blockchain
- 2.5. Gestion des clés Wallets
- 2.6. Cryptage
- 2.7. Données onchain et ofchain
- 2.8. La sécurité et les Smart Contracts

Module 3 Développement de Blockchain en Entreprise : Hyperledger Besu

- 3.1. Configuration de Besu
 - 3.1.1. Paramètres de configuration clés dans les environnements de production
 - 3.1.2. Finetuning pour les services connectés
 - 3.1.3. Bonnes pratiques de configuration
- 3.2. Configurations de la blockchain
 - 3.2.1. Paramètres de configuration clés pour PoA
 - 3.2.2. Paramètres de configuration clés pour PoW
 - 3.2.3. Configurations du bloc de genèse

Structure et contenu | 31 tech

3.3.	Sécurisation de besu			
	3.3.1.	Sécurisation de RPC avec TLS		
	3.3.2.	Sécurisation de RPC avec NGINX		
	3.3.3.	Sécurisation avec un système de nœuds		
3.4.	Besu à haute disponibilité			
	3.4.1.	Redondance des nœuds		
	3.4.2.	Équilibreurs de transactions		
	3.4.3.	Transaction Pool dans la file d'attente du courrier		
3.5.	Outils Offchain			
	3.5.1.	Confidentialité-Tessera		
	3.5.2.	Identité-Alastria ID		
	3.5.3.	Indexation des données-Subgraph		
3.6.	Applications développées sur Besu			
	3.6.1.	Applications basées sur Tokens ERC 20		
	3.6.2.	Applications basées sur Tokens ERC 721		
	3.6.3.	Applications basées sur Tokens ERC 1155		
3.7.	Déploiement et automatisation de Besu			
	3.7.1.	Besu sur Docker		
	3.7.2.	Besu sur Kubernetes		
	3.7.3.	Besu sur Blockchain as a Service		
3.8.	Interopérabilité de Besu avec d'autres clients			
	3.8.1.	Interopérabilité avec Geth		
	3.8.2.	Interopérabilité avec OpenEthereum		
	3.8.3.	Interopérabilité avec d'autres DLT		
3.9.	Plugins pour Besu			
	3.9.1.	Plugins les plus courants		
	3.9.2.	Développement de Plugins		
	3.9.3.	Installation des <i>Plugins</i>		
3.10.	Configurations de l'environnement de développement			
	3.10.1.	Création d'un environnement en développement		
	3.10.2.	Création d'un environnement d'intégration du client		

3.10.3. Création d'un environnement de test de charge de pré-production

Module 4 Développement de *Blockchain* en Entreprise : Hyperledger Fabric

4. I. Hyperieuge	4.1.	Hyperledge	ŀľ
------------------	------	------------	----

- 4.1.1. Écosystème Hyperledger
- 4.1.2. Hyperledger Tools
- 4.1.3. Hyperledger Frameworks
- 4.2. Hyperledger fabric- composantes de son architecture L'état de l'art
 - 4.2.1. État de l'Art Hyperledger fabric
 - 4.2.2. Noeuds
 - 4.2.3. Orderers
 - 4.2.4. CouchDB et LevelDB
 - 4.2.5. CA
- 4.3. Hyperledger fabric- composantes de son architecture Processus de transaction
 - 4.3.1. Processus de transaction
 - 4.3.2. Chaincodes
 - 4.3.3. MSP
- 4.4. Technologies habilitantes
 - 4.4.1. Go
 - 4.4.2. Docker
 - 4.4.3. Docker Compose
 - 4.4.4. Autres technologies
- 4.5. Installation des pré-requis et préparation de l'environnement
 - 4.5.1. Préparation du serveur
 - 4.5.2. Téléchargement des pré-requis
 - 4.5.3. Télécharger à partir du référentiel officiel Hyperledger
- 4.6. Premier déploiement
 - 4.6.1. Déploiement Test Network automatique
 - 4.6.2. Déploiement test Network guidé
 - 4.6.3. Examen des composants déployés
- 4.7. Deuxième déploiement
 - 4.7.1. Déploiement de la collecte de données privées
 - 4.7.2. Intégration dans un réseau de fabric
 - 4.7.3. Autres projets

tech 32 | Structure et contenu

- 4.8. Chaincodes
 - 4.8.1. Structure d'un Chaincodes
 - 4.8.2. Déploiement et upgrade de Chaincodes
 - 4.8.3. Autres fonctions importantes de Chaincodes
- 4.9. Connexion à d'autres *Tools de Hyperledger* (Caliper et Explorer)
 - 4.9.1. Installation Hyperledger Explorer
 - 4.9.2. Installation Hyperledger Calipes
 - 4.9.3. Autres *Tools* importants
- 4.10. Certification
 - 4.10.1. Types de certifications officielles
 - 4.10.2. Préparation à CHFA
 - 4.10.3. Profils de Developer vs. Profils d'administrateur

Module 5 Identité souveraine basée sur la Blockchain

- 5.1. Identité numérique
 - 5.1.1. Données personnelles
 - 5.1.2. Réseaux sociaux
 - 5.1.3. Contrôle des données
 - 5.1.4. Authentification
 - 5.1.5. Identification
- 5.2. Identité Blockchain
 - 5.2.1. Signature numérique
 - 5.2.2. Réseaux publics
 - 5.2.3. Réseaux autorisés
- 5.3. Identité Numérique Souveraine
 - 5.3.1. Besoins
 - 5.3.2. Composants
 - 5.3.3. Applications
- 5.4. Identifiants décentralisés (DID)
 - 5.4.1. Schéma
 - 5.4.2. Méthodes DID
 - 5.4.3. Documents DID

