

Deep Learning Applicatoalla Visione Artificiale

» Modalità: online

» Durata: 6 mesi

» Titolo: TECH Global University

» Accreditamento: 18 ECTS

» Orario: a scelta

» Esami: online

Accesso al sito web: www.techtitute.com/it/intelligenza-artificiale/specializzazione/specializzazione-deep-learning-applicato-visione-artificiale

Indice

 $\begin{array}{c|c} \textbf{O1} & \textbf{O2} \\ \hline \textbf{Presentazione} & \textbf{Obiettivi} \\ \hline \textbf{Direzione del corso} & \textbf{O4} & \textbf{Direzione del corso} \\ \hline \textbf{Pag. 12} & \textbf{Struttura e contenuti} & \textbf{Metodologia} \\ \hline \textbf{Pag. 12} & \textbf{Pag. 16} & \textbf{Pag. 16} \\ \hline \end{array}$

06

Titolo

tech 06 | Presentazione

Le Reti Convoluzionali si sono affermate come strumento versatile nel campo della Visione Artificiale. La sua importanza risiede nella capacità di analizzare, comprendere ed elaborare immagini o video in modo automatizzato ed efficiente. Tra le varie applicazioni, spicca la sua importanza nell'autenticazione biomedica, quando si analizzano le caratteristiche facciali uniche di una persona e confrontate con un database per verificarne l'identità. Ciò è indispensabile in settori quali la sicurezza aeroportuale o il controllo degli accessi negli edifici, ecc...

In questo contesto, TECH sta sviluppando un Esperto Universitario che si occuperà in modo completo di Deep Learning applicato alla Visione Artificiale. Il piano di studi svilupperà ulteriormente l'uso del *Machine learning*, data la sua importanza nel riconoscimento dei modelli e nell'esecuzione di compiti di analisi specifici. Verrà inoltre trattato l'intero ciclo di creazione di una Rete Neurale, con particolare attenzione al training e alla convalida. D'altra parte, gli studenti impareranno le strategie più avanzate per il rilevamento e il tracciamento degli oggetti. In linea con questo obiettivo, implementeranno metriche di valutazione all'avanguardia, tra cui la *Intersection Over Union o Confidence Score*.

D'altra parte, al fine di consolidare la padronanza dei contenuti, questo Esperto Universitario applica il sistema rivoluzionario del *Relearning*. TECH è pioniera nell'utilizzo di questo modello didattico, che favorisce l'assimilazione di concetti complessi attraverso la loro naturale e progressiva ripetizione. In questo modo, gli studenti non devono ricorrere a tecniche complesse come la memorizzazione tradizionale. In questa linea, il programma si avvale anche di materiali in vari formati, come infografiche, sintesi interattive e video esplicativi. Tutto questo in una comoda modalità 100% online, che consente agli studenti di adattare i propri orari in base alle proprie responsabilità e circostanze personali.

Questo **Esperto Universitario in Deep Learning Applicatoalla Visione Artificiale** possiede il programma educativo più completo e aggiornato del mercato. Le caratteristiche principali del programma sono:

- Lo sviluppo di casi pratici presentati da esperti in *Deep Learning* informatica e visione artificiale
- I contenuti grafici, schematici ed eminentemente pratici che forniscono informazioni scientifiche e pratiche riguardo alle discipline mediche essenziali per l'esercizio della professione
- Esercizi pratici con cui è possibile valutare se stessi per migliorare l'apprendimento
- Particolare enfasi sulle metodologie innovative
- Lezioni teoriche, domande all'esperto e/o al tutor, forum di discussione su questioni controverse e compiti di riflessione individuale
- Contenuti disponibili da qualsiasi dispositivo fisso o portatile provvisto di connessione a internet

Approfondisci le Metriche di Valutazione degli Algoritmi di Tracciamento grazie a TECH, la migliore università digitale del mondo secondo Forbes"

Vuoi diventare un esperto in Machine Learning? Realizzalo in soli 6 mesi grazie a questo programma innovativo"

