

Mastère Spécialisé Économie d'Énergie et Durabilité dans les Bâtiments

» Modalité: en ligne

» Durée: 12 mois

» Qualification: TECH Université Technologique

» Horaire: à votre rythme

» Examens: en ligne

Accès au site web: www.techtitute.com/fr/ingenierie/master/master-economie-energie-durabilite-batiments

Sommaire

02 Objectifs Présentation page 4 page 8 03

page 14

Compétences

Direction de la formation

page 18

05

Structure et contenu

page 24

06

Méthodologie

Diplôme

page 36

page 44

tech 06 | Présentation

Le Mastère Spécialisé en Économie d'Énergie et Durabilité dans les Bâtiments aborde l'ensemble des questions liées à ce domaine, tant dans la sphère résidentielle que tertiaire. Son étude présente un net avantage par rapport à d'autres Mastère Spécialisé qui se concentrent sur des blocs spécifiques, ce qui empêche les étudiants d'apprendre l'interrelation avec d'autres domaines inclus dans le champ multidisciplinaire des économies d'énergie et de la durabilité dans le bâtiment.

Cette mise à jour intègre un module consacré à l'économie circulaire dans le secteur du bâtiment, qui permet de quantifier non seulement l'impact énergétique, mais aussi l'impact environnemental.

En outre, il existe un module qui analyse les différents types de contrôle, d'automatisation et de réseaux qui peuvent être utilisés pour augmenter le potentiel des propositions d'économie d'énergie.

En résumé, avec le reste des modules sur les installations et l'architecture, une vision globale et interreliée des sujets est offerte dans le domaine de l'économie d'énergie et de la durabilité dans le bâtiment, ce qui rend unique et essentiel pour les professionnels de suivre ce Mastère Spécialisé pour le plein développement de leur activité.

En passant et en réussissant les évaluations de ce programme, les étudiants acquerront une solide connaissance des règles et réglementations à appliquer en matière d'économie d'énergie et de durabilité dans les bâtiments. Ils pourront également maîtriser les connaissances en matière d'énergie, d'architecture bioclimatique, d'énergies renouvelables et d'installations du bâtiment, telles que l'électricité, la thermique, l'éclairage et la régulation.

D'autre part, les étudiants obtiendront un grand coup de pouce dans leur carrière professionnelle en étant capables de mener la transformation en termes d'économie circulaire et de mener à bien le développement des audits énergétiques et des processus de certification dans le bâtiment.

De plus, comme il s'agit d'un Mastère Spécialisé 100% en ligne, l'étudiant n'est pas conditionné par des horaires fixes ou la nécessité de se déplacer vers un autre lieu physique, mais peut accéder aux contenus à tout moment de la journée, en conciliant sa vie professionnelle ou personnelle avec sa vie académique.

Ce Mastère Spécialisé en Économie d'Énergie et Durabilité dans les Bâtiments contient le programme éducatif le plus complet et le plus actuel du marché. Les principales caractéristiques sont les suivantes:

- Le développement d'études de cas présentées par des experts en Économie d'Énergie et Durable dans les Bâtiments
- Le contenu graphique, schématique et éminemment pratique du programme fournit des informations scientifiques et pratiques sur les disciplines essentielles à la pratique professionnelle
- Les exercices pratiques pour réaliser le processus d'auto évaluation pour améliorer l'apprentissage
- Il met l'accent sur les méthodologies innovantes en matière de Économie d'Énergie et Durabilité dans les Bâtiments
- Leçons théoriques, questions à l'expert, forums de discussion sur des sujets controversés et travail de réflexion individuel
- La possibilité d'accéder aux contenus depuis n'importe quel appareil fixe ou portable doté d'une connexion internet

Acquérir les connaissances les plus complètes et les plus récentes des normes et réglementations applicables de manière pratique et flexible"

Les aspects les plus innovants et les plus intéressants de l'énergie, de l'architecture bioclimatique, des énergies renouvelables et des installations du bâtiment dans un cours intensif de haute qualité"

Un corps enseignant composé d'experts dans le domaine de la construction de bâtiments apportera à cette mise à jour l'expérience de leur travail, ainsi que des spécialistes reconnus issus de grandes entreprises et d'universités prestigieuses.

Son contenu multimédia, développé avec les dernières technologies éducatives, permettra au professionnel un apprentissage situé et contextuel, c'est-à-dire un environnement simulé qui fournira une mise à jour immersive programmée pour s'entraîner dans des situations réelles.

La conception de ce programme est axée sur l'Apprentissage Par les Problèmes, grâce auquel le professionnel doit essayer de résoudre les différentes situations de pratique professionnelle qui se présentent tout au long du Mastère Spécialisé. À cette fin, le spécialiste s'appuiera sur un système vidéo interactif innovant, créé par des experts reconnus dans le domaine de l'Économie d'Énergie et Durabilité dans les Bâtiments

Un matériel didactique complet soutien des meilleurs systèmes audiovisuels du marché de l'éducation, pour vous permettre une expérience d'apprentissage immersive.

> Un Mastère Spécialisé 100% en ligne vous permettra de combiner vos études avec votre travail professionnel, tout flexibilité.

tech 10 | Objectifs

Objectifs généraux

- Comprendre l'impact de la consommation énergétique d'une ville et des principaux éléments qui la font fonctionner, les bâtiments
- Étudier en profondeur la consommation et la demande d'énergie, car ce sont les principaux facteurs de conditionnement pour qu'un bâtiment soit énergétiquement confortable
- Former les étudiants à la connaissance générale des différentes normes, standards, réglementations et législations existantes, en leur permettant d'approfondir les spécifiques qui agissent dans le développement des procédures pour les actions d'économie d'énergie dans les bâtiments
- Offrir une connaissance fondamentale pour soutenir le reste des modules et les outils pour rechercher des informations connexe
- Appliquer les aspects clés de l'économie circulaire dans les bâtiments en utilisant les outils d'analyse du cycle de vie et de l'empreinte carbone pour établir des plans de réduction de l'impact environnemental, ainsi que pour répondre aux critères des marchés publics écologiques
- Former les étudiants à la réalisation d'audits énergétiques conformément à la Norme EN 16247-2, à la prestation de services énergétiques et à la certification énergétique afin d'établir des mesures d'amélioration pour accroître les économies d'énergie et la durabilité des bâtiments
- Approfondir l'importance des outils architecturaux qui permettront d'utiliser au maximum l'environnement climatique d'un bâtiment
- Réaliser une analyse exhaustive de la technique de chacune des énergies renouvelables
 Cela permettra à l'étudiant d'avoir la capacité et la vision nécessaires pour concevoir les meilleures options pour choisir une source d'énergie en fonction des ressources disponibles