- 5.5. Références vérifiables
 - 5.5.1. Composants
 - 5.5.2. Flux
 - 5.5.3. Sécurité et Confidentialité
 - 5.5.4. Blockchain pour enregistrer des informations d'identification vérifiables
- 5.6. Technologies Blockchain pour l'identité numérique
 - 5.6.1. Hyperledger Indy
 - 5.6.2. Sovrin
 - 5.6.3. uPort
 - 5.6.4. IDAlastria
- 5.7. Initiatives européennes de *Blockchain* et d'identité
 - 5.7.1. eIDAS
 - 5.7.2. EBSI
 - 5.7.3. ESSIF
- 5.8. Identité numérique des objets (IoT)
 - 5.8.1. Interactions avec IoT
 - 5.8.2. Interopérabilité sémantique
 - 5.8.3. Sécurité des données
- 5.9. Identité numérique des processus
 - 5.9.1. Données
 - 5.9.2. Codes
 - 5.9.3. Interfaces
- 5.10. Cas d'utilisation de l'identité numérique Blockchain
 - 5.10.1. Santé
 - 5.10.2. Éducation
 - 5.10.3. Logistique
 - 5.10.4. Administration publique

Module 6 Blockchain et ses nouvelles applications: DeFi et NFT

- 6.1. Culture financière
 - 6.1.1. Évolution de la monnaie
 - 6.1.2. Monnaire FIAT vs. Monnaie décentralisée
 - 6.1.3. Banques numérique vs. Open Finance
- 6.2. Ethereum
 - 6.2.1. Technologie
 - 6.2.2. Monnaie décentralisée
 - 6.2.3. Stable Coins
- 6.3. Autres technologies
 - 6.3.1. Binance Smart Chain
 - 6.3.2. Polygon
 - 6.3.3. Solana
- 6.4. DeFi (Finance décentralisée)
 - 6.4.1. DeFi
 - 6.4.2. Défis
 - 6.4.3. Open Finance vs. DeFi
- 6.5. Outils de Information
 - 6.5.1. Metamask et wallets décentralisés
 - 6.5.2. CoinMarketCap
 - 6.5.3. Defi Pulse
 - .6. Stable Coins
 - 6.6.1. Protocole Maker
 - 6.6.2. USDC, USDT, BUSD
 - 6.6.3. Formes de collatéralisation et risques
- 6.7. Exchanges et plateformes décentralisées (DEX)
 - 6.7.1. Uniswap
 - 6.7.2. Sushiswap
 - 6.7.3. AAVe
 - 6.7.4. dYdX / Synthetix
- 6.8. Écosystème NFT (Non Fongible Token)
 - 6.8.1. Les NFT
 - 6.8.2. Typologie
 - 6.8.3. Caractéristiques

tech 34 | Structure et contenu

- 6.9. Capitulation des industries
 - 6.9.1. Industrie du design
 - 6.9.2. Industrie du Fan Token
 - 6.9.3. Financement du projet
- 6.10. Marchés NFT
 - 6.10.1. Opensea
 - 6.10.2. Rarible
 - 6.10.3. Plateformes personnalisées

Module 7 Blockchain. Implications juridiques

- 7.1. Bitcoin
 - 7.1.1. Bitcoin
 - 7.1.2. Analyse du Whitepaper
 - 7.1.3. Fonctionnement du Proof of Work
- 7.2. Ethereum
 - 7.2.1. Ethereum Origines
 - 7.2.2. Fonctionnement du Proof of Stake
 - 7.2.3. Cas de la DAO
- 7.3. Situation actuelle de la *Blockchain*
 - 7.3.1. Croissance des cas d'utilisation
 - 7.3.2. Adoption de la Blockchain par les grandes entreprises
- 7.4. MiCA (Market in Cryptoassets)
 - 7.4.1. Naissance de la Norme
 - 7.4.2. Implications juridiques (obligations, parties obligées, etc.)
 - 7.4.3. Résumé de la Norme
- 7.5. Prévention du blanchiment de capitaux
 - 7.5.1. Cinquième directive et sa transposition
 - 7.5.2. Parties obligées
 - 7.5.3. Obligations intrinsèques
- 7.6. Tokens
 - 7.6.1. Tokens
 - 7.6.2. Types
 - 7.6.3. Réglementations applicables dans chaque cas

- 7.7. ICO/STO/IEO: Systèmes de financement des entreprises
 - 7.7.1. Types de financement
 - 7.7.2. Réglementation applicable
 - 7.7.3. Les Success Stories Réel
- 7.8. NFT (Non Fongible Tokens)
 - 7.8.1. NFT
 - 7.8.2. Réglementation applicable
 - 7.8.3. Cas d'utilisation et exemples de réussite (Play to Earn)
- 7.9. Fiscalité et crypto-actifs
 - 7.9.1. Fiscalité
 - 7.9.2. Revenus du travail
 - 7.9.3. Rendement des activités économiques
- 7.10. Autres réglementations applicables
 - 7.10.1. Règlement général sur la protection des données
 - 7.10.2. DORA (Cybersécurité)
 - 7.10.3. Règlement EIDAS

Module 8 Conception d'Architecture Blockchain

- 8.1. Conception d'Architecture Blockchain
 - 8.1.1. Architecture
 - 8.1.2. Architecture d'infrastructure
 - 8.1.3. Architecture logicielle
 - 8.1.4. Intégration déploiement
- 8.2. Types de réseaux
 - 8.2.1. Réseaux publics
 - 8.2.2. Réseaux privés
 - 8.2.3. Réseaux autorisés
 - 824 Différences
- 8.3. Analyse des participants
 - 8.3.1. Identification des entreprises
 - 8.3.2. Identification des clients
 - 8.3.3. Identification des consommateurs
 - 8.3.4. Interaction entre les parties