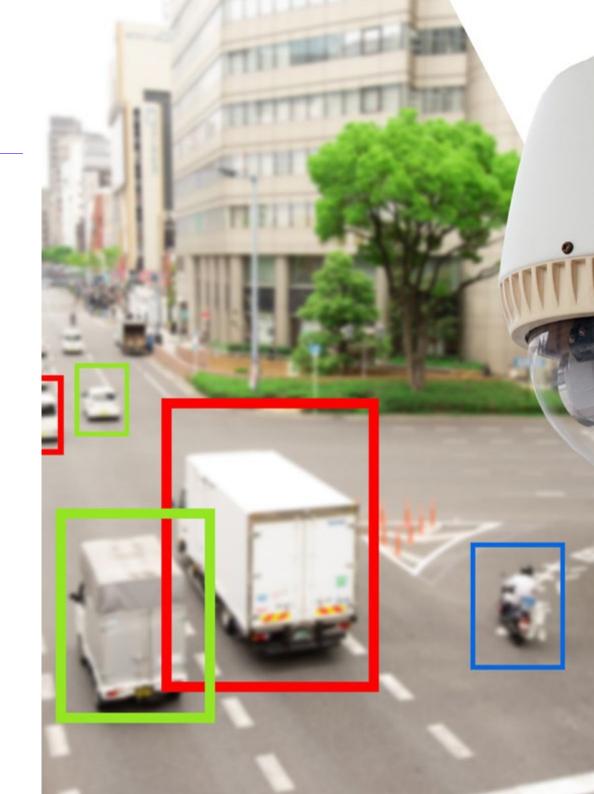
Il personale docente comprende professionisti del settore, che forniscono agli studenti le competenze necessarie a intraprendere un percorso di studio eccellente.

I contenuti multimediali, sviluppati in base alle ultime tecnologie educative, forniranno al professionista un apprendimento coinvolgente e localizzato, ovvero inserito in un contesto reale.

La creazione di questo programma è incentrata sull'Apprendimento Basato su Problemi, mediante il quale il professionista deve cercare di risolvere le diverse situazioni che gli si presentano durante il corso. Lo studente potrà usufruire di un innovativo sistema di video interattivi creati da esperti di rinomata fama.

Aggiorna le tue conoscenze in Rilevamento di Oggetti grazie a contenuti multimediali innovativi.

Dimenticati di memorizzare! Grazie al sistema Relearning integrerai i concetti in modo naturale e progressivo.



tech 10 | Obiettivi

Obiettivi generali

- Generare conoscenze specialistiche sul Deep Learning e analizzare perché ora
- Introdurre le reti neurali ed esaminarne il funzionamento
- Analizzare le metriche per una formazione adeguata
- Creare fondamenti della matematica delle reti neurali
- Sviluppare reti neurali convoluzionali
- Analizzare le metriche e gli strumenti esistenti
- Esaminare il pipeline di una rete di classificazione delle immagini
- Proporre metodi di inferenza
- Generare competenze sulle reti neurali di rilevamento degli oggetti e sulle loro metriche
- Identificare le diverse architetture
- Stabilire i casi d'uso
- Esaminare gli algoritmi di tracciamento e le loro metriche

Modulo 1. Deep Learning

- Analizzare le famiglie che compongono il mondo dell'intelligenza artificiale
- Compilare i principali frameworks di Deep Learning
- Definire le reti neurali
- Presentare i metodi di apprendimento delle reti neurali
- Sostanziare le funzioni di costo
- Stabilire le funzioni di attivazione più importanti
- Esaminare le tecniche di regolarizzazione e standardizzazione
- Sviluppare metodi di ottimizzazione
- Introdurre i metodi di inizializzazione

Modulo 2. Reti convoluzionali e classificazione delle immagini

- Generare conoscenza specializzata sulle reti neurali convoluzionali
- Stabilire le metriche di valutazione
- Analizzare il funzionamento delle CNN per la classificazione delle immagini
- Valutare il Data Augmentation
- Proporre tecniche per evitare l'Overfitting
- Esaminare le diverse architetture
- Compilare i metodi di inferenza

Modulo 3. Rilevamento di oggetti

- · Analizzare il funzionamento delle reti di rilevamento degli oggetti.
- · Esaminare i metodi tradizionali
- Determinare le metriche di valutazione
- Identificare i principali set di dati utilizzati nel mercato
- Proporre architetture del tipo Two Stage Object Detector
- · Analizzare metodi di Fine Tunning
- Esaminare diverse architetture Single Shoot
- Stabilire algoritmi di tracciamento degli oggetti
- Eseguire lo screening e il monitoraggio delle persone