- Approfondir l'autoconsommation, ainsi que les avantages de son application dans les bâtiments
- Choisir les équipements les plus efficaces et détecter les déficiences de l'installation électrique afin de réduire la consommation, d'optimiser les installations et d'instaurer une culture de l'efficacité énergétique dans l'organisation Ainsi que la conception d'infrastructures pour les points de recharge des véhicules électriques en vue de leur implantation dans les bâtiments
- Découvrez les différents systèmes de production de froid et de chaleur les plus couramment utilisés aujourd'hui
- Effectuer une analyse complète des principales opérations de maintenance des équipements de climatisation, de nettoyage et de remplacement des pièces
- Analyse approfondie des propriétés de la lumière impliquées dans les économies d'énergie dans les bâtiments
- Maîtriser et appliquer les techniques et exigences de conception et de calcul des systèmes d'éclairage, en cherchant à respecter les critères sanitaires, visuels et énergétiques
- Approfondir et analyser les différents systèmes de contrôle installés dans les bâtiments, les différences entre eux, les critères d'applicabilité dans chaque cas et les économies d'énergie réalisées

Objectifs spécifiques

Module 1. Énergie dans le bâtiment

- Obtenir un aperçu de l'énergie dans les villes
- Identifier l'importance du comportement énergétique d'un bâtiment
- Approfondir les différences entre consommation et demande d'énergie
- Analyser minutieusement l'importance du confort et de l'habitabilité énergétique

Module 2. Normes et règlements

- Identifier les organismes et entités responsables
- Parvenir à une vue d'ensemble des réglementations en vigueur
- Justifier les différences entre les différents documents, qu'il s'agisse de règles, règlements, normes, législations et leur champ d'application
- Analyser en détail les principales réglementations régissant les procédures de mise en œuvre sur les économies d'énergie et la durabilité dans la construction
- Fournir des outils de recherche d'informations connexes

Module 3. Économie circulaire

- Avoir une approche globale de l'économie circulaire dans la construction pour maintenir une vision stratégique de mise en œuvre et de bonnes pratiques
- Quantifier, par l'analyse du cycle de vie et le calcul de l'empreinte carbone, l'impact en matière de durabilité sur la gestion des immeubles pour l'élaboration de plans d'amélioration permettant des économies d'énergie et la réduction de l'impact environnemental produit par les bâtiments
- Maîtriser les critères des marchés publics écologiques dans le secteur immobilier afin de pouvoir y faire face et y répondre avec discernement

tech 12 | Objectifs

Module 4. Audits énergétiques et certification

- Reconnaître le type de travail à effectuer en fonction des objectifs fixés par le client pour reconnaître la nécessité d'un audit énergétique
- Effectuer un audit énergétique dans le bâtiment conformément à la Norme EN 16247-2 pour établir un protocole d'action permettant de connaître la situation initiale et de proposer des options d'économie d'énergie
- Analyser la fourniture de services énergétiques pour connaître les caractéristiques de chacun d'eux dans la définition des contrats de services énergétiques
- Effectuer la certification énergétique du bâtiment pour connaître la qualification énergétique initiale et pouvoir définir des options d'amélioration à celle-ci selon une norme

Module 5. Architecture bioclimatique

- Avoir une connaissance approfondie des éléments structurels et de leur effet sur la performance énergétique d'un bâtiment
- Étudier les éléments structurels qui permettent l'exploitation de la lumière du soleil et d'autres ressources naturelles et leur adaptation architecturale
- Détecter la relation d'un bâtiment avec la santé humaine

Module 6. Énergie renouvelable

- Traiter en détail l'évolution des énergies renouvelables jusqu'à leurs applications actuelles
- Réaliser une étude approfondie des applications de ces énergies dans la construction actuelle
- Internaliser et approfondir l'autoconsommation, ainsi que les avantages de son application dans les bâtiments

Module 7. Installations électriques

- Choisir l'équipement le plus efficace pour faire en sorte que l'activité abritant le bâtiment se développe avec la plus faible consommation d'énergie possible
- Détecter et corriger les défauts résultant de l'existence d'harmoniques pour réduire les pertes d'énergie dans le réseau électrique en optimisant sa capacité de transmission d'énergie
- Concevoir des infrastructures de recharge de véhicules électriques dans le bâtiment afin de les équiper conformément à la réglementation en vigueur ou aux exigences particulières des clients
- Optimiser les factures d'électricité pour réaliser les économies les plus importantes en fonction des caractéristiques du profil de demande du bâtiment
- Mettre en place une culture d'efficacité énergétique pour augmenter les économies d'énergie et donc économiques dans l'activité facility management au sein de la gestion immobilière

Module 8. Installations thermiques

- Maîtriser les différents systèmes de climatisation thermique et leur fonctionnement
- Ventilation détaillée de leurs composants pour l'entretien des machines
- Analyser le rôle de l'efficacité énergétique dans l'évolution des différents systèmes

Module 9. Installations d'éclairage

- Appliquer les principes de la technologie d'éclairage, ses propriétés, en différenciant les aspects qui contribuent à l'économie d'énergie
- Analyser les critères, les caractéristiques et les exigences des différentes solutions que l'on peut trouver dans les bâtiments
- Concevoir et calculer des projets d'éclairage, en améliorant l'efficacité énergétique
- Intégrer les techniques d'éclairage pour l'amélioration de la santé comme élément de référence pour les économies d'énergie

Module 10. Installations de contrôle

- Analyser les différentes installations, technologies et systèmes de contrôle appliqués aux économies d'énergie dans les bâtiments
- Faire la différence entre les différents systèmes à mettre en œuvre, en distinguant les caractéristiques dans chaque cas spécifique
- Examiner comment les installations de contrôle contribuent aux économies d'énergie dans les bâtiments en optimisant les ressources énergétiques
- Maîtriser les principes de la configuration des systèmes de contrôle utilisés dans les bâtiments

Atteignez le niveau de connaissances que vous souhaitez et maîtrisez les Économies d'Énergie et Durabilité dans les Bâtiments grâce à cette mise à jour de haut niveau"

tech 16 | Compétences

Compétences générales

- Connaître les consommations énergétiques des bâtiments et prendre des mesures pour les réduire
- Appliquer les réglementations spécifiques relatives aux économies d'énergie dans les bâtiments
- Réaliser des audits énergétiques dans les bâtiments
- Détecter et dépanner les problèmes d'installations électriques qui permettent d'économiser de la consommation

Ajoutez à votre CV les compétences d'un professionnel parfaitement à jou d'un professionnel parfaitement à jour et rivalisez avec les meilleurs du secteur"

Compétences spécifiques

- Découvrir l'impact de la consommation énergétique d'une ville
- Connaître la législation et les réglementations relatives aux économies d'énergie et à la durabilité dans le bâtiment et les appliquer dans leur travail
- Développer des plans d'amélioration permettant de réduire l'impact environnemental des bâtiments
- Appliquer la Norme EN 16247-2 pour la réalisation d'audits
- Exploiter les ressources naturelles en suivant une adaptation architecturale bioclimatique
- Appliquer les énergies renouvelables à la construction de bâtiments
- Appliquer toutes les techniques nécessaires pour réaliser des économies d'énergie dans les bâtiments
- Développer et appliquer des systèmes de climatisation efficaces
- Développer et appliquer des systèmes d'éclairage efficaces
- Utilisation de systèmes de contrôle permettant des économies d'énergie

Directeur Invité International

Stefano Silvani est un leader reconnu en matière de transformation numérique, avec plus de 10 ans d'expérience dans la conduite d'innovations technologiques dans des domaines tels que le cloud, l'IoT, l'Intelligence Artificielle, l'Apprentissage Automatique (AI/ML), les Solutions Logicielles en tant que Service (SaaS) et la Plateforme en tant que Service (PaaS). À ce titre, ses antécédents comprennent un accent stratégique sur la transformation des modèles d'affaires et la négociation d'accords d'entreprise à grande échelle. En outre, il s'intéresse à la création de valeur grâce à la technologie, au développement de nouvelles solutions numériques et à la mise en œuvre du leadership.