8.4. Conception de la preuve de concept

- 8.4.1. Analyse fonctionnelle
- 8.4.2. Phase de mise en œuvre
- 8.5. Exigences en matière d'infrastructure
 - 8.5.1. Cloud
 - 8.5.2. Physique
 - 8.5.3. Hybride
- 8.6. Exigences en matière de sécurité
 - 8.6.1 Certificats
 - 8.6.2. HSM
 - 8.6.3. Cryptage
- 8.7. Exigences en matière de communications
 - 8.7.1. Exigences en matière de vitesse du réseau
 - 8.7.2. Exigences en matière d'E/S
 - 8.7.3. Exigences en matière de transactions par seconde
 - 8.7.4. Influence de l'infrastructure du réseau sur les exigences
- 8.8. Essais de logiciels, performances et contraintes
 - 8.8.1. Tests unitaires dans les environnements de développement et de pré-production
 - 8.8.2. Tests de performance de l'infrastructure
 - 8.8.3. Tests de pré-production
 - 8.8.4. Tests de la version de production
 - 8.8.5. Contrôle de la version
- 8.9. Fonctionnement et entretien
 - 8.9.1. Support: alertes
 - 8.9.2. Nouvelles versions des composants d'infrastructure
 - 8.9.3. Analyse des risques
 - 8.9.4. Incidents et changements
- 8.10. Continuité et résilience
 - 8.10.1. Disaster recovery
 - 8.10.2. Backup
 - 8.10.3. Nouveaux participants

Module 9 Blockchain Appliquée à la

9.1. Mapping Opérationnel AS IS

et Gaps éventuels

- 9.1.1. Identification des processus exécutés manuellement
- 9.1.2. Identification des participants et de leurs particularités
- 9.1.3. Études de cas et gaps opérationnels
- 9.1.4. Présentation et Staff Executivf du mapping
- 9.2. Carte des systèmes actuels
 - 9.2.1. Systèmes actuels
 - 9.2.2. Données de base et flux d'informations
 - 9.2.4. Modèle de gouvernance
- 9.3. Application de la Blockchain

à la logistique

- 9.3.1. Blockchain Appliquée à la Logistique
- 9.3.2. Architectures basées sur la traçabilité pour les processus d'entreprise
- 9.3.3. Facteurs critiques de succès dans la mise en œuvre
- 9.3.4. Conseils pratiques
- 9.4. Modèle TO BE
 - 9.4.1. Définition opérationnelle pour le contrôle de la chaîne d'approvisionnement
 - 9.4.2. Structure et responsabilité du plan des systèmes
 - 9.4.3. Facteurs critiques de succès dans la mise en œuvre
- 9.5. Élaboration du Business Case
 - 9.5.1 Structure des coûts
 - 9.5.2. Projection des bénéfices
 - 9.5.3. Approbation et acceptation du plan par les owners
- 9.6. Création d'une preuve de concept (POC)
 - 9.6.1. Importance d'un POC pour les nouvelles technologies
 - 9.6.2. Aspects clés
 - 9.6.3. Exemples de POC à faible coût et effort

tech 36 | Structure et contenu

- 9.7. Gestion de projets
 - 9.7.1. Méthodologie Agile
 - 9.7.2. Décision sur les méthodologies entre les participants
 - 9.7.3. Plan stratégique de développement et de déploiement
- 9.8. Intégration des systèmes : Opportunités et besoins
 - 9.8.1. Structure et développement du plan des systèmes
 - 9.8.2. Gestion des Données de Référence
 - 9.8.3. Rôles et responsabilités
 - 9.8.4. Modèle de gestion et de suivi intégrés
- 9,9. Développement et application avec l'équipe de Supply Chain
 - 9.9.1. Participation active du client (entreprise)
 - 9.9.2. Analyse des risques systémiques et opérationnels
 - 9.9.3. La clé du succès : les modèles d'essai et le soutien post-production
- 9.10. Change Management: suivi et actualisation
 - 9.10.1. Implications en termes de gestion
 - 9.10.2. Plan de Rollout et de formation
 - 9.10.3. Modèles de suivi et de gestion des KPI

Module 10 Blockchain et Entreprise

- 10.1. Application d'une technologie distribuée dans l'entreprise
 - 10.1.1. Application de la *Blockchain*
 - 10.1.2. Apports de la Blockchain
 - 10.1.3. Erreurs courantes dans les mises en œuvre
- 10.2. Cycle de mise en œuvre de la Blockchain
 - 10.2.1. Du P2P aux systèmes distribués
 - 10.2.2. Aspects clés d'une bonne mise en œuvre
 - 10.2.3. Améliorer les implémentations actuelles
- 10.3. Blockchain vs. Technologies traditionnelles Bases
 - 10.3.1. APIs, Data et flux
 - 10.3.2. La tokenisation en tant que pilier des projets
 - 10.3.3. Mesures incitatives
- 10.4. Choix du type de Blockchain
 - 10.4.1. Blockchain publique
 - 10.4.2. Blockchain privée
 - 10.4.3. Consortiums

- 10.5. Blockchain et le secteur public
 - 10.5.1. Blockchain dans le secteur public
 - 10.5.2. Central Bank Digital Currency (CBDC)
 - 10.5.3 Conclusions
- 10.6. Blockchain et secteur financier Début
 - 10.6.1. CBDC et Banques
 - 10.6.2. Les actifs numériques natifs
 - 10.6.3. Là où le système ne convient pas
- 10.7. Blockchain et secteur pharmaceutique
 - 10.7.1. Recherche de signification dans le secteur
 - 10.7.2. Logistique ou pharmacie
 - 10.7.3. Application
- 10.8. Blockchain pseudo-privée Consortiums Signification
 - 10.8.1. Environnements de confiance
 - 10.8.2. Analyse et approfondissement
 - 10.8.3. Implémentations valides
- 10.9. Blockchain. Cas d'utilisation Europe : EBSI
 - 10.9.1. EBSI (European *Blockchain* Services Infraestructure)
 - 10.9.2. Modèle d'entreprise
 - 10.9.3. Futur
- 10.10. L'avenir de la Blockchain
 - 10.10.1. Trilemme
 - 10.10.2. Automatisation
 - 10.10.3. Conclusions