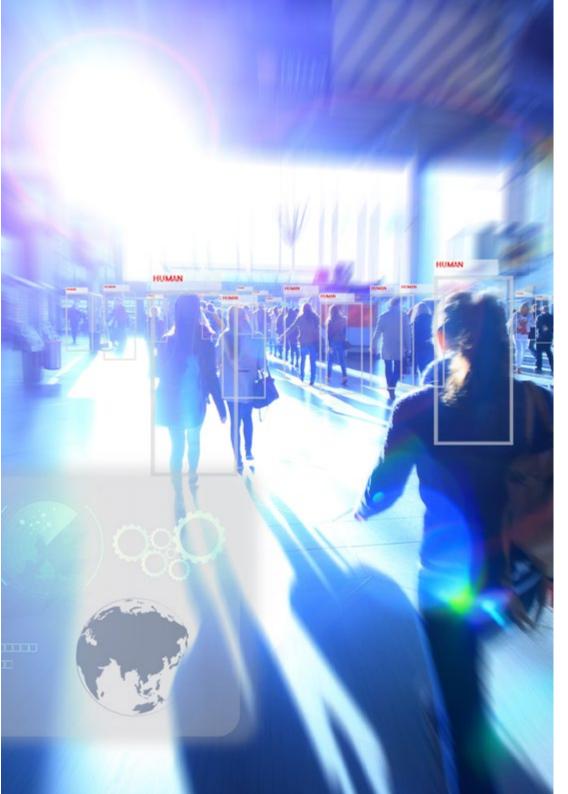
TECH si adatta ai tuoi orari, per questo ha progettato un programma flessibile e 100% online"

tech 14 | Direzione del corso

Direzione

Dott. Redondo Cabanillas, Sergio

- Specialista in Ricerca e Sviluppo in Visione Artificiale presso BCN Vision
- Responsabile del team di sviluppo e *Backoffice* presso BCN Vision
- Responsabile di Progetto e sviluppo per le soluzioni di Visione Artificiale
- Tecnico del suono presso Media Arts Studio
- Ingegneria Tecnica in Telecomunicazioni con specializzazione in Immagine e Suono presso l'Università Politecnica della Catalogna.
- Laureato in Intelligenza Artificiale applicata all'industria presso l'Università Autonoma di Barcellona.
- Ciclo di formazione di grado superiore nel suono di CP Villar


Personale docente

Dott.ssa Riera i Marín, Meritxell

- Sviluppatrice di Sistemi Deep Learning presso Sycai Medical
- Ricercatrice Centre National de la Recherche Scientifique (CNRS) Francia
- Ingegneria di Software presso Zhialbs
- IT Technician, Mobile World Congress
- Ingegnere software presso Avanade
- Ingegneria delle Telecomunicazioni dell'Università Politecnica di Catalogna
- Máster of Science: Spécialité Signal, image, systèmes embarqués, automatique (SISEA) presso IMT Atlantique Francia
- Master in Ingegneria delle Telecomunicazioni presso l'Università Politecnica della Catalogna

Dott. Felipe Higón Martínez

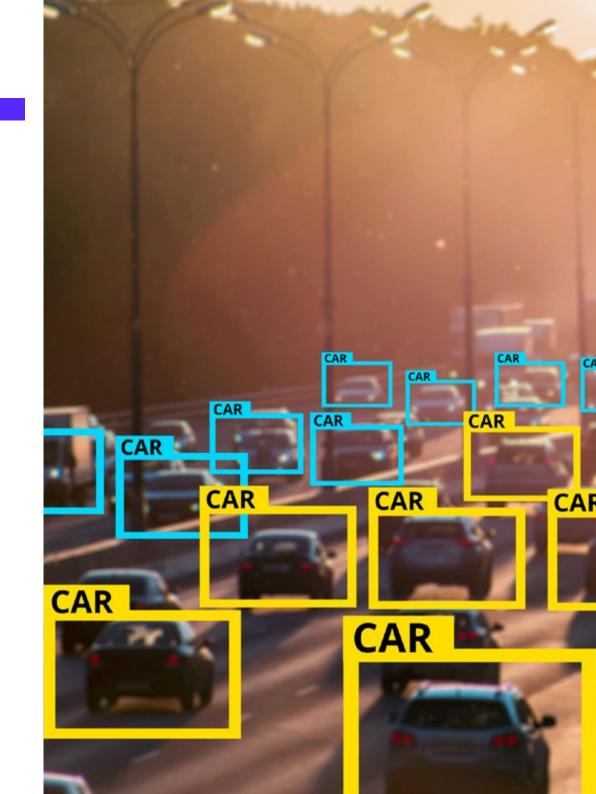
- Ingegnere Elettronico, delle Telecomunicazioni e Informatica
- Ingegnere di Validazione e Prototipi
- Ingegnere delle Applicazioni
- Ingegnere di Supporto
- Master in Intelligenza Artificiale Avanzata e Applicata per IA3
- Ingegnere Tecnico delle Telecomunicazioni
- Laurea in Ingegneria Elettronica presso l'Università di Valencia.

