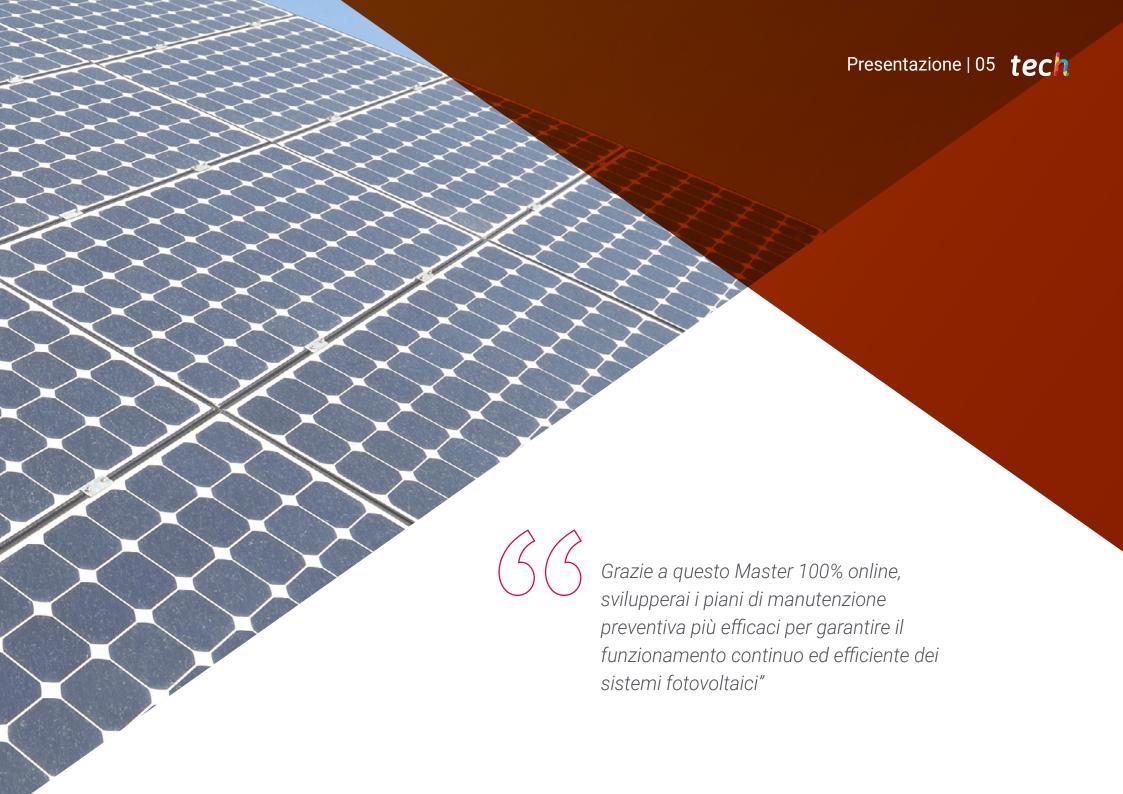


Master Energia Fotovoltaica

- » Modalità: online
- » Durata: 12 mesi
- » Titolo: TECH Global University
- » Accreditamento: 60 ECTS
- » Orario: a tua scelta
- » Esami: online

Accesso al sito web: www.techtitute.com/it/ingegneria/master/master-energia-fotovoltaica


Indice

02 Obiettivi Presentazione pag. 4 pag. 8 05 03 Competenze Direzione del corso Struttura e contenuti pag. 14 pag. 18 pag. 22 06 07 Metodologia Titolo

pag. 32

pag. 40

tech 06 | Presentazione

Il fotovoltaico è diventato una soluzione essenziale per la decarbonizzazione del settore energetico e l'attenuazione dei cambiamenti climatici. I progressi nell'efficienza delle celle solari, la riduzione dei costi e l'aumento della capacità di stoccaggio dell'energia stanno spingendo un'adozione senza precedenti della tecnologia fotovoltaica. In questo contesto, i professionisti dell'ingegneria devono essere tenuti aggiornati sullo stato attuale nel campo del fotovoltaico. Solo così potranno superare le sfide della loro integrazione nelle reti elettriche e incorporare nella loro pratica le strategie più all'avanguardia per la loro implementazione.