Module 11 Blockchain

- 11.1. Blockchain
 - 11.1.1. Blockchain
 - 11.1.2. La nouvelle économie Blockchain
 - 11.1.3. La décentralisation, fondement de l'économie Blockchain
- 11.2. Technologies Blockchain
 - 11.2.1. La blockchain de Bitcoin
 - 11.2.2. Processus de validation, puissance de calcul
 - 11.2.3. Hash

Structure et contenu | 37 tech

11,3. Types de <i>Blockcha</i>	ain
--------------------------------	-----

- 11.3.1. Chaîne publique
- 11.3.2. Chaîne privée
- 11.3.3. Chaîne hybride ou fédérée

11,4. Types de réseaux

- 11.4.1. Réseau centralisé
- 11.4.2. Réseaux distribué
- 11.4.3. Réseau décentralisé

11.5. Smart Contracts

- 11.5.1. Smart Contracts
- 11.5.2. Processus de génération de Smart Contract
- 11.5.3. Exemples et applications des Smart Contract

11.6. Wallets

- 11.6.1. Wallets
- 11.6.2. Utilité et importance d'un Wallet
- 11.6.3. Hot & Cold Wallet

11.7. Économie de la Blockchain

- 11.7.1. Avantages de l'économie de la Blockchain
- 11.7.2. Niveau de risque
- 11.7.3. Gas Fee

11.8. Sécurité

- 11.8.1. Révolution des systèmes de sécurité
- 11.8.2. Transparence totale
- 11.8.3. Attaques contre la Blockchain

11.9. Tokenisation

- 11.9.1. Tokens
- 11.9.2. Tokenisation
- 11.9.3. Modèles tokenisés

11.10. Aspect juridique

- 11.10.1. Comment l'architecture affecte-t-elle la capacité de régulation
- 11.10.2. Jurisprudence
- 11.10.3. Législation actuelle sur la Blockchain

tech 38 | Structure et contenu

Module 12 DeFi

- 12.1. DeFi
 - 12.1.1. DeFi
 - 12.1.2. Origine
 - 12.1.3. Critiques
- 12.2. Décentralisation du marché
 - 12.2.1. Avantages économiques
 - 12.2.2. Création de produits financiers
 - 12.2.3. Prêts DeFi
- 12.3. Composants DeFi
 - 12.3.1. Couche 0
 - 12.3.2. Couche de protocole logiciel
 - 12.3.3. Couche application et couche agrégation
- 12.4. Bourses décentralisées
 - 12.4.1. Échange de Tokens
 - 12.4.2. Apport de liquidités
 - 12.4.3. Suppression de liquidités
- 12.5 Les marchés DeFi
 - 12.5.1. MarketDAO
 - 12.5.2. Marché de la prédiction Argus
 - 12.5.3. Ampleforth
- 12.6. Clés
 - 12.6.1. Yield Farming
 - 12.6.2. Mines de liquidités
 - 12.6.3. Composabilité
- 12.7. Différences avec d'autres systèmes
 - 12.7.1. Traditionnel
 - 12.7.2. Fintech
 - 12.7.3. Comparaison
- 12.8. Risques à prendre en compte
 - 12.8.1. Décentralisation incomplète
 - 12.8.2. Sécurité
 - 12.8.3. Erreurs d'utilisation

- 12.9. Applications DeFi
 - 12.9.1. Prêts
 - 12.9.2. *Trading*
 - 12.9.3. Produits dérivés
- 12.10. Projet en développement
 - 12.10.1. AAVE
 - 12.10.2. DydX
 - 12.10.3. Money on Chain

Module 13 NFT

- 13.1. NFT
 - 13.1.1. NFT
 - 13.1.2. Lien entre les NFT et Blockchain
 - 13.1.3. Création de l'NFT
- 13.2. Création d'une NFT
 - 13.2.1. Conception et contenu
 - 13.2.2. Génération
 - 13.2.3. Metadata et Freeze Metada
- 13.3. Options de vente pour les NFT dans les économies gamifiées
 - 13.3.1. Vente directe
 - 13.3.2. Ventes aux enchères
 - 13.3.3. Whitelist
- 13.4. Étude de marché NFT
 - 13.4.1. Opensea
 - 13.4.2. Immutable Marketplace
 - 13.4.3. Gemini
- 13.5. Strategies de rentabilisation pour les NFT dans les économies gamifiées
 - 13.5.1. Valeur d'usage
 - 13.5.2. Valeur esthétique
 - 13.5.3. Valeur réelle
- 13.6. Strategies de rentabilisation pour les NFT dans les Économies Gamifiées : mines
 - 13.6.1. Mines de NFT
 - 13.6.2. Merge
 - 13.6.3. Burn

- 13.7. Strategies de rentabilisation pour les NFT dans les Économies Gamifiées : consommable
 - 13.7.1. NFT consommable
 - 13.7.2. NFT enveloppe
 - 13.7.3. Oualité du NFT
- 13.8. Analyse des systèmes gamifiés basés sur la NFT
 - 13.8.1. Alien Worlds
 - 13.8.2. Gods Unchained
 - 13.8.3. R-Planet
- 13.9. NFT en tant gu'incitation à l'investissement et au travail
 - 13.9.1. Privilèges de participation à l'investissement
 - 13.9.2. Collections liées à des travaux de diffusion spécifiques
 - 13.9.3. Somme des forces
- 13.10. Domaines d'innovation en cours de développement
 - 13.10.1. Musique dans le NFT
 - 13.10.2. Vidéo NFT
 - 13.10.3. Livres NFT