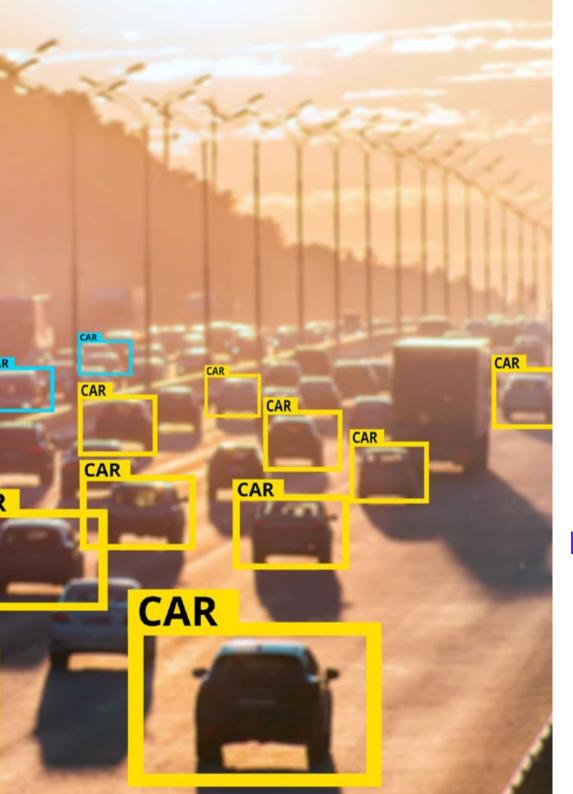
Dott. Delgado Gonzalo, Guillem

- Ricercatore in Computer Vision e Intelligenza Artificiale presso Vicomtech
- Ingegnere di Computer Vision e Intelligenza Artificiale presso Gestoos
- Ingegnere junior presso Sogeti
- Laurea in Ingegneria dei Sistemi Audiovisivi presso l'Università Politecnica della Catalogna
- Master in Computer Vision presso l'Università Autonoma di Barcellona
- Laurea in Informatica della Computazione presso l'Università di Aalto
- Laurea in Sistemi audiovisivi. UPC ETSETB Telecos BCN

Dott. Solé Gómez, Àlex

- Ricercatore presso Vicomtech nel Dipartimento di Intelligent Security Video Analytics
- Master in *Telecommunications Engineering*, con menzione in Sistemi Audiovisivi, dell'Università Politecnica della Catalogna
- Laurea in Telecommunications Technologies and Services Engineeringcon specializzazione in Sistemi Audiovisivi, presso l'Università Politecnica della Catalogna.





tech 18 | Struttura e contenuti

Modulo 1. Deep Learning

- 1.1. Intelligenza artificiale
 - 1.1.1. Machine learning
 - 1.1.2. Deep Learning
 - 1.1.3. L'esplosione del Deep Learning. Perché ora
- 1.2. Reti neuronali
 - 1.2.1. La rete neurale
 - 1.2.2. Uso delle reti neurali
 - 1.2.3. Regressione lineare e Perceptron
 - 1.2.4. Forward Propagation
 - 1.2.5. Backpropagation
 - 1.2.6. Feature vectors
- 1.3. Loss Functions
 - 1.3.1. Loss function
 - 1.3.2. Tipi di loss Functions
 - 1.3.3. Scelta di loss function
- 1.4. Funzioni di attivazione
 - 1.4.1. Funzioni di attivazione
 - 1.4.2. Funzioni lineari
 - 1.4.3. Funzioni non lineari
 - 1.4.4. Output vs Hidden Layer Activation Functions
- 1.5. Regolarizzazione e Standardizzazione
 - 1.5.1. Regolarizzazione e Standardizzazione
 - 1.5.2. Overfitting and Data Augmentation
 - 1.5.3. Regularization methods: L1, L2 and dropout
 - 1.5.4. Normalization methods: Batch, Weight, Layer
- 1.6. Ottimizzazione
 - 1.6.1. Gradient Descent
 - 1.6.2. Stochastic Gradient Descent
 - 1.6.3. Mini Batch Gradient Descent
 - 1.6.4. Momentum
 - 1.6.5. Adam