Il a également travaillé dans des entreprises de renommée mondiale telles que General Electric Digital, où il a joué un rôle crucial dans le lancement de Predix, la première plateforme IoT industrielle sur le marché. Il a également rejoint Siemens Digital Industries, où il a dirigé l'expansion de la plateforme Mindsphere et de la plateforme de développement de code sous Mendix. Sa carrière s'est poursuivie chez Siemens Smart Infrastructure, où il a dirigé l'équipe mondiale d'avant-vente pour la plateforme de construction intelligente Building X, générant des solutions technologiques avancées pour les entreprises mondiales.

En plus de son travail professionnel, il a été un conférencier actif sur l'innovation numérique, la co-création de valeur et le leadership. Fort de son expérience dans plusieurs pays, dont l'Italie, l'Espagne, le Luxembourg et la Suisse, il a apporté une perspective globale à ses projets, explorant de nouvelles façons de stimuler l'innovation commerciale et technologique dans le monde entier.

Il a également été reconnu pour sa capacité à mener des transformations numériques dans des organisations complexes. En fait, son équipe a généré un chiffre d'affaires annuel de 70 millions de dollars, en proposant des services de conseil en matière de bâtiments intelligents et de solutions de gouvernance architecturale. L'importance qu'il accorde à la collaboration interfonctionnelle et sa capacité à gérer des équipes mondiales l'ont positionné comme un conseiller de confiance pour les cadres supérieurs.

M. Silvani, Stefano

- Direttrice dell'Ufficio di Sostenibilità della Cornell University, New York, USA
- Responsabile dell'Azione per il Clima presso il Campus della Cornell University
- Specialista in Gestione Ambientale presso la Cornell University
- Responsabile del l'informazione Ambientale presso la Cornell University
- Laurea in Gestione e Politica delle Risorse Naturali della North Carolina State University
- Laurea in Scienze e Politiche Ambientali presso la New York State University

Grâce à TECH, vous pourrez apprendre avec les meilleurs professionnels du monde"

Direction

M. Nieto-Sandoval González-Nicolás, David

- Ingénieur Technique Industriel, E.U.P. de Malaga
- Ingénieur Industriel, ETSII
- Master en Gestion Intégrale de la Qualité, de l'Environnement et de la Santé et de la Sécurité au travail de l'Université des Îles Baléares
- Il travaille à son compte et pour d'autres entreprises depuis 11 ans, en tant que consultant en ingénierie, gestion de projet, économie d'énergie et circularité des organisations. Il compte parmi ces clients des entreprises du secteur de l'industrie agroalimentaire privée ainsi que du secteur institutionnel
- Professeur agrée de l'EOI dans les domaines de l'industrie, de l'Entrepreneuriat, des Ressources Humaines, de l'Energie, des Nouvelles Technologies et de l'Innovation Technologique
- Formateur du projet européen INDUCE
- Formateur dans des institutions telles que le COGITI ou le COIIM

Professeurs

Mme Peña Serrano, Ana Belén

- Ingénieur Technique en Topographie à l'Université Polytechnique de Madrid
- Master en Énergies Renouvelables de l'Université San Pablo CEU
- Cours de Cartographie Géologique de l'Université Nationale d'Enseignement à Distance
- Cours de Certification Énergétique des Bâtiments par la Fondation du Travail de la Construction
- Son expérience couvre plusieurs secteurs allant du travail à pied d'œuvre à la gestion des ressources humaines
- Elle collabore à différents projets de communication scientifique en dirigeant la diffusion dans différents médias en matière d'énergie
- Membre de l'équipe de direction des travaux du Master en Gestion Environnementale et Énergétique dans les Organisations de l'Université Internationale de la Rioja

M. González Cano, Jose Luis

- Diplômé en Optique et Optométrie de l'Université Complutense de Madrid
- Concepteur d'Éclairage. Il développe son activité professionnelle indépendante en collaborant avec des entreprises du secteur de l'éclairage dans le conseil, la formation, les projets d'éclairage et la mise en œuvre de systèmes de qualité ISO 9001:2015 (auditeur interne)
- Enseignant de formation professionnelle dans les systèmes électroniques, télématique (instructeur CISCO certifié), radiocommunications, IoT
- Membre de l'Association Professionnelle des Concepteurs d'Éclairage (Consultant technique) et partenaire du Comité Espagnol d'Éclairage, participant à des groupes de travail sur la technologie LED

Profitez de cette opportunité et faites un saut qualitatif définitif pour votre carrière"

tech 26 | Structure et contenu

Module 1. Énergie dans le bâtiment

- 1.1. L'Énergie dans les villes
 - 1.1.1. Comportement énergétique d'une ville
 - 1.1.2. Objectifs du développement durable
 - 1.1.2. ODD 11 Villes et communautés durables
- 1.2. Moins de consommation ou plus d'énergie propre
 - 1.2.1. La connaissance sociale des énergies propres
 - 1.2.2. Responsabilité sociale dans l'utilisation de l'énergie
 - 1.2.3. Besoin énergétique accru
- 1.3. Villes et bâtiments intelligents
 - 1.3.1. Intelligence des édifices
 - 1.3.2. Situation actuelle des bâtiments intelligents
 - 1.3.3. Exemples de bâtiments intelligents
- 1.4. Consommation énergétique
 - 1.4.1. La consommation énergétique dans un bâtiment
 - 1.4.2. Mesure de la consommation énergétique
 - 1.4.3. Connaître notre consommation
- 1.5. Demande énergétique
 - 1.5.1. La demande énergétique d'un bâtiment
 - 1.5.2. Calcul de la demande énergétique
 - 1.5.3. Gestion de la demande énergétique
- 1.6. Utilisation efficace de l'énergie
 - 1.6.1. Responsabilité dans l'utilisation de l'énergie
 - 1.6.2. La connaissance de notre système énergétique
- 1.7. Confort thermique
 - 1.7.1. Importance du confort thermique
 - 1.7.2. Besoins du confort thermique
- 1.8. Pauvreté énergétique
 - 1.8.1. Dépendance énergétique
 - 1.8.2. Situation actuelle

- .9. Rayonnement solaire. Zones climatiques
 - 1.9.1. Rayonnement solaire
 - 1.9.1. Rayonnement solaire par heures
 - 1.9.2. Effets des rayonnements solaires
 - 1.9.3. Zones climatiques
 - 1.9.4. Importance de l'emplacement géographique d'un bâtiment