Module 14 Analyse des Cryptomonnaies

- 14.1. Bitcoin
 - 14.1.1. Bitcoins
 - 14.1.2. Le Bitcoin en tant qu'indicateur de marché
 - 14.1.3. Avantages et inconvénients de l'économie ludique
- 14.2. Altcoins
 - 14.2.1. Principales caractéristiques et différences par rapport au *Bitcoin*
 - 14.2.2. Impact sur le marché
 - 14.2.3. Analyse des projets contraignants
- 14.3. Ethereum
 - 14.3.1. Caractéristiques principales et fonctionnement
 - 14.3.2. Projets hébergés et impact sur le marché
 - 14.3.3. Avantages et inconvénients de l'économie ludique
- 14.4. Binance Coin
 - 14.4.1. Caractéristiques principales et fonctionnement
 - 14.4.2. Projets hébergés et impact sur le marché
 - 14.4.3. Avantages et inconvénients de l'économie ludique

- 14.5. Stablecoins
 - 14.5.1. Caractéristiques
 - 14.5.2. Projets fonctionnant sur Stablecoins
 - 14.5.3. Utilisation des Stablecoins dans les économies gamifiées
- 14.6. Principales Stablecoins
 - 14.6.1. USDT
 - 14.6.2. USDC
 - 14.6.3. BUSD
- 14,7. Trading
 - 14.7.1. Trading en économies gamifiées
 - 14.7.2. Portefeuille équilibré
 - 14.7.3. Portefeuille déséguilibré
- 14.8. Trading: DCA
 - 14.8.1. DCA
 - 14.8.2. Trading positionnel
 - 14.8.3. Daytrading
- 14.9. Risques
 - 14.9.1. Formation des prix
 - 14.9.2. Liquidité
 - 14.9.3. L'économie mondiale
- 14,10. Aspect juridique
 - 14.10.1. Réglementation minière
 - 14.10.2. Droits des consommateurs
 - 14.10.3. Garantie et sécurité

Module 15 Réseaux

- 15.1. La révolution des Smart Contract
 - 15.1.1. Naissance des Smart Contract
 - 15.1.2. Hébergement des applications
 - 15.1.3. Sécurité des processus informatiques
- 15.2. Metamask
 - 15.2.1. Aspects
 - 15.2.2. Impact sur l'accessibilité
 - 15.2.3. Gestion des actifs dans Metamask

tech 40 | Structure et contenu

13.3.	11011		
	15.3.1.	Aspects	
	15.3.2.	Applications hébergées	
	15.3.3.	Inconvénients et avantages	
15.4.	Ripple		
	15.4.1.	Aspects	
	15.4.2.	Applications hébergées	
	15.4.3.	Inconvénients et avantages	
15.5.	Ethereum		
	15.5.1.	Aspects	
	15.5.2.	Applications hébergées	
	15.5.3.	Inconvénients et avantages	
15.6.	Polygon	Matic	
	15.6.1.	Aspects	
	15.6.2.	Applications hébergées	
	15.6.3.	Inconvénients et avantages	
15.7.	Wax		
	15.7.1.	Aspects	
	15.7.2.	Applications hébergées	
	15.7.3.	Inconvénients et avantages	
15.8.	ADA Cardano		
	15.8.1.	Aspects	
	15.8.2.	Applications hébergées	
	15.8.3.	Inconvénients et avantages	
15.9.	Solana		
	15.9.1.	Aspects	
	15.9.2.	Applications hébergées	
	15.9.3.	Inconvénients et avantages	
15.10.	Projets et migrations		
	15.10.1.	Réseaux adaptés au projet	
	15.10.2.	Migration	
	15.10.3.	Crosschain	

Module 16 Métaverse

- 16.1. Métaverse
 - 16.1.1. Métaverse
 - 16.1.2. Impact sur l'économie mondiale
 - 16.1.3. Impact sur le développement des économies gamifiées
- 16.2. Formes d'accessibilité
 - 16.2.1. RV
 - 16.2.2. Ordinateurs
 - 16.2.3. Dispositifs mobiles
- 16.3. Types de Métaverse
 - 16.3.1. Métaverse traditionnel
 - 16.3.2. Métaverse Blockchain Centralisée
 - 16.3.3. Métaverse Blockchain Décentralisée
- 16.4. Métaverse en tant qu'espace de travail
 - 16.4.1. Idée de travailler dans le Métaverse
 - 16.4.2. Création de services dans le Métaverse
 - 16.4.3. Points critiques à prendre en compte dans la création d'emplois
- 16,5. Métaverse comme espace de socialisation
 - 16.5.1. Systèmes d'interaction entre les utilisateurs
 - 16.5.2. Mécanismes de socialisation
 - 16.5.3 Formes de monétisation
- 16.6. Métaverse en tant qu'espace de divertissement
 - 16.6.1. Les espaces de formation dans le Métaverse
 - 16.6.2. Modes de gestion des espaces de formation
 - 16.6.3. Catégories d'espaces de formation dans le Métaverse
- 16.7. Système d'achat et de location d'espaces dans le Métaverse
 - 16.7.1. Lands
 - 16.7.2. Ventes aux enchères
 - 16.7.3. Vente directe
- 16.8. Second Life
 - 16.8.1. Second Life en tant que pionnier de l'industrie du Métaverse
 - 16.8.2. Mécanismes de jeu
 - 16.8.3. Stratégies de rentabilité employées

- 16.9. Decentraland
 - 16.9.1. Decentraland comme le métaverse le plus rentable jamais enregistré
 - 16.9.2. Mécanismes de jeu
 - 16.9.3. Stratégies de rentabilité employées
- 16.10. Meta
 - 16.10.1. Meta, l'entreprise qui a le plus d'impact dans le développement métaverse
 - 16.10.2. Impact sur le marché
 - 16.10.3. Détails du projet