In questo scenario, TECH propone un pioniere insieme al suo completo Master in Energia Fotovoltaica. Progettato da riferimenti in questo campo, il percorso accademico approfondirà questioni che vanno dalla localizzazione degli impianti fotovoltaici o aspetti amministrativi alla manutenzione degli impianti fotovoltaici. Durante il corso del programma, gli studenti acquisiranno competenze avanzate per gestire efficacemente i più sofisticati software di progettazione, simulazione e dimensionamento. Il piano di studi analizzerà le strategie più innovative per ottimizzare la dimensione.

Con l'obiettivo di consolidare la padronanza di tutti questi contenuti, il programma universitario applica l'innovativo sistema *Relearning*. TECH è pioniera nell'uso di questo modello didattico, che promuove l'assimilazione di concetti complessi attraverso la ripetizione naturale e progressiva degli stessi. Inoltre, il percorso accademico è alimentato da materiali in vari formati come video esplicativi e infografiche. Tutto in una comoda modalità 100% online che permette agli studenti di regolare gli orari secondo le loro responsabilità e disponibilità. In questo senso, l'unica cosa che di cui gli esperti avranno bisogno è un dispositivo elettronico con accesso a Internet per accedere al Campus Virtuale. In questo modo, potranno usufruire del materiale didattico più completo e aggiornato sul mercato accademico.

Questo **Master in Energia Fotovoltaica** possiede il programma educativo più completo e aggiornato del mercato. Le sue caratteristiche principali sono:

- Sviluppo di casi di studio presentati da esperti in Energie Rinnovabili
- Contenuti grafici, schematici ed eminentemente pratici che forniscono informazioni scientifiche e pratiche sulle discipline essenziali per l'esercizio della professione
- Esercizi pratici che offrono un processo di autovalutazione per migliorare l'apprendimento
- Particolare enfasi sulle metodologie innovative
- Lezioni teoriche, domande all'esperto e/o al tutor, forum di discussione su questioni controverse e compiti di riflessione individuale
- Contenuti disponibili da qualsiasi dispositivo fisso o mobile dotato di connessione a internet

Approfondirai il Calcolo della Radiazione sulle Superfici Inclinate, che ti permetterà di massimizzare la cattura dell'energia solare"

Il personale docente del programma comprende rinomati specialisti del settore e altre aree correlate, che forniscono agli studenti le competenze necessarie a intraprendere un percorso di studio eccellente.

I contenuti multimediali, sviluppati in base alle ultime tecnologie educative, forniranno al professionista un apprendimento coinvolgente e localizzato, ovvero inserito in un contesto reale.

La creazione di questo programma è incentrata sull'Apprendimento Basato su Problemi, mediante il quale il professionista deve cercare di risolvere le diverse situazioni che gli si presentano durante il corso. Lo studente potrà usufruire di un innovativo sistema di video interattivi creati da esperti di rinomata fama. Cerchi di incorporare nella tua pratica le strategie più sofisticate per massimizzare il rendimento dei sistemi fotovoltaici? Ottieni questo risultato con questo programma in soli 12 mesi.

Grazie al metodo Relearning di TECH riuscirai a consolidare i concetti chiave che ti offre questo insegnamento universitario.