Struttura e contenuti | 19 tech

- 1.7. Hyperparameter Tuning e Pesi
 - 1.7.1. Iperparametri
 - Batch Size vs Learning Rate vs Step Decay
 - 1.7.3.
- 1.8. Metriche di valutazione delle reti neurali
 - 1.8.1. Accuracy
 - Dice coefficient 1.8.2.
 - Sensitivity vs Specificity / Recall vs precision
 - Curva ROC (AUC) 1.8.4.
 - 1.8.5. F1-score
 - Confusion matrix 1.8.6.
 - 1.8.7. Cross-validation
- Frameworks e Hardware
 - 1.9.1. Tensor Flow
 - Pytorch 1.9.2.
 - Caffe 1.9.3.

 - 1.9.4. Keras
 - 1.9.5. Hardware per la Fase di Preparazione
- 1.10. Creazione di Reti Neurali- Preparazione e Convalida
 - 1.10.1. Dataset
 - 1.10.2. Costruzione della rete
 - 1.10.3. Training
 - 1.10.4. Visualizzazione dei risultati

Modulo 2. Reti Convoluzionali e Classificazione delle Immagini

- Reti neurali convoluzionali
 - 2.1.1. Introduzione
 - La convoluzione 2.1.2.
 - 2.1.3. CNN Building Blocks
- Tipi di strati CNN
 - 2.2.1. Convolutional
 - 2.2.2. Activation
 - Batch normalization 2.2.3.
 - 2.2.4. Polling
 - 2.2.5. Fully connected

tech 20 | Struttura e contenuti

Metriche 2.3. 2.3.1. Confusione Matrix 2.3.2. Accuracy 2.3.3. Precisione 2.3.4. Recall 2.3.5. F1 Score 2.3.6. ROC Curve 2.3.7. AUC Principali architetture 2.4.1. AlexNet 2.4.2. VGG 2.4.3. Resnet 2.4.4. GoogleLeNet Classificazione di immagini 2.5.1. Introduzione 252 Analisi dei dati 2.5.3. Preparazione dei dati 2.5.4. Training del modello 2.5.5. Convalida del modello Considerazioni pratiche per il training CNN 2.6.1. Selezione dell'ottimizzatore 2.6.2. Learning Rate Scheduler 2.6.3. Controllo pipeline di preparazione 2.6.4. Training con regolarizzazione

Buone pratiche in Deep Learning

Data Augmentation

2.7.1. Transfer learning

2.7.2. Fine Tuning

- 2.8. Valutazione statistica di dati
 - 2.8.1. Numero di dataset
 - 2.8.2. Numero di etichette
 - 2.8.3. Numero di immagini
 - 2.8.4. Bilanciamento dei dati
- 2.9. Deployment
 - 2.9.1. Salvataggio e caricamento dei modelli
 - 2.9.2. Onnx
 - 2.9.3. Inferenza
- 2.10. Caso Pratico: Classificazione di Immagini
 - 2.10.1. Analisi e preparazione dei dati
 - 2.10.2. Test di verifica della pipeline di training
 - 2.10.3. Training del modello
 - 2.10.4. Convalida del modello

Modulo 3. Rilevamento di oggetti

- 3.1. Rilevamento e Tracciamento di Oggetti
 - 3.1.1. Rilevamento di Oggetti
 - 3.1.2. Casi d'uso
 - 3.1.3. Tracciamento di oggetti
 - 3.1.4. Casi d'uso
 - 3.1.5. Occlusioni, Rigid and No Rigid Poses
- 3.2. Metriche di Valutazione
 - 3.2.1. IOU Intersection Over Union
 - 3.2.2. Confidence Score
 - 3.2.3. Recall
 - 3.2.4. Precisione
 - 3.2.5. Recall Curva di Precisione
 - 3.2.6. Mean Average Precision (mAP)