Module 2. Normes et règlements

- 2.1. Règlement
 - 2.1.1. Justification
 - 2.1.2. Annotations clés
 - 2.1.3. Organismes et entités responsables
- 2.2. Réglementation Nationale et Internationale
 - 2.2.1. Normes ISO
 - 2.2.2. Normes EN
 - 2.2.3. Normes UNE
- 2.3. Certificats de durabilité en construction
 - 2.3.1. Nécessité des certificats
 - 2.3.2. Procédures de certification
 - 2.3.3. BREEAM, LEED, Verte et WELL
 - 2.3.4. PassiveHaus
- 2.4. Normes
 - 2.4.1. Industry Foundation Classes (IFC)
 - 2.4.2. Building Information Model (BIM)
- 2.5. Directives Européennes
 - 2.5.1. Directive 2002/91
 - 2.5.2. Directive 2010/31
 - 2.5.3. Directive 2012/27
 - 2.5.4. Directive 2018/844
- 2.6. Code Technique de Construction (CTE)
 - 2.6.1. Mise en œuvre du CTE
 - 2.6.2. Documents de base du CTE
 - 2.6.3. Documents d'appui au CTE
 - 2.6.4. Documents reconnus

Structure et contenu | 27 tech

- 2.7. Procédure de certification énergétique des bâtiments
 - 2.7.1. R.D. 235/2013
 - 2.7.2. Conditions techniques
 - 2.7.3. Étiquette efficacité énergétique
- 2.8 Règlement des Installations Thermiques dans les Bâtiments (RITB)
 - 2.8.1. Objectifs
 - 2.8.2. Conditions administratives
 - 2.8.3. Conditions d'exécution
 - 2.8.4. Entretien et inspection
 - 2.8.5. Guides techniques
- 2.9. Règlement Électrotechnique Basse Tension (RETB)
 - 2.9.1. Principaux aspects de mise en œuvre
 - 2.9.2. Installations intérieures
 - 2.9.3. Installations dans les locaux de public concurrent
 - 2.9.4. Installations extérieures
 - 2.9.5. Installations domotiques
- 2.10. Réglementation connexe. Chercheurs
 - 2.10.1. Organismes gouvernementaux
 - 2.10.2. Entités et associations professionnelles

Module 3. Économie circulaire

- 3.1. Tendance de l'économie circulaire
 - 3.1.1. Origine de l'économie circulaire
 - 3.1.2. Définition de économie circulaire
 - 3.1.3. Besoins de l'économie circulaire
 - 3.1.4. Économie circulaire comme stratégie
- 3.2. Caractéristiques de l'économie circulaire
 - 3.2.1 Principe 1 Préserver et améliorer
 - 3.2.2. Principe 2 Optimiser
 - 3.2.3. Principe 3 Promouvoir
 - 3.2.4. Caractéristiques clés

tech 28 | Structure et contenu

3.3.	Bénéfices de l'économie circulaire		
	3.3.1.	Avantages économiques	
	3.3.2.	Avantages sociaux	
	3.3.3.	Avantages commerciaux	
	3.3.4.	Avantages environnementaux	
3.4.	Législation sur l'économie circulaire		
	3.4.1.	Règlementation	
	3.4.2.	Directives Européennes	
	3.4.3.	Législation Espagnole	
	3.4.4.	Législation autonome	
3.5.	Analyse du cycle de vie		
	3.5.1.	Portée de l'Analyse du Cycle de Vie (ACV)	
	3.5.2.	Étapes	
	3.5.3.	Normes de référence	
	3.5.4.	Méthodologie	
	3.5.5.	Outils	
3.6.	Marchés publics verts		
	3.6.1.	Législation	
	3.6.2.	Manuel des marchés publics écologiques	
	3.6.3.	Orientations sur les marchés publics	
	3.6.4.	Plan de passation des marchés publics 2018-2025	
3.7.	Calcul de l'empreinte carbone		
	3.7.1.	Empreinte carbone	
	3.7.2.	Types de portée	
	3.7.3.	Méthodologie	
	3.7.4.	Outils	
	3.7.5.	Calcul de l'empreinte carbone	
3.8.	Plans de réduction des émissions de CO2		
	3.8.1.	Plan d'amélioration. Fournitures	
	3.8.2.	Plan d'amélioration. Demande	
	3.8.3.	Plan d'amélioration. Installations	
	3.8.4.	Plan d'amélioration. Équipements	

3.8.5. Compensations d'émissions

- 3.9. Enregistrements de empreinte carbone
 - 3.9.1. Enregistrements de empreinte carbone
 - 3.9.2. Conditions de pré-enregistrement
 - 3.9.3. Documentation
 - 3.9.4. Demande d'inscription
- 3.10 Bonnes pratiques circulaires
 - 3.10.1. Méthodes BIM
 - 3.10.2. Sélection des matériaux et des équipements
 - 3.10.3. Maintenance
 - 3.10.4. Gestion des déchets
 - 3.10.5. Réutilisation des matériaux

Module 4. Audits énergétiques et certification

- 4.1. Audits énergétiques
 - 4.1.1. Diagnostic énergétique
 - 4.1.2. Audits énergétiques
 - 4.1.3. Audits énergétiques ESE
- 4.2. Compétences d'un auditeur énergétique
 - 4.2.1. Attributs personnels
 - 4.2.2. Connaissances et compétences
 - 4.2.3. Acquisition, entretien et renforcement des compétences
 - 4.2.4. Certifications
 - 4.2.5. Liste des fournisseurs de services énergétiques
- 4.3. Audit énergétique dans le bâtiment. UNE-EN 16247-2
 - 4.3.1. Contact préliminaire
 - 4.3.2. Travail sur le terrain
 - 4.3.3. Analyse
 - 4.3.4. Rapport
 - 4.3.5. Présentation finale
- 4.4. Instruments de mesure dans les audits
 - 4.4.1. Analyseur de réseaux et pinces multimétriques
 - 4.4.2. Luxomètre
 - 4.4.3. Thermohygromètre
 - 4.4.4. Anémomètre
 - 4.4.5. Analyseur de combustion
 - 4.4.6. Caméra thermographique
 - 4.4.7. Testeur de transmission

- 4.5. Analyse des investissements
 - 4.5.1. Considérations préliminaires
 - 4.5.2. Critères d'évaluation des investissements
 - 4.5.3. Étude des coûts
 - 4.5.4. Aides et subventions
 - 4.5.5. Délai de récupération
 - 4.5.6. Niveau optimal de rentabilité
- 4.6. Gestion des contrats avec les entreprises de services énergétiques
 - 4.6.1. Étiquette efficacité énergétique. UNE-EN 15900
 - 4.6.2. Prestation 1. Gestion énergétique
 - 4.6.3. Prestation 2. Maintenance
 - 4.6.4. Prestation 3. Garantie totale
 - 4.6.5. Prestation 4. Amélioration et rénovation des installations
 - 4.6.6. Prestation 5. Investissements dans l'épargne et les énergies renouvelables
- 4.7. Programmes de certification. HULC
 - 4.7.1. Programme HULC
 - 4.7.2. Données avant calcul
 - 4.7.3. Exemple d'étude de cas. Résidentiel
 - 4.7.4. Exemple d'étude de cas. Petit tertiaire
 - 4.7.5. Exemple d'étude de cas. Grand tertiaire
- 4.8. Programmes de certification. CE3X
 - 4.8.1. Programme CE3X
 - 4.8.2. Données avant calcul
 - 4.8.3. Exemple d'étude de cas. Résidentiel
 - 4.8.4. Exemple d'étude de cas. Petit tertiaire
 - 4.8.5. Exemple d'étude de cas. Grand tertiaire
- 4.9. Programmes de certification. CERMA
 - 4.9.1. Programme CERMA
 - 4.9.2. Données avant calcul
 - 4.9.3. Exemple d'étude de cas. Nouvelle construction
 - 4.9.4. Exemple d'étude de cas. Bâtiment existant
- 4.10. Programmes de certification. Autres
 - 4.10.1. Variété dans l'utilisation des programmes de calcul énergétique
 - 4.10.2. Autres programmes de certification