tech 10 | Obiettivi

Obiettivi generali

- Sviluppare una visione specializzata del mercato fotovoltaico e delle sue linee di innovazione
- Analizzare la tipologia, i componenti e i vantaggi e gli svantaggi di tutte le configurazioni e gli schemi di grandi impianti fotovoltaici
- Specificare la tipologia, componenti e vantaggi e svantaggi di tutte le configurazioni e schemi degli impianti fotovoltaici di autoconsumo
- Esaminare la tipologia, i componenti e i vantaggi e gli svantaggi di tutte le configurazioni e gli schemi di impianti fotovoltaici isolati dalla rete
- Stabilire la tipologia, componenti e vantaggi e svantaggi dall'ibridazione della tecnologia fotovoltaica con altre tecnologie di generazione convenzionali e rinnovabili
- Basare il funzionamento dei componenti della parte di corrente continua degli impianti fotovoltaici
- Interpretare tutte le proprietà dei componenti
- Basare il funzionamento dei componenti della parte di corrente continua degli impianti fotovoltaici
- Interpretare tutte le proprietà dei componenti
- Caratterizzare la risorsa solare in qualsiasi luogo del mondo
- Gestire database terrestri e satellitari
- Selezione dei siti ottimali per gli impianti fotovoltaici
- Identificare altri fattori e la loro influenza sull'impianto fotovoltaico
- Valutare la redditività di investimenti, azioni in esercizio e manutenzione e finanziamento di progetti fotovoltaici

- Identificare i rischi che possono influire sulla fattibilità degli investimenti
- Gestire progetti fotovoltaici
- Progettare e dimensionare impianti fotovoltaici, compresa la selezione dal sito, dimensionamento dei componenti e loro accoppiamento
- Stimare le produzioni energetiche
- Monitorare gli impianti fotovoltaici
- Gestire la sicurezza e la salute
- Progettare e dimensionare impianti fotovoltaici autoconsumabili, tra cui scelta del sito, dimensionamento dei componenti e il loro accoppiamento
- Stimare le produzioni energetiche
- Monitorare i pannelli fotovoltaici
- Progettare e dimensionare impianti fotovoltaici autoconsumabili, tra cui scelta del sito, dimensionamento dei componenti e il loro accoppiamento
- Stimare le produzioni energetiche
- Monitorare gli impianti fotovoltaici
- Analizzare il potenziale del software PVGIS, PVSYST e SAM in progettazione e simulazione di impianti fotovoltaici
- Simulare, dimensionare e progettare impianti fotovoltaici utilizzando i seguenti software: PVGIS, PVSYST e SAM
- Acquisire competenze nel montaggio e nella messa in funzione degli impianti
- Sviluppare competenze specialistiche nel funzionamento e nella manutenzione preventiva e correttiva degli impianti

Obiettivi specifici

Modulo 1. Impianti fotovoltaici

- Identificare le possibilità presenti e future della tecnologia fotovoltaica
- Differenziare la vasta gamma di configurazioni e schemi possibili, identificando in ogni caso i vantaggi e gli svantaggi
- Analizzare il ruolo svolto da ogni componente all'interno di un impianto fotovoltaico
- Identificare le sinergie dell'ibridazione della tecnologia fotovoltaica con altre tecnologie di generazione convenzionali e rinnovabili

Modulo 2. Impianti fotovoltaici in corrente continua

- Essere competente per selezionare l'attrezzatura ottimale per ogni installazione
- Accoppiare correttamente i componenti tra loro e in base alle condizioni climatiche e del sito

Modulo 3. Impianti fotovoltaici in corrente alternata

- Identificare possibili limitazioni o ostacoli a un impianto fotovoltaico dovuti al suo sito
- Analizzare l'effetto di altri fattori sulla produzione elettrica come ombre, sporcizia, altitudine, fulmini, furto

Modulo 4. Ubicazione di impianti fotovoltaici

- Identificare possibili limitazioni o ostacoli a un impianto fotovoltaico dovuti al suo sito
- Analizzare l'effetto di altri fattori sulla produzione elettrica come ombre, sporcizia, altitudine, fulmini, furto

Modulo 5. Aspetti economici, amministrativi e ambientali degli impianti fotovoltaici

- Analizzare, dal punto di vista economico, la fattibilità economica in qualsiasi fase del progetto: investimenti, funzionamento e manutenzione e finanziamento
- Essere competente per l'elaborazione di qualsiasi progetto fotovoltaico presso le diverse istanze sia in tempo che in forma, nonché il suo monitoraggio