- 3.3. Metodi tradizionali
 - 3.3.1. Sliding window
 - 3.3.2. Viola detector
 - 3.3.3. HOG
 - 3.3.4. Non Maximal Supresion (NMS)
- 3.4. Datasets
 - 3.4.1. Pascal VC
 - 3.4.2. MS Coco
 - 3.4.3. ImageNet (2014)
 - 3.4.4. MOTA Challenge
- 3.5. Two Shot Object Detector
 - 3.5.1. R-CNN
 - 3.5.2. Fast R-CNN
 - 3.5.3. Faster R-CNN
 - 3.5.4. *Mask R-CNN*
- 3.6. Single Shot Object Detector
 - 3.6.1. SSD
 - 3.6.2. YOLO
 - 3.6.3. RetinaNet
 - 3.6.4. CenterNet
 - 3.6.5. EfficientDet
- 3.7. Backbone
 - 3.7.1. VGG
 - 3.7.2. ResNet
 - 3.7.3. Mobilenet
 - 3.7.4. Shufflenet
 - 3.7.5. Darknet

- 3.8. Object Tracking
 - 3.8.1. Approcci classici
 - 3.8.2. Filtri di particelle
 - 3.8.3. Kalman
 - 3.8.4. Sort tracker
 - 3.8.5. Deep Sort
- 3.9. Implementazione
 - 3.9.1. Piattaforma Informatica
 - 3.9.2. Scelta del Backbone
 - 3.9.3. Scelta del Framework
 - 3.9.4. Ottimizzazione di Modelli
 - 3.9.5. Versione dei modelli
- 3.10. Studio: Rilevamento e Tracciamento di Persone
 - 3.10.1. Rilevamento di persone
 - 3.10.2. Tracciamento delle persone
 - 3.10.3. Re-identificazione
 - 3.10.4. Conteggio delle persone in massa

Una specializzazione caratterizzata da un orario flessibile e disponibile 24/24. Iscriviti subito!"

tech 24 | Metodologia

Caso di Studio per contestualizzare tutti i contenuti

Il nostro programma offre un metodo rivoluzionario per sviluppare le abilità e le conoscenze. Il nostro obiettivo è quello di rafforzare le competenze in un contesto mutevole, competitivo e altamente esigente.

Con TECH potrai sperimentare un modo di imparare che sta scuotendo le fondamenta delle università tradizionali in tutto il mondo"

Avrai accesso a un sistema di apprendimento basato sulla ripetizione, con un insegnamento naturale e progressivo durante tutto il programma.

Imparerai, attraverso attività collaborative e casi reali, la risoluzione di situazioni complesse in ambienti aziendali reali.

Un metodo di apprendimento innovativo e differente

Questo programma di TECH consiste in un insegnamento intensivo, creato ex novo, che propone le sfide e le decisioni più impegnative in questo campo, sia a livello nazionale che internazionale. Grazie a questa metodologia, la crescita personale e professionale viene potenziata, effettuando un passo decisivo verso il successo. Il metodo casistico, la tecnica che sta alla base di questi contenuti, garantisce il rispetto della realtà economica, sociale e professionale più attuali.

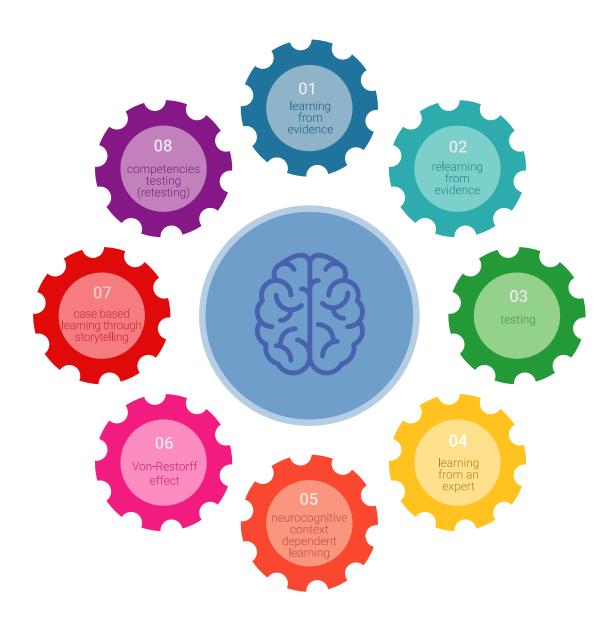
Il nostro programma ti prepara ad affrontare nuove sfide in ambienti incerti e a raggiungere il successo nella tua carriera"