Module 5. Architecture bioclimatique

- 5.1. Technologie des matériaux et systèmes de construction
 - 5.1.1. Évolution de l'architecture bioclimatique
 - 5.1.2. Matériaux les plus utilisés
 - 5.1.3. Systèmes constructifs
 - 5.1.4. Ponts thermiques
- 5.2. Serrures, murs et toitures
 - 5.2.1. Le rôle des clôtures dans l'efficacité énergétique
 - 5.2.2. Fermetures verticales et matériaux utilisés
 - 5.2.3. Fermetures horizontales et matériaux utilisés
 - 5.2.4. Couvertures plates
 - 5.2.5. Couvertures inclinées
- 5.3. Creux, vitrages et cadres
 - 5.3.1. Types d'espaces
 - 5.3.2. Le rôle des clôtures dans l'efficacité énergétique
 - 5.3.3 Matériaux utilisés
- 5.4. Protection solaire
 - 5.4.1 Nécessité de la protection solaire
 - 5.4.2. Systèmes de protection solaire
 - 5.4.2.1. Bâches
 - 5422 Lamas
 - 5.4.2.3. Envolés
 - 5424 Retranchements
 - 5.4.2.5. Autres systèmes de protection
- 5.5. Stratégies bioclimatiques pour l'été
 - 5.5.1. L'importance de l'utilisation des ombres
 - 5.5.2. Techniques de construction bioclimatique pour l'été
 - 5.5.3. Bonnes pratiques constructives
- 5.6. Stratégies bioclimatiques pour l'hiver
 - 5.6.1 L'importance de l'exploitation du soleil
 - 5.6.2. Techniques de construction bioclimatique pour l'hiver
 - 5.6.3. Exemples constructifs

tech 30 | Structure et contenu

- 5.7. Puits canadiens. Mur Trombe. Couvertes végétales
 - 5.7.1. Autres formes de valorisation énergétique
 - 5.7.2. Puits canadiens
 - 5.7.3. Mur trombe
 - 5.7.4. Couvertes végétales
- 5.8. Importance de la directives du bâtiment
 - 5.8.1. La rose des vents
 - 5.8.2. Orientations dans un Bâtiment
 - 5.8.3. Exemples de mauvaises pratiques
- 5.9. Bâtiments sains
 - 5.9.1. Oualité de l'air
 - 5.9.2. Qualité de l'éclairage
 - 5.9.3. Isolation thermique
 - 5.9.4. Isolation sonore
 - 5.9.5. Syndrome des bâtiments malsains
- 5.10. Exemples de architecture bioclimatique
 - 5.10.1. Architecture Internationale
 - 5.10.2. Architectes bioclimatiques

Module 6. Énergie renouvelable

- 6.1. Énergie solaire thermique
 - 6.1.1. Portée de l'énergie solaire thermique
 - 6.1.2. Systèmes d'énergie solaire thermique
 - 6.1.3. Énergie solaire thermique aujourd'hui
 - 6.1.4. Utilisation de l'énergie solaire thermique des bâtiments
 - 6.1.5. Avantages et inconvénients
- 6.2. Énergie solaire photovoltaïque
 - 6.2.1. Évolution de l'énergie solaire photovoltaïque
 - 6.2.2. Énergie solaire photovoltaïque aujourd'hui
 - 6.2.3. Utilisation de l'énergie solaire photovoltaïque des bâtiments
 - 6.2.4. Avantages et inconvénients

- 6.3. Énergie hydroélectrique
 - 6.3.1. Énergies hydraulique dans le bâtiment
 - 6.3.2. Énergie hydraulique et mini hydraulique aujourd'hui
 - 6.3.3. Applications pratiques de l'énergie hydraulique
 - 6.3.4. Avantages et inconvénients
- 6.4. Énergie hydroélectrique
 - 6.4.1. Énergie éolienne et mini-éolienne
 - 6.4.2. Nouvelles de l'énergie éolienne et mini-éolienne
 - 6.4.3. Applications pratiques de l'énergie éolienne
 - 6.4.4. Avantages et inconvénients
- 6.5. Biomasse
 - 6.5.1. La biomasse en tant que combustible renouvelable
 - 6.5.2. Types de combustibles de la biomasse
 - 6.5.3. Systèmes de production de chaleur au biomasse
 - 6.5.4. Avantages et inconvénients
- 6.6. Géothermie
 - 6.6.1. Énergie géothermique
 - 6.6.2. Systèmes actuels d'énergie géothermique
 - 6.6.3. Avantages et inconvénients
- 5.7. Énergie aérothermique
 - 6.7.1 L'Aérothermie dans les bâtiments
 - 6.7.2. Systèmes aérothermiques actuels
 - 6.7.3. Avantages et inconvénients
- 6.8. Systèmes de co-génération
 - 6.8.1. Co-génération
 - 6.8.2. Systèmes de co-génération dans les habitations et les bâtiments
 - 6.8.3. Avantages et inconvénients
- 5.9. Biogaz dans les bâtiments
 - 6.9.1. Potentialités
 - 6.9.2. Bio-digesteur
 - 6.9.3. Intégration
- 6.10. Auto-consommation
 - 6.10.1. Application de l'auto-consommation
 - 6.10.2. Avantages de l'auto-consommation
 - 6.10.3. La situation actuelle du secteur
 - 6.10.4. Systèmes énergétiques d'auto-consommation dans les bâtiments

Module 7. Installations électriques

- 7.1. Équipements électriques
 - 7.1.1. Classification
 - 7.1.2. Consommation d'appareils ménagers
 - 7.1.3. Profils d'utilisation
- 7.2. Étiquettes énergétiques
 - 7.2.1. Produits labellisés
 - 7.2.2. Interprétation de l'étiquette
 - 7.2.3. Écolabels
 - 7.2.4. Registre produits base de Données EPREL
 - 7.2.5. Estimation des économies
- 7.3. Systèmes de comptage individuel
 - 7.3.1. Mesure de la consommation électricité
 - 7.3.2. Mètres individuels
 - 7.3.3. Compteurs du tableau de distribution
 - 7.3.4. Choix des dispositifs
- 7.4. Filtres et batteries de condensateurs
 - 7.4.1. Différences entre le facteur de puissance et le cosinus de PHI
 - 7.4.2. Taux d'harmoniques et de distorsion
 - 7.4.3. Compensation de l'énergie réactive
 - 7 4 4 Sélection des filtres
 - 7.4.5. Sélection de la batterie de condensateurs
- 7.5. Consommation Stand-By
 - 7.5.1. Étude du Stand-By
 - 7.5.2. Codes de conduite
 - 7.5.3. Estimation de la consommation Stand-By
 - 7.5.4. Dispositifs anti Stand-By
- 7.6. Rechargement des véhicules électriques
 - 7.6.1. Types de points de recharge
 - 7.6.2. Schémas possibles de l'ITC-BT 52
 - 7.6.3. Mise à disposition d'infrastructures réglementaires dans les Bâtiments
 - 7.6.4. Propriété et Installation horizontales des points de recharge