Modulo 6. Progettazione di grandi impianti fotovoltaici

- Selezionare i siti per impianti fotovoltaici sia per un impianto proprio o per terzi
- Controllare il monitoraggio dell'impianto

Modulo 7. Progettazione di impianti fotovoltaici autoconsumabili

- Selezionare i componenti ottimali dell'impianto
- Controllare il monitoraggio dell'impianto

tech 12 | Obiettivi

Modulo 8. Progettazione di impianti fotovoltaici isolati dalla rete

- Selezionare i componenti ottimali dell'impianto
- Dimensionare i componenti
- Controllare il monitoraggio dell'impianto
- Agire per soddisfare la domanda di elettricità in quantità e qualità

Modulo 9. Software di progettazione, simulazione e dimensionamento

- Dimensionamento dei componenti degli impianti
- Ottimizzare e stimare le produzioni
- Accoppiare i componenti
- Analizzare le influenze esterne come ombre, sporcizia, nella produzione

Modulo 10. Montaggio, funzionamento e manutenzione degli impianti fotovoltaici

- Pianificare il montaggio, il funzionamento e il manutenzione sia tecnico che di sicurezza e salute
- Gestire le incidenze durante la vita dell'impianto
- Effettuare rapporti tecnici di funzionamento e manutenzione: Produzioni, allarmi, ratio
- Impostare le attività di manutenzione

Godrai di un apprendimento piacevole ed efficace attraverso i formati didattici che ti offre questo titolo, come il video esplicativo o il riassunto interattivo"

tech 16 | Competenze

Competenze generali

- Progettare sistemi fotovoltaici, da piccoli impianti residenziali a grandi impianti solari
- Gestire gli strumenti di simulazione per il dimensionamento preciso di sistemi fotovoltaici e la valutazione delle loro prestazioni
- Diagnosticare i guasti nei sistemi fotovoltaici per garantire il loro funzionamento ottimale
- Pianificare, gestire e monitorare i progetti fotovoltaici dalla fase di progettazione fino alla loro implementazione

Sarai in grado di eseguire analisi finanziarie per analizzare la fattibilità dei progetti fotovoltaici, compresa la ricerca di finanziamenti e gestione del budget"

Competenze specifiche

- Progettare sistemi fotovoltaici per applicazioni residenziali, commerciali e industriali, considerando il fabbisogno energetico
- Utilizzare software specializzato per modellare le prestazioni dei sistemi fotovoltaici, ottimizzandone la progettazione e il dimensionamento
- Eseguire analisi delle ombre e valutare il loro impatto sulle prestazioni dei sistemi fotovoltaici
- Valutare i costi ed eseguire un'analisi di fattibilità finanziare di progetti fotovoltaici
- Implementare sistemi di controllo della qualità dei rischi
- Gestire l'ottenimento di permessi e licenze necessari per l'installazione di sistemi fotovoltaici

Direzione

Dott. Blasco Chicano, Rodrigo

- Accademico in Energia Rinnovabile, Madrid
- Consulente Energetico presso JCM Bluenergy, Madrid
- Dottorato in Elettronica presso l'Università di Alcalá
- Specialista in Energia Rinnovabile presso l'Università Complutense di Madrid
- Master in Energia presso l'Università Complutense di Madrid
- Laurea in Fisica presso l'Università Complutense di Madrid

Personale docente

Dott.ssa Katz Perales, Raquel

- Specialista in Scienze Ambientali ed Energie Rinnovabili presso la Asociación Por Ti Mujer
- Sviluppo di Progetti di Infrastrutture Verdi presso Faktor Gruen, Germania
- Professionista Autonoma di Progettazione di Aree Verdi nel Settore del Paesaggio, Agricoltura e Ambiente a Valencia
- Ingegnere Tecnica Agricola presso Floramedia Spagna
- Ingegneria Tecnica Agricola presso l'Università Politecnica di Valencia
- Laurea in Scienze Ambientali presso l'Università Politecnica di Valencia
- BDLA-Progettazione di Aree Verdi presso l'Università Hochschule Weihenstephan-Triesdorf, Germania