Il Metodo Casistico è stato il sistema di apprendimento più usato nelle migliori Scuole di Informatica del mondo da quando esistono. Sviluppato nel 1912 affinché gli studenti di Diritto non imparassero la legge solo sulla base del contenuto teorico, il metodo casistico consisteva nel presentare loro situazioni reali e complesse per prendere decisioni informate e giudizi di valore su come risolverle. Nel 1924 fu stabilito come metodo di insegnamento standard ad Harvard.

Cosa dovrebbe fare un professionista per affrontare una determinata situazione?

Questa è la domanda con cui ti confrontiamo nel metodo dei casi, un metodo di apprendimento orientato all'azione. Durante il corso, gli studenti si confronteranno con diversi casi di vita reale. Dovranno integrare tutte le loro conoscenze, effettuare ricerche, argomentare e difendere le proprie idee e decisioni.

Metodologia Relearning


TECH coniuga efficacemente la metodologia del Caso di Studio con un sistema di apprendimento 100% online basato sulla ripetizione, che combina diversi elementi didattici in ogni lezione.

Potenziamo il Caso di Studio con il miglior metodo di insegnamento 100% online: il Relearning.

Nel 2019 abbiamo ottenuto i migliori risultati di apprendimento di tutte le università online del mondo.

In TECH imparerai con una metodologia all'avanguardia progettata per formare i manager del futuro. Questo metodo, all'avanguardia della pedagogia mondiale, si chiama Relearning.

La nostra università è l'unica autorizzata a utilizzare questo metodo di successo. Nel 2019, siamo riusciti a migliorare il livello di soddisfazione generale dei nostri studenti (qualità dell'insegnamento, qualità dei materiali, struttura del corso, obiettivi...) rispetto agli indicatori della migliore università online.

Metodologia | 27 tech

Nel nostro programma, l'apprendimento non è un processo lineare, ma avviene in una spirale (impariamo, disimpariamo, dimentichiamo e re-impariamo). Pertanto, combiniamo ciascuno di questi elementi in modo concentrico. Questa metodologia ha formato più di 650.000 laureati con un successo senza precedenti in campi diversi come la biochimica, la genetica, la chirurgia, il diritto internazionale, le competenze manageriali, le scienze sportive, la filosofia, il diritto, l'ingegneria, il giornalismo, la storia, i mercati e gli strumenti finanziari. Tutto questo in un ambiente molto esigente, con un corpo di studenti universitari con un alto profilo socioeconomico e un'età media di 43,5 anni.

Il Relearning ti permetterà di apprendere con meno sforzo e più performance, impegnandoti maggiormente nella tua specializzazione, sviluppando uno spirito critico, difendendo gli argomenti e contrastando le opinioni: un'equazione diretta al successo.

Dalle ultime evidenze scientifiche nel campo delle neuroscienze, non solo sappiamo come organizzare le informazioni, le idee, le immagini e i ricordi, ma sappiamo che il luogo e il contesto in cui abbiamo imparato qualcosa è fondamentale per la nostra capacità di ricordarlo e immagazzinarlo nell'ippocampo, per conservarlo nella nostra memoria a lungo termine.

In questo modo, e in quello che si chiama Neurocognitive Context-dependent E-learning, i diversi elementi del nostro programma sono collegati al contesto in cui il partecipante sviluppa la sua pratica professionale. Questo programma offre i migliori materiali didattici, preparati appositamente per i professionisti:

Materiale di studio

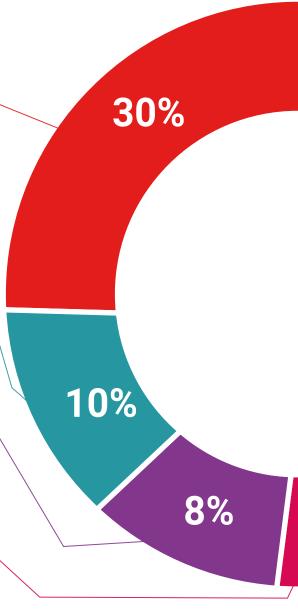
Tutti i contenuti didattici sono creati appositamente per il corso dagli specialisti che lo impartiranno, per fare in modo che lo sviluppo didattico sia davvero specifico e concreto.