- 7.7. Systèmes d'alimentation sans interruption
 - 7.7.1 Infrastructure des SAI
 - 7.7.2. Types de SAI
 - 7.7.3. Caractéristiques
 - 7.7.4. Applications
 - 7.7.5. Choix de SAI
- 7.8. Compteur électrique
 - 7.8.1 Types de compteurs
 - 7.8.2. Fonctionnement du compteur numérique
 - 7.8.3. Utilisation comme analyseur
 - 7.8.4. Télémesure et extraction de données
- 7.9. Optimisation de la facturation de l'électricité
 - 7.9.1. Tarifs de l'électricité
 - 7.9.2. Types de consommateurs en basse tension
 - 7.9.3. Types de tarifs en basse tension
 - 7.9.4. Durée du pouvoir et pénalités
 - 7.9.5. Terme et pénalités pour l'énergie réactive
- 7.10. Utilisation efficace de l'énergie
 - 7.10.1 Les habitudes d'économie d'énergie
 - 7.10.2. Appareils ménagers à faible consommation d'énergie
 - 7.10.3. Culture énergétique en Facility Management

tech 32 | Structure et contenu

Module 8. Installations thermiques

- 8.1. Installations thermiques dans les bâtiments
 - 8.1.1. Idéalisation des installations thermiques dans les bâtiments
 - 8.1.2. Fonctionnement des machines thermiques
 - 8.1.3. Isolation des tuyaux
 - 8.1.4. Isolation des conduits
- 8.2. Systèmes de production de chaleur au gaz
 - 8.2.1. Équipement de chauffage au gaz
 - 8.2.2. Composants d'un système de production de chaleur au gaz
 - 8.2.3. Essai sous vide
 - 8.2.4. Bonnes pratiques dans les systèmes de chauffage au gaz
- 8.3. Systèmes de production de chaleur au gaz
 - 8.3.1. Équipement de chauffage au gaz
 - 8.3.2. Composants d'un systèmes de production de chaleur au gaz
 - 8.3.3. Bonnes pratiques dans les systèmes de chauffage au gaz
- 8.4. Systèmes de production de chaleur au biomasse
 - 8.4.1. Équipement de chauffage à la biomasse
 - 8.4.2. Composants d'un systèmes de production de chaleur au biomasse
 - 8.4.3. L'utilisation de la biomasse dans le ménage
 - 8.4.4. Bonnes pratiques dans les systèmes de production de biomasse
- 8.5. Pompes à chaleur
 - 8.5.1. Équipement de pompe à chaleur
 - 8.5.2. Composants d'une pompe à chaleur
 - 8.5.3. Avantages et inconvénients
 - 8.5.5. Bonnes pratiques en matière d'équipements de pompes à chaleur
- 8.6. Gaz réfrigérants
 - 8.6.1. Connaissance des gaz réfrigérants
 - 8.6.2. Classification des types de gaz réfrigérants
- 8.7. Installations frigorifiques
 - 8.7.1. Équipement frigorifique
 - 8.7.2. Installations typiques
 - 8.7.3. Autres installations frigorifiques
 - 8.7.4. Vérification et nettoyage des composants frigorifiques

- 8.8. Systèmes CVC
 - 8.8.1. Types de systèmes CVC
 - 8.8.2. Systèmes domestiques de CVC
 - 8.8.3. Utilisation correcte des systèmes CVC
- 3.9. Systèmes ACS
 - 8.9.1. Types de systèmes ACS
 - 8.9.2. Systèmes domestiques de ACS
 - 8.9.3. Utilisation correcte des systèmes ACS
- 8.10. Entretien des installations thermiques
 - 8.10.1. Entretien des chaudières et des brûleurs
 - 8.10.2. Entretien des composants auxiliaires
 - 8.10.3. Détection des fuites de gaz réfrigérants
 - 8.10.4. Récupération des gaz réfrigérants

Module 9. Installations éclairage

- 9.1. Sources de lumière
 - 9.1.1. Technologie d'éclairage
 - 9.1.1.1. Propriétés de la lumière
 - 9.1.1.2. Photométrie
 - 9.1.1.3. Mesures photométriques
 - 9.1.1.4. Luminaires
 - 9.1.1.5. Équipement électrique auxiliaire
 - 9.1.2. Sources lumineuses traditionnelles
 - 9.1.2.1. Incandescent et halogène
 - 9.1.2.2. Vapeur de sodium haute et basse pression
 - 9.1.2.3. Vapeur de mercure haute et basse pression
 - 9.1.2.4. Autres technologies: induction, xénon
- 9.2. Technologies LED
 - 9.2.1. Principe de fonctionnement
 - 9.2.2. Caractéristiques électriques
 - 9.2.3. Avantages et inconvénients
 - 9.2.4. Luminaires à LED. Optique
 - 9.2.5. Équipement auxiliaire. Driver

Structure et contenu | 33 tech

9.3.	Besoin	s en éclairage intérieur	
	9.3.1.	Normes et règlements	
	9.3.2.	Conception de l'éclairage	
	9.3.2.	Critères de qualité	
9.4.	Besoin	s en éclairage extérieur	
	9.4.1.	Normes et règlements	
	9.4.2.	Conception de l'éclairage	
	9.4.3.	Critères de qualité	
9.5.	Calculs d'éclairage avec un logiciel de calcul. DIALux		
	9.5.1.	Caractéristiques	
	9.5.2.	Menus	
	9.5.3.	Conception du projet	
	9.5.4.	Obtention et interprétation des résultats	
9.6.	Calculs d'éclairage avec un logiciel de calcul. EVO		
	9.6.1	Caractéristiques	
	9.6.2.	Avantages et inconvénients	
	9.6.3.	Menus	
	9.6.4.	Conception du projet	
		Obtention et interprétation des résultats	
9.7.	Efficacité énergétique dans l'éclairage		
	9.7.1.	Normes et règlements	
	9.7.2.	Mesures d'amélioration de l'efficacité énergétique	
	9.7.3.	Intégration de la lumière du jour	
9.8.	Éclairage biodynamique		
	9.8.1.	La pollution lumineuse	
	9.8.2.	Rythmes circadiens	
	9.8.3.	Effets nocifs	
9.9.	Calcul des projets d'éclairage intérieur		
	9.9.1.	Bâtiments résidentiels	
	9.9.2.	Bâtiments commerciaux	
	9.9.3.	Établissements d'enseignement	
	9.9.4.	Centres hospitaliers	
	995	Édifices nublics	