Module 17 Plateformes externes

- 17.1. DEX
 - 17.1.1. Caractéristiques
 - 17.1.2. Utilités
 - 17.1.3. Implémentation en économies gamifiées
- 17.2. Swaps
 - 17.2.1. Caractéristiques
 - 17.2.2. Principaux Swaps
 - 17.2.3. Implémentation en économies gamifiées
- 17.3. Oracles
 - 17.3.1. Caractéristiques
 - 17.3.2. Principaux Swaps
 - 17.3.3. Implémentation en économies gamifiées
- 17.4. Staking
 - 17.4.1. Liquidity Pool
 - 17.4.2. Staking
 - 17.4.3. *Farming*
- 17.5. Outils de développement de la Blockchain
 - 17.5.1. Geth
 - 17.5.2. Mist
 - 17.5.3. Truffe
- 17.6. Outils de développement de la Blockchain: Embark
 - 17.6.1. Embark
 - 17.6.2. Ganache
 - 17.6.3. Blockchain Testnet

- 17.7. Études de Marketing
 - 17.7.1. Defi Pulse
 - 17.7.2. Skew
 - 17.7.3. Trading View
- 17.8. Tracking
 - 17.8.1. CoinTracking
 - 17.8.2. CryptoCompare
 - 17.8.3. Blackfolio
- 17.9. Bots de Tradings
 - 17.9.1. Aspects
 - 17.9.2. SFOX Trading Algorithms
 - 17.9.3. AlgoTrader
- 17.10. Outils d'exploitation minière
 - 17.10.1. Aspects
 - 17.10.2. NiceHash
 - 17.10.3. What to Mine

Module 18 Analyse des variables dans les économies gamifiées

- 18.1. Variables économiques gamifiées
 - 18.1.1. Avantages de la fragmentation
 - 18.1.2. Similitudes avec l'économie réelle
 - 18.1.3. Critères de fragmentation
- 18.2. Recherches
 - 18.2.1. Individuels
 - 18.2.2. Par groupes
 - 18.2.3. Global
- 18.3. Ressources
 - 18.3.1. Par Game-Design
 - 18.3.2. Tangibles
 - 18.3.3. Intangibles
- 18.4. Entités
 - 18.4.1. Acteurs
 - 18.4.2. Entités à recours unique
 - 18.4.3. Entités à recours multiples

tech 42 | Structure et contenu

- 18.5. Sources
 - 18.5.1. Conditions de production
 - 18.5.2. Localisation
 - 18.5.3. Taux de production
- 18.6. Résultats
 - 18.6.1. Consommables
 - 18.6.2. Coûts de maintenance
 - 18.6.3. Time Out
- 18.7. Convertisseurs
 - 18.7.1. NPC
 - 18.7.2. Manufacture
 - 18.7.3. Circonstances particulières
- 18.8. Échange
 - 18.8.1. Marchés publics
 - 18.8.2. Magasins privés
 - 18.8.3. Marchés extérieurs
- 18.9. Expérience
 - 18.9.1. Mécanismes de passation des marchés
 - 18.9.2. Application de la mécanique de l'expérience aux variables économiques
 - 18.9.3. Pénalités et limites d'expérience
- 18.10. Deadlocks
 - 18.10.1. Cycle des ressources
 - 18.10.2. Lien entre les économies variables et les Deadlocks
 - 18.10.3. Appliquer Deadlocks dans les mécanismes de jeu

Module 19 Systèmes économiques gamifiés

- 19.1. Systèmes Free to Play
 - 19.1.1. Caractérisation des économies Free to Play et des principaux points de rentabilité.
 - 19.1.2. Architectures dans les économies Free to Play
 - 19.1.3. Le design économique
- 19.2. Les systèmes Freemium
 - 19.2.1. Caractérisation des économies Freemium et principaux points de monétisation
 - 19.2.2. Architectures des économies Play to Earn
 - 19.2.3. Le design économique

- 19.3. Systèmes Pay to Play
 - 19.3.1. Caractérisation des économies Pay to Play et principaux points de rentabilité
 - 19.3.2. Architecture des économies Pay to Play
 - 19.3.3. Le design économique
- 19.4. Systèmes basés sur le PvP
 - 19.4.1. Caractérisation des économies basées sur le *Pay to play* et principaux points de rentabilité
 - 19.4.2. Architecture dans les économies PvP
 - 19.4.3. Atelier de conception économique
- 19.5. Système des Seasons
 - 19.5.1. Caractérisation des économies basées sur l Seasons et principaux points de rentabilité
 - 19.5.2. L'architecture dans les économies Season
 - 19.5.3. Le design économique
- 19.6. Systèmes économiques des Sandbox ou Mmorpg
 - 19.6.1. Caractérisation des économies basées sur les Sandbox et principaux points de rentabilité
 - 19.6.2. Architecture des économies Sandbox
 - 19.6.3. Le design économique
- 19.7. Système Trading Card Game
 - 19.7.1. Caractérisation des économies basées sur l *Trading Card Game* et principaux points de rentabilité
 - 19.7.2. Architecture des économies basées sur les Trading Card Game
 - 19.7.3. Atelier de conception économique
- 19.8. Systèmes PvE
 - 19.8.1. Caractérisation des économies basées sur le PvE et principaux points de rentabilité
 - 19.8.2. Architecture dans les économies PvE
 - 19.8.3. Atelier de conception économique
- 19.9. Systèmes de paris
 - 19.9.1. Caractérisation des économies basées sur les paris et principaux points de rentabilité
 - 19.9.2. L'architecture dans les économies de paris
 - 19.9.3. Le design économique

19.10. Systèmes dépendant d'économies externes

- 19.10.1. Caractérisation des économies dépendantes et principaux points de rentabilité
- 19.10.2. Architecture dans les économies dépendantes
- 19.10.3. Le design économique