Questi contenuti sono poi applicati al formato audiovisivo che supporterà la modalità di lavoro online di TECH. Tutto questo, con le ultime tecniche che offrono componenti di alta qualità in ognuno dei materiali che vengono messi a disposizione dello studente.

Master class

Esistono evidenze scientifiche sull'utilità dell'osservazione di esperti terzi.

Imparare da un esperto rafforza la conoscenza e la memoria, costruisce la fiducia nelle nostre future decisioni difficili.


Pratiche di competenze e competenze

Svolgerai attività per sviluppare competenze e capacità specifiche in ogni area tematica. Pratiche e dinamiche per acquisire e sviluppare le competenze e le abilità che uno specialista deve sviluppare nel quadro della globalizzazione in cui viviamo.

Letture complementari

Articoli recenti, documenti di consenso e linee guida internazionali, tra gli altri. Nella biblioteca virtuale di TECH potrai accedere a tutto il materiale necessario per completare la tua specializzazione.

Completerai una selezione dei migliori casi di studio scelti appositamente per questo corso. Casi presentati, analizzati e monitorati dai migliori specialisti del panorama internazionale.

Riepiloghi interattivi

Il team di TECH presenta i contenuti in modo accattivante e dinamico in pillole multimediali che includono audio, video, immagini, diagrammi e mappe concettuali per consolidare la conoscenza.

Questo esclusivo sistema di specializzazione per la presentazione di contenuti multimediali è stato premiato da Microsoft come "Caso di successo in Europa".

Testing & Retesting

Valutiamo e rivalutiamo periodicamente le tue conoscenze durante tutto il programma con attività ed esercizi di valutazione e autovalutazione, affinché tu possa verificare come raggiungi progressivamente i tuoi obiettivi.

tech 32 | Titolo

Questo programma ti consentirà di ottenere il titolo di studio di **Esperto Universitario in Deep Learning Applicatoalla Visione Artificiale** rilasciato da **TECH Global University**, la più grande università digitale del mondo.

TECH Global University è un'Università Ufficiale Europea riconosciuta pubblicamente dal Governo di Andorra (*bollettino ufficiale*). Andorra fa parte dello Spazio Europeo dell'Istruzione Superiore (EHEA) dal 2003. L'EHEA è un'iniziativa promossa dall'Unione Europea che mira a organizzare il quadro formativo internazionale e ad armonizzare i sistemi di istruzione superiore dei Paesi membri di questo spazio. Il progetto promuove valori comuni, l'implementazione di strumenti congiunti e il rafforzamento dei meccanismi di garanzia della qualità per migliorare la collaborazione e la mobilità tra studenti, ricercatori e accademici.

Questo titolo privato di **TECH Global Universtity** è un programma europeo di formazione continua e aggiornamento professionale che garantisce l'acquisizione di competenze nella propria area di conoscenza, conferendo allo studente che supera il programma un elevato valore curriculare.

Titolo: Esperto Universitario in Deep Learning Applicatoalla Visione Artificiale

Modalità: online

Durata: 6 mesi

Accreditamento: 18 ECTS

Esperto Universitario in Deep Learning Applicatoalla Visione Artificiale

Si tratta di un titolo di studio privato corrispondente a 540 horas di durata equivalente a 18 ECTS, con data di inizio dd/mm/aaaa e data di fine dd/mm/aaaa.

TECH Global University è un'università riconosciuta ufficialmente dal Governo di Andorra il 31 de gennaio 2024, appartenente allo Spazio Europeo dell'Istruzione Superiore (EHEA).

In Andorra la Vella, 28 febbraio 2024

^{*}Apostille dell'Aia. Se lo studente dovesse richiedere che il suo diploma cartaceo sia provvisto di Apostille dell'Aia, TECH Global University effettuerà le gestioni opportune per ottenerla pagando un costo aggiuntivo.

tech global university **Esperto Universitario**

Deep Learning Applicatoalla Visione Artificiale

- » Modalità: online
- » Durata: 6 mesi
- » Titolo: TECH Global University
- » Accreditamento: 18 ECTS
- » Orario: a scelta
- » Esami: online