Dott. García Nieto, David

- Accademico in Scienze Atmosferiche
- Dottorato in Scienze Atmosferiche del Consiglio Superiore di Ricerche Scientifiche (CSIC) presso l'Università Politecnica di Madrid
- Specialista in Energia Rinnovabile presso l'Università Complutense di Madrid
- Master in Energia presso l'Università Complutense di Madrid
- Laurea in Fisica presso l'Università Complutense di Madrid

Dott.ssa Gilsanz Muñoz, María Fuencisla

- Ricercatrice presso l'Università Europea di Madrid
- Direttrice tecnica del Controllo di Qualità presso Coca-Cola
- Tecnico di Laboratorio di Analisi Cliniche presso il Laboratorio Ruiz-Falcó, Madrid
- Dottorato in Biomedicina e Scienze della Salute presso l'Università Europea di Madrid
- Laurea in Scienze Chimiche presso l'Università Nazionale di Educazione a Distanza (UNED)
- Corso Universitario in Scienze Fisiche presso l'Università Nazionale di Educazione a Distanza (UNED)

Dott. Alegre Peñalva, Alejandro

- Ricercatore in Fisica dei Materiali
- Ricercatore in stage presso l'Istituto di Struttura della Materia del CSIC
- Laurea in Fisica, Specializzazione in Fisica dei Materiali presso l'Università Europea di Madrid
- Corso di Iniziazione alla Ricerca sulla Struttura della Materia: dalle Particelle Elementari ai Sistemi di Alto Peso Molecolare dell'IEM-CSIC

Dott. Gómez Guerrero, Pedro

- Ricercatore in stage presso l'Istituto di Tecnologie Fisiche e dell'Informazione del CSIC
- Laurea in Fisica presso l'Università Europea di Madrid (ultimo anno)
- Corso estivo Unizar Astrofisica del Centro di studi di Fisica del Cosmo di Aragona
- Corsi di astronomia, astrofisica presso AAHU e Spazio 0.42, Huesca

Dott. Martínez Fanals, Rubén

- Direttore Finanziario presso REAL Infrastructure Capital Partners, Stati Uniti
- Product Marketing Manager presso Alstom Renewable Power
- Ingegnere di Vendita presso Gamesa Eólica
- Account Manager presso ThyssenKrupp Rothe Erde
- Executive Progra m in Algorithmic Trading (EPAT) presso Quantinsti
- Certificazione in Advanced Financial Modelling presso Full Stack Modeller
- Certificazione in Essential Financial Modelling presso Gridlines
- Master in Energie Rinnovabili presso l'Università di Saragozza
- Laurea in Ingegneria Chimica presso l'Università di Saragozza
- Corso Universitario in in Amministrazione e Gestione Aziendale presso Columbus IBS

Un'esperienza formativa unica, fondamentale e decisiva per promuovere il tuo sviluppo professionale"

tech 24 | Struttura e contenuti

Modulo 1. Impianti fotovoltaici

- 1.1. Tecnologia fotovoltaica
 - 1.1.1. Evoluzione internazionale della potenza installata
 - 1.1.2. Evoluzione dei costi
 - 1.1.3. Mercati potenziali
- 1.2. Impianti fotovoltaici
 - 1.2.1. In base all'accesso alla rete
 - 1.2.2. In base ai requisiti di integrazione nella rete
 - 1.2.3. In base alla loro capacità di stoccaggio
 - 1.2.4. All'interno delle comunità energetiche
- 1.3. Impianti fotovoltaici
 - 1.3.1. Impianti fotovoltaici a bassa e alta tensione
 - 1.3.2. Impianti fotovoltaici in base al tipo di inverter
 - 1.3.3. Altri usi degli impianti fotovoltaici: Agrivoltaica
- 1.4. Impianti fotovoltaici per autoconsumo
 - 1.4.1. Impianti singoli senza accumulo
 - 1.4.2. Impianti collettivi senza accumulo
 - 1.4.3. Impianti con stoccaggio
- 1.5. Impianti fotovoltaici in edifici off-grid: Componenti
 - 1.5.1. Impianti in corrente continua
 - 1.5.2. Impianti in corrente alternata
 - 1.5.3. Impianti in comunità off-grid
- 1.6. Impianti fotovoltaici per il pompaggio dell'acqua
 - 1.6.1. Impianti in corrente continua
 - 1.6.2. Impianti in corrente alternata
 - 1.6.3. Alternative di stoccaggio
- 1.7. Ibridazione del fotovoltaico con altre tecnologie rinnovabili
 - 1.7.1. Impianti fotovoltaici ed eolici
 - 1.7.2. Impianti fotovoltaici e solari termici
 - 1.7.3. Altre ibridazioni: Biomasse, maree