Module 20 Analyse des Jeux Vidéo sur la Blockchain

- 20.1. Star Atlas
 - 20.1.1. Mécanismes de jeu
 - 20.1.2. Système économique
 - 20.1.3. Utilisabilité
- 20.2. Outer Ring
 - 20.2.1. Mécanismes de jeu
 - 20.2.2. Système économique
 - 20.2.3. Utilisabilité
- 20.3. Axie Infinity
 - 20.3.1. Mécanismes de jeu
 - 20.3.2. Système économique
 - 20.3.3. Utilisabilité
- 20.4. Splinterlands
 - 20.4.1. Mécanismes de jeu
 - 20.4.2. Système économique
 - 20.4.3. Utilisabilité
- 20.5. R-Planet
 - 20.5.1. Mécanismes de jeu
 - 20.5.2. Système économique
 - 20.5.3. Utilisabilité
- 20.6. Ember Sword
 - 20.6.1. Mécanismes de jeu
 - 20.6.2. Système économique
 - 20.6.3. Utilisabilité
- 20.7. Big Time
 - 20.7.1. Mécanismes de jeu
 - 20.7.2. Système économique
 - 20.7.3. Utilisabilité

- 20.8. Gods Unchained
 - 20.8.1. Mécanismes de jeu
 - 20.8.2. Système économique
 - 20.8.3. Utilisabilité
- 20.9. Illuvium
 - 20.9.1. Mécanismes de jeu
 - 20.9.2. Système économique
 - 20.9.3. Utilisabilité
- 20.10. Upland
 - 20.10.1. Mécanismes de jeu
 - 20.10.2. Système économique
 - 20.10.3. Utilisabilité

Des sociétés de jeux vidéo de premier plan, telles qu'Electronic Arts, ont déjà supposé que la NFT était l'avenir de l'industrie. Rejoindrez-vous la nouvelle génération de professionnels spécialisés dans cette technologie Blockchain ?"

tech 46 | Méthodologie

Étude de cas pour contextualiser tout le contenu

Notre programme propose une approche révolutionnaire du développement des compétences et des connaissances. Notre objectif est de renforcer les compétences dans un contexte changeant, compétitif et très exigeant.

Avec TECH, vous ferez l'expérience d'une méthode d'apprentissage qui ébranle les fondements des universités traditionnelles du monde entier"

Vous accéderez à un système d'apprentissage basé sur la répétition, avec un enseignement naturel et progressif tout au long du cursus.

L'apprenant apprendra, par des activités collaboratives et des cas réels, à résoudre des situations complexes dans des environnements commerciaux réels.

Une méthode d'apprentissage innovante et différente

Le programme de TECH est un enseignement intensif, créé de toutes pièces, qui propose les défis et les décisions les plus exigeants dans ce domaine, tant au niveau national qu'international. Grâce à cette méthodologie, l'épanouissement personnel et professionnel est stimulé, faisant ainsi un pas décisif vers la réussite. La méthode des cas, technique qui jette les bases de ce contenu, garantit le respect de la réalité économique, sociale et professionnelle la plus actuelle.

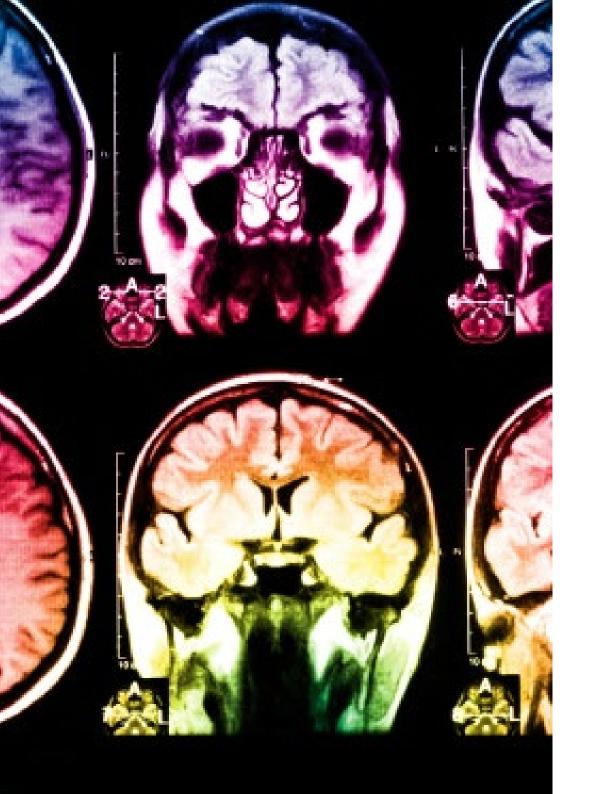
Notre programme vous prépare à relever de nouveaux défis dans des environnements incertains et à réussir votre carrière"

La méthode des cas est le système d'apprentissage le plus largement utilisé dans les meilleures écoles de commerce du monde et ce depuis leur fondement. Développée en 1912 pour que les étudiants en droit n'apprennent pas seulement le droit sur la base d'un contenu théorique, la méthode des cas consiste à leur présenter des situations réelles complexes pour qu'ils prennent des décisions et portent des jugements de valeur éclairés sur la manière de les résoudre. Elle a été établie comme méthode d'enseignement standard à Harvard en 1924.

Face à une situation donnée, que doit faire un professionnel ? C'est la question à laquelle nous vous confrontons dans la méthode des cas, une méthode d'apprentissage orientée vers l'action. Tout au long du cours, vous serez confronté à de multiples cas réels. Vous devrez intégrer toutes vos connaissances, faire des recherches, argumenter et défendre vos idées et vos décisions.

Relearning Methodology

TECH combine efficacement la méthodologie de l'étude de cas avec un système d'apprentissage 100% en ligne basé sur la répétition, qui combine 8 éléments didactiques différents dans chaque leçon.


Nous enrichissons les Études de Cas avec la meilleure méthode d'enseignement 100% en ligne : le Relearning.

En 2019, nous avons obtenu les meilleurs résultats d'apprentissage de toutes les universités en ligne du monde.

À TECH, vous serez formé avec une méthodologie de pointe conçue pour former les managers du futur. Cette méthode, à la pointe de la pédagogie mondiale, est appelée Relearning.