9.9.7. Espaces commerciaux et d'exposition

9.9.6. Industries

- 9.10. Calcul des projets d'éclairage extérieur
 - 9.10.1 Éclairage des rues et éclairage public
 - 9.10.2. Façades
 - 9.10.3. Enseignes et publicités lumineuses

Module 10. Installations de contrôle

- 10.1. Domotique
 - 10.1.1. L'état de l'art
 - 10.1.2. Normes et réglementation
 - 10.1.3. Équipements
 - 10.1.4. Services
 - 10.1.5. Réseaux
- 10.2. Inmotique
 - 10.2.1. Caractéristiques et normes
 - 10.2.2. Technologies et systèmes d'automatisation et de contrôle des bâtiments
 - 10.2.3. Gestion technique des bâtiments pour l'efficacité énergétique
- 10.3. Gestion à distance
 - 10.3.1. Détermination du système
 - 10.3.2. Éléments clés
 - 10.3.3. Logiciel de surveillance
- 10.4. Smart home
 - 10.4.1. Caractéristiques
 - 10.4.2. Équipements
- 10.5. Internet des objets. IoT
 - 10.5.1. Veille technologique
 - 10.5.2. Normes
 - 10.5.3. Équipements
 - 10.5.4. Services
 - 10.5.5. Réseaux

tech 34 | Structure et contenu

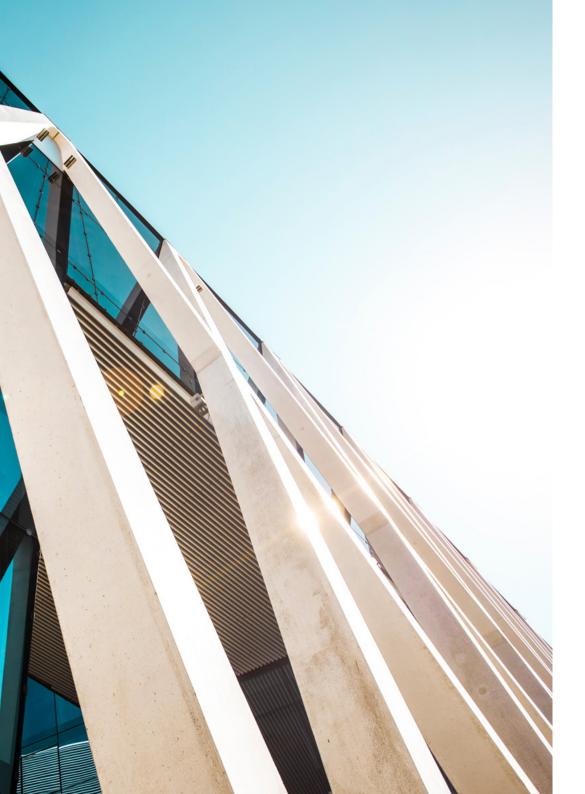
- 10.6.1. Infrastructures clé
- 10.6.2. Télévision
- 10.6.3. Radio
- 10.6.4. Téléphonie

10.7. Protocoles KNX, DALI

- 10.7.1. Normalisation
 - 10.7.2. Applications
 - 10.7.3. Équipements
 - 10.7.4. Conception et configuration

10.8. Réseaux IP. WiFi

- 10.8.1. Normes
- 10.8.2. Caractéristiques
- 10.8.3. Conception et configuration


10.9. Bluetooth

- 10.9.1. Normes
- 10.9.2. Conception et configuration
- 10.9.3. Caractéristiques

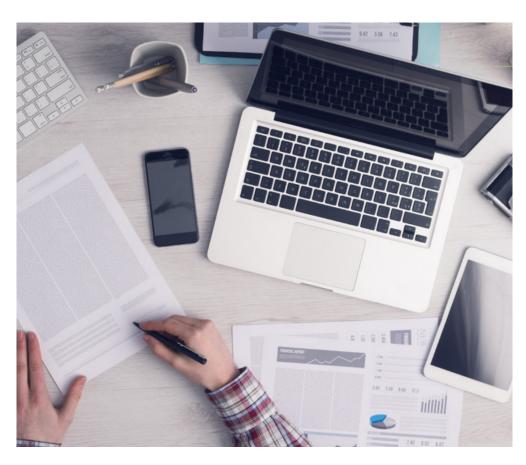
10.10. Technologies futures

- 10.10.1 Zigbee
- 10.10.2. Programmation et configuration. Python
- 10.10.3. Big Data

Cette formation vous permettra de faire avancer votre carrière de de faire avancer votre carrière de manière confortable"

tech 38 | Méthodologie

Étude de Cas pour mettre en contexte tout le contenu


Notre programme offre une méthode révolutionnaire de développement des compétences et des connaissances. Notre objectif est de renforcer les compétences dans un contexte changeant, compétitif et hautement exigeant.

Avec TECH, vous pouvez expérimenter une manière d'apprendre qui ébranle les fondations des universités traditionnelles du monde entier"

Vous bénéficierez d'un système d'apprentissage basé sur la répétition, avec un enseignement naturel et progressif sur l'ensemble du cursus.

L'étudiant apprendra, par des activités collaboratives et des cas réels, à résoudre des situations complexes dans des environnements commerciaux réels.

Une méthode d'apprentissage innovante et différente

Cette formation TECH est un programme d'enseignement intensif, créé de toutes pièces, qui propose les défis et les décisions les plus exigeants dans ce domaine, tant au niveau national qu'international. Grâce à cette méthodologie, l'épanouissement personnel et professionnel est stimulé, faisant ainsi un pas décisif vers la réussite. La méthode des cas, technique qui constitue la base de ce contenu, permet de suivre la réalité économique, sociale et professionnelle la plus actuelle.

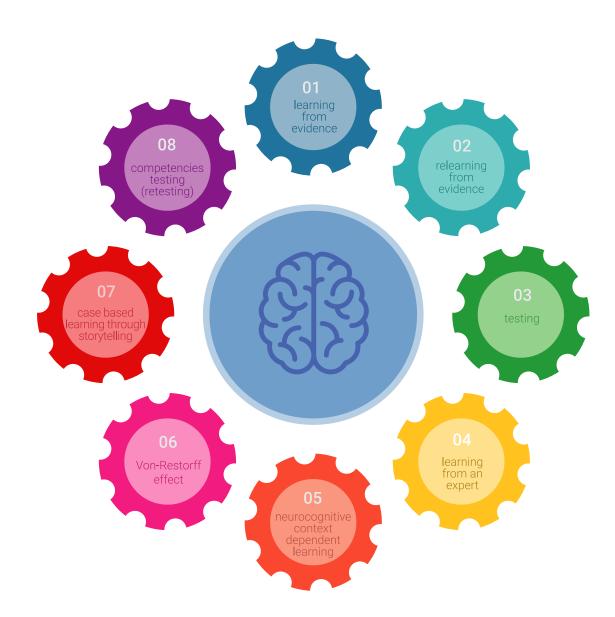
Notre programme vous prépare à relever de nouveaux défis dans des environnements incertains et à réussir votre carrière"

La méthode des cas a été le système d'apprentissage le plus utilisé par les meilleures facultés du monde. Développée en 1912 pour que les étudiants en Droit n'apprennent pas seulement le droit sur la base d'un contenu théorique, la méthode des cas consiste à leur présenter des situations réelles complexes afin qu'ils prennent des décisions éclairées et des jugements de valeur sur la manière de les résoudre. En 1924, elle a été établie comme méthode d'enseignement standard à Harvard.