- 1.8. Ibridazione del fotovoltaico con altre tecnologie convenzionali
 - 1.8.1. Impianti fotovoltaici e gruppi elettrogeni
 - 1.8.2. Impianti fotovoltaici e cogenerazione
 - 1.8.3. Altre ibridazioni
- 1.9. Integrazione architettonica degli impianti fotovoltaici: BIPV e BAPV
 - 1.9.1. Vantaggi e svantaggi dell'integrazione
 - 1.9.2. Integrazione nell'involucro dell'edificio: Tetti, facciate
 - 1.9.3. Integrazione delle finestre
- 1.10. Innovazione tecnologica
 - 1.10.1. Innovazione come valore
 - 1.10.2. Tendenze attuali della tecnologia fotovoltaica
 - 1.10.3. Tendenze attuali di altre tecnologie complementari

Modulo 2. Impianti fotovoltaici in corrente continua

- 2.1. Tecnologie delle celle solari
 - 2.1.1. Tecnologie solari
 - 2.1.2. Evoluzione per tecnologia
 - 2.1.3. Analisi comparativa delle principali tecnologie commerciali
- 2.2. Moduli fotovoltaici
 - 2.2.1. Parametri tecnici elettrici
 - 2.2.2. Altri parametri tecnici
 - 2.2.3. Ouadro normativo tecnico
- 2.3. Criteri di selezione dei moduli fotovoltaici
 - 2.3.1. Criteri tecnici
 - 2.3.2. Criteri economici
 - 2.3.3. Altri criteri
- 2.4. Ottimizzatori e regolatori
 - 2.4.1. Ottimizzatori
 - 2.4.2. Regolatori
 - 2.4.3. Vantaggi e svantaggi
- 2.5. Tecnologie delle batterie
 - 2.5.1. Tipi di batterie
 - 2.5.2. Evoluzione per tecnologia
 - 2.5.3. Analisi comparativa delle principali tecnologie commerciali

Struttura e contenuti | 25 tech

- 2.6. Parametri tecnici di batterie
 - 2.6.1. Parametri tecnici delle batterie di piombo-acido
 - 2.6.2. Parametri tecnici delle batterie di litio
 - 2.6.3. Durata, degrado ed efficienza
- 2.7. Criteri di selezione delle batterie
 - 2.7.1. Criteri tecnici
 - 2.7.2. Criteri economici
 - 2.7.3. Altri criteri
- 2.8. Protezioni elettriche in corrente continua
 - 2.8.1. Protezione contro i contatti diretti e indiretti
 - 2.8.2. Protezione contro le sovratensioni
 - 2.8.3. Altre protezioni
 - 2.8.3.1. Messa a terra, isolamento, sovraccarico, cortocircuito
- 2.9. Cablaggio in corrente continua
 - 2.9.1. Tipo di cablaggio
 - 2.9.2. Criteri di selezione del cablaggio
 - 2.9.3. Dimensionamento di cablaggi, canalizzazioni, pozzetti
- 2.10. Strutture fisse e a inseguimento solare
 - 2.10.1. Tipi di strutture fisse: Materiali
 - 2.10.2. Tipi di strutture a inseguimento solare: Uno o due assi
 - 2.10.3. Vantaggi e svantaggi del tipo di inseguimento solare