Notre université est la seule à être hispanophone à utiliser cette méthode réussie. En 2019, nous avons réussi à améliorer les niveaux de satisfaction globale de nos étudiants (qualité de l'enseignement, qualité des supports, structure des cours, objectifs...) par rapport aux indicateurs de la meilleure université en ligne.

Méthodologie | 49 tech

Dans notre programme, l'apprentissage n'est pas un processus linéaire, mais se déroule en spirale (apprendre, désapprendre, oublier et réapprendre). Par conséquent, chacun de ces éléments est combiné de manière concentrique. Grâce à cette méthodologie, nous avons formé plus de 650.000 diplômés universitaires avec un succès sans précédent et ce dans toutes les spécialités aussi divers que la biochimie, la génétique, la chirurgie, le droit international, les compétences en matière de gestion, les sciences du sport, la philosophie, le droit, l'ingénierie, le journalisme, l'histoire ou les marchés et instruments financiers. Tout cela dans un environnement très exigeant, avec un corps étudiant universitaire au profil socioéconomique élevé et dont l'âge moyen est de 43,5 ans.

Le Relearning vous permettra d'apprendre plus facilement et de manière plus productive tout en développant un esprit critique, en défendant des arguments et en contrastant des opinions : une équation directe vers le succès.

D'après les dernières données scientifiques dans le domaine des neurosciences, non seulement nous savons la manière dont le cerveau organise les informations, les idées, les images et les souvenirs, mais nous savons aussi que le lieu et le contexte dans lesquels nous apprenons quelque chose est fondamental pour s'en souvenir et le stocker dans l'hippocampe afin de le conserver ensuite dans notre mémoire à long terme.

De cette façon, et dans ce que l'on appelle Neurocognitive context-dependent e-learning, les différents éléments de notre programme sont liés au contexte dans lequel le participant développe sa pratique professionnelle. Ce programme offre les meilleurs supports pédagogiques préparés spécialement pour les professionnels :

Matériel didactique

Tous les contenus didactiques sont créés par les spécialistes qui enseignent les cours. Ils ont été conçus en exclusivité pour le programme afin que le développement didactique soit vraiment spécifique et concret.

Ces contenus sont ensuite appliqués au format audiovisuel, pour créer la méthode de travail en ligne TECH. Ils sont élaborés à l'aide des dernières techniques ce qui nous permet de vous offrir une grande qualité dans chacun des supports que nous partageons avec vous.

Cours magistraux

Il existe des preuves scientifiques de l'utilité de l'observation par un tiers expert.

La méthode "Learning from an Expert" permet au professionnel de renforcer ses connaissances ainsi que sa mémoire puis lui permet d'avoir davantage confiance en lui concernant la prise de décisions difficiles.

Pratique des aptitudes et des compétences

Ils réaliseront des activités visant à développer des compétences et des aptitudes spécifiques dans chaque domaine. Ce programme se veut pratique et dynamique pour que les apprenants puissent acquérir et développer les compétences et les capacités nécessaires à un cadre supérieur dans le contexte actuel de mondialisation.

Lectures complémentaires

Articles récents, documents de consensus et directives internationales, entre autres. Dans la bibliothèque virtuelle de TECH, l'étudiant aura accès à tout ce dont il a besoin pour compléter son programme.

Méthodologie | 51 tech

4 %

Case Studies

Ils réaliseront une sélection des meilleures études de cas choisies spécifiquement pour ce diplôme. Des cas présentés, analysés et encadrés par les meilleurs spécialistes de la scène internationale.

Résumés interactifs

Nous présentons les contenus de manière attrayante et dynamique dans des dossiers multimédias comprenant des fichiers audios, des vidéos, des images, des diagrammes et des cartes conceptuelles afin de consolider les connaissances.

Ce système éducatif unique pour la présentation de contenu multimédia a été récompensé par Microsoft en tant que "European Success Story".

Testing & Retesting

Les connaissances de l'étudiant sont périodiquement évaluées et réévaluées tout au long du programme, par le biais d'activités et d'exercices d'évaluation et d'autoévaluation, afin que l'étudiant puisse vérifier comment il atteint ses objectifs.

tech 54 | Diplôme

Ce programme vous permettra d'obtenir votre diplôme de **Mastère Spécialisé Avancé en Économie de la Blockchain et NFT dans les Jeux vidéo** approuvé par **TECH Global University**, la plus grande Université numérique du monde.

TECH Global University est une Université Européenne Officielle reconnue publiquement par le Gouvernement d'Andorre *(journal officiel)*. L'Andorre fait partie de l'Espace Européen de l'Enseignement Supérieur (EEES) depuis 2003. L'EEES est une initiative promue par l'Union européenne qui vise à organiser le cadre international de formation et à harmoniser les systèmes d'enseignement supérieur des pays membres de cet espace. Le projet promeut des valeurs communes, la mise en œuvre d'outils communs et le renforcement de ses mécanismes d'assurance qualité afin d'améliorer la collaboration et la mobilité des étudiants, des chercheurs et des universitaires.

Ce diplôme de Mastère Spécialisé Avancé de **TECH Global University** est un programme européen de formation continue et d'actualisation professionnelle qui garantit l'acquisition de compétences dans son domaine de connaissances, conférant une grande valeur curriculaire à l'étudiant qui réussit le programme.

Diplôme: Mastère Spécialisé Avancé en Économie de la Blockchain et NFT dans les Jeux vidéo

Modalité: en ligne

Durée: 2 ans

Accréditation: 120 ECTS

^{*}Si l'étudiant souhaite que son diplôme version papier possède l'Apostille de La Haye, TECH Global University fera les démarches nécessaires pour son obtention moyennant un coût supplémentaire.

tech global university

Mastère Spécialisé Avancé Économie de la Blockchain et NFT dans les Jeux vidéo

» Modalité: en ligne

» Durée: 2 ans

» Qualification: TECH Global University

» Accréditation: 120 ECTS