Dans une situation donnée, que doit faire un professionnel? C'est la question à laquelle nous sommes confrontés dans la méthode des cas, une méthode d'apprentissage orientée vers l'action. Tout au long du programme, les étudiants seront confrontés à de multiples cas réels. Ils devront intégrer toutes leurs connaissances, faire des recherches, argumenter et défendre leurs idées et leurs décisions.

tech 40 | Méthodologie

Relearning Methodology


TECH combine efficacement la méthodologie des études de cas avec un système d'apprentissage 100% en ligne basé sur la répétition, qui associe 8 éléments didactiques différents dans chaque leçon.

Nous enrichissons l'Étude de Cas avec la meilleure méthode d'enseignement 100% en ligne: le Relearning.

En 2019, nous avons obtenu les meilleurs résultats d'apprentissage de toutes les universités en ligne du monde.

À TECH, vous apprenez avec une méthodologie de pointe conçue pour former les managers du futur. Cette méthode, à la pointe de la pédagogie mondiale, est appelée Relearning.

Notre université est la seule université autorisée à utiliser cette méthode qui a fait ses preuves. En 2019, nous avons réussi à améliorer les niveaux de satisfaction globale de nos étudiants (qualité de l'enseignement, qualité des supports, structure des cours, objectifs...) par rapport aux indicateurs de la meilleure université en ligne.

Méthodologie | 41 tech

Dans notre programme, l'apprentissage n'est pas un processus linéaire, mais se déroule en spirale (apprendre, désapprendre, oublier et réapprendre). Par conséquent, chacun de ces éléments est combiné de manière concentrique. Cette méthodologie a permis de former plus de 650.000 diplômés universitaires avec un succès sans précédent dans des domaines aussi divers que la biochimie, la génétique, la chirurgie, le droit international, les compétences en gestion, les sciences du sport, la philosophie, le droit, l'ingénierie, le journalisme, l'histoire, les marchés financiers et les instruments. Tout cela dans un environnement très exigeant, avec un corps étudiant universitaire au profil socio-économique élevé et dont l'âge moyen est de 43,5 ans.

Le Relearning vous permettra d'apprendre avec moins d'efforts et plus de performance, en vous impliquant davantage dans votre formation, en développant un esprit critique, en défendant des arguments et en contrastant les opinions: une équation directe vers le succès.

À partir des dernières preuves scientifiques dans le domaine des neurosciences, non seulement nous savons comment organiser les informations, les idées, les images et les souvenirs, mais nous savons aussi que le lieu et le contexte dans lesquels nous avons appris quelque chose sont fondamentaux pour notre capacité à nous en souvenir et à le stocker dans l'hippocampe, pour le conserver dans notre mémoire à long terme.

De cette manière, et dans ce que l'on appelle Neurocognitive context-dependent e-learning, les différents éléments de notre programme sont reliés au contexte dans lequel le participant développe sa pratique professionnelle.

Ce programme offre le support matériel pédagogique, soigneusement préparé pour les professionnels:

Support d'étude

Tous les contenus didactiques sont créés par les spécialistes qui enseigneront le cours, spécifiquement pour le cours, afin que le développement didactique soit vraiment spécifique et concret.

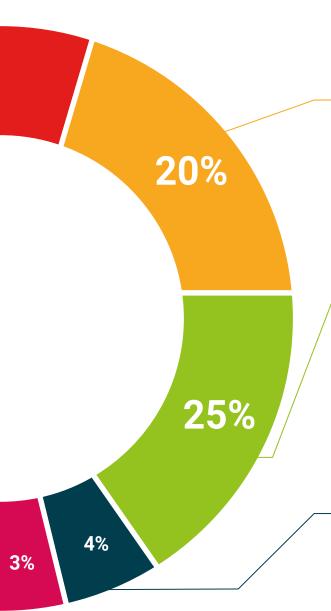
Ces contenus sont ensuite appliqués au format audiovisuel, pour créer la méthode de travail TECH en ligne. Tout cela, avec les dernières techniques qui offrent des pièces de haute qualité dans chacun des matériaux qui sont mis à la disposition de l'étudiant.

Cours magistraux

Il existe des preuves scientifiques de l'utilité de l'observation par un tiers expert.

La méthode "Learning from an Expert" renforce les connaissances et la mémoire, et donne confiance dans les futures décisions difficiles.

Pratiques en compétences et aptitudes


Les étudiants réaliseront des activités visant à développer des compétences et des aptitudes spécifiques dans chaque domaine. Des activités pratiques et dynamiques pour acquérir et développer les compétences et aptitudes qu'un spécialiste doit développer dans le cadre de la mondialisation dans laquelle nous vivons.

Lectures complémentaires

Articles récents, documents de consensus et directives internationales, entre autres. Dans la bibliothèque virtuelle de TECH, l'étudiant aura accès à tout ce dont il a besoin pour compléter sa formation.

Méthodologie | 43 tech

Case studies

Ils réaliseront une sélection des meilleures études de cas choisies spécifiquement pour ce diplôme. Des cas présentés, analysés et tutorés par les meilleurs spécialistes de la scène internationale.

Résumés interactifs

L'équipe TECH présente les contenus de manière attrayante et dynamique dans des pilules multimédia comprenant des audios, des vidéos, des images, des diagrammes et des cartes conceptuelles afin de renforcer les connaissances.

Testing & Retesting

Les connaissances de l'étudiant sont périodiquement évaluées et réévaluées tout au long du programme, par le biais d'activités et d'exercices d'évaluation et d'autoévaluation, afin que l'étudiant puisse vérifier comment il atteint ses objectifs.

tech 46 | Diplôme

Ce Mastère Spécialisé en Économie d'Énergie et Durabilité dans les Bâtiments contient le programme le plus complet et le plus actualisé du marché.

Après avoir passé l'évaluation, l'étudiant recevra par courrier* avec accusé de réception son diplôme de **Mastère Spécialisé** délivrée par **TECH Université Technologique**.

Le diplôme délivré par **TECH Université Technologique** indiquera la note obtenue lors du Mastère Spécialisé, et répond aux exigences communément demandées par les bourses d'emploi, les concours et les commissions d'évaluation des carrières professionnelles.

Diplôme: Mastère Spécialisé en Économie d'Énergie et Durabilité dans les Bâtiments

Modalité: en ligne

Durée: 12 mois

^{*}Si l'étudiant souhaite que son diplôme version papier possède l'Apostille de La Haye, TECH EDUCATION fera les démarches nécessaires pour son obtention moyennant un coût supplémentaire.

» Modalité: en ligne

» Durée: 12 mois

» Qualification: TECH Université Technologique

» Horaire: à votre rythme

» Examens: en ligne