Modulo 3. Impianti fotovoltaici in corrente alternata

- 3.1. Tecnologie degli inverter
 - 3.1.1. Tecnologie degli inverter
 - 3.1.2. Evoluzione per tecnologia
 - 3.1.3. Analisi comparativa delle principali tecnologie commerciali
- 3.2. Parametri tecnici degli inverter
 - 3.2.1. Parametri tecnici elettrici
 - 3.2.2. Altri parametri tecnici
 - 3.2.3. Ouadro Normativo Internazionale

- 3.3. Criteri di selezione degli inverter
 - 3.3.1. Criteri tecnici
 - 3.3.2. Criteri economici
 - 3.3.3. Altri criteri
- 3.4. Tecnologie dei trasformatori
 - 3.4.1. Classificazione delle tecnologie di trasformazione
 - 3.4.2. Evoluzione per tecnologia
 - 3.4.3. Analisi comparativa delle principali tecnologie commerciali
- 3.5. Parametri tecnici dei trasformatori
 - 3.5.1. Parametri tecnici elettrici
 - 3.5.2. Linee ad alta tensione: Interruttori, sezionatori e autovalvole
 - 3.5.3. Quadro Normativo Internazionale
- 3.6. Criteri di selezione dei trasformatori
 - 3.6.1. Criteri tecnici
 - 3.6.2. Criteri economici
 - 3.6.3. Altri criteri
- 3.7. Protezioni elettriche a corrente alternata (CA)
 - 3.7.1. Protezione contro i contatti indiretti
 - 3.7.2. Protezione contro le sovratensioni
 - 3.7.3. Altre protezioni: Messa a terra, sovraccarico, cortocircuito
- 3.8. Cablaggio in corrente alternata e bassa tensione
 - 3.8.1. Tipo di cablaggio
 - 3.8.2. Criteri di selezione del cablaggio
 - 3.8.3. Dimensionamento del cablaggio: Canalizzazioni e pozzetti
- 3.9. Cablaggio ad alta tensione
 - 3.9.1. Tipo di cablaggio, pali
 - 3.9.2. Criteri di selezione di cablaggio, tracciato, pali, dichiarazione di interesse pubblico
 - 3.9.3. Dimensionamento del cablaggio
- 3.10. Opere civili
 - 3.10.1. Opere civili
 - 3.10.2. Accessi, scarico delle acque piovane, drenaggio, recinzioni, ecc.
 - 3.10.3. Reti di smaltimento elettrico: capacità di trasporto

tech 26 | Struttura e contenuti

Modulo 4. Ubicazione di impianti fotovoltaici

- 4.1. Radiazione solare
 - 4.1.1. Grandezze e unità di misura
 - 4.1.2. Interazione con l'atmosfera
 - 4.1.3. Componenti della radiazione
- 4.2. Trajettorie solari
 - 4.2.1. Movimento solare: Tempo solare
 - 4.2.2. Parametri che determinano la posizione solare
 - 4.2.3. Incidenza del moto solare sulle ombre
- 4.3 Database terrestri e satellitari
 - 4.3.1. Database terrestri
 - 4.3.2. Database satellitari
 - 4.3.3. Vantaggi e svantaggi
- 4.4. Calcolo della radiazione su superfici inclinate
 - 4.4.1. Metodologia
 - 4.4.2. Esercizio di calcolo della radiazione globale I. Effetto della latitudine e dell'inclinazione sugli impianti fotovoltaici
 - 4.4.3. Esercizio di calcolo della radiazione globale II. Sistemi autocalibranti
- 4.5. Altri fattori ambientali
 - 4.5.1. Influenza della temperatura
 - 4.5.2. Influenza del vento
 - 4.5.3. Influenza di altri fattori: Umidità, condensa, polvere, altitudine
- 4.6. Influenza dello sporco sul campo solare fotovoltaico
 - 4.6.1. Tipi di sporco
 - 4.6.2. Perdite di sporco
 - 4.6.3. Strategie e metodi per prevenire le perdite dovute allo sporco
- 4.7. Influenza delle ombre sul campo solare fotovoltaico
 - 4.7.1. Tipi di ombre
 - 4.7.2. Perdite d'ombra
 - 4.7.3. Strategie e metodi per evitare le perdite dovute alle ombre
- 4.8. Influenza di altri fattori: Furti, fulmini
 - 4.8.1. Rischi di fulmini: Sovratensione
 - 4.8.2. Rischio di furto totale o parziale: Modulo, cablaggio
 - 4.8.3. Misure preventive

- 4.9. Criteri di selezione dei dal sito negli impianti fotovoltaici
 - 4.9.1. Criteri tecnici
 - 4.9.2. Criteri ambientali
 - 4.9.3. Altri criteri: Amministrativi ed economici
- 4.10. Criteri di selezione del sito per l'autoconsumo e per gli impianti off-grid
 - 4.10.1. Criteri di integrazione tecnica e architettonica
 - 4.10.2. Inclinazione/i e orientamento/i del generatore fotovoltaico
 - 4.10.3. Altri criteri: Accessibilità, sicurezza, ombreggiamento, sporcizia

Modulo 5. Aspetti economici, amministrativi e ambientali degli impianti fotovoltaici

- 5.1. Analisi economica degli impianti fotovoltaici
 - 5.1.1. Analisi economica degli investimenti
 - 5.1.2. Analisi economica del funzionamento e della manutenzione
 - 5.1.3. Analisi economica del finanziamento
- 5.2. Strutture di costo del progetto
 - 5.2.1. Costi di investimento
 - 5.2.2. Costi di sostituzione
 - 5.2.3. Costi di gestione e manutenzione
- 5.3. Indicatori di fattibilità economica
 - 5.3.1. Indicatori tecnici: Performance ratio
 - 5.3.2. Indicatori economici
 - 5.3.3. Stima degli indicatori
- 5.4. Entrate del progetto
 - 5.4.1. Entrate del progetto
 - 5.4.2. Risparmi finanziari
 - 5.4.3. Valore residuo
- 5.5. Aspetti fiscali del progetto
 - 5.5.1. Tassazione della produzione di energia elettrica
 - 5.5.2. Fiscalità dei benefici
 - 5.5.3. Detrazioni fiscali per gli investimenti in fonti rinnovabili

Struttura e contenuti | 27 tech

- 5.6. Rischi e assicurazione del progetto
 - 5.6.1. Assicurazione generale: Investimenti, attrezzature, produzione
 - 5.6.2. Garanzie e depositi di garanzia
 - 5.6.3. Garanzia del team e di produzione nei contratti
- 5.7. Tramiti amministrativi (I): Pubblica amministrazione
 - 5.7.1. Garanzie e contratti fondiari
 - 5.7.2. Relazione e/o progetto tecnico
 - 5.7.3. Autorizzazioni preventive tecniche e ambientali
- 5.8. Tramiti amministrativi (II): Aziende elettriche
 - 5.8.1. Autorizzazioni preventive per l'accesso e la connessione
 - 5.8.2. Autorizzazioni di avvio
 - 5.8.3. Controlli e ispezioni
- 5.9. Accesso e connessione alle reti elettriche
 - 5.9.1. Impianti fotovoltaici
 - 5.9.2. Impianti per autoconsumo
 - 5.9.3. Elaborazione
- 5.10. Tramiti ambientali
 - 5.10.1. Legislazione internazionale ambientale
 - 5.10.2. Protezione dell'avifauna nelle reti elettriche
 - 5.10.3. Valutazione ambientale e misure correttive

Modulo 6. Progettazione di grandi impianti fotovoltaici

- 6.1. Dati climatici e topografici, energia elettrica, altri dati
 - 6.1.1. Potenza di picco e/o nominale
 - 6.1.2. Dati climatici e topografici
 - 5.1.3. Altri dati: Superficie richiesta, rete di accesso e di collegamento, servitù
- 6.2. Selezione del layout dell'impianto fotovoltaico
 - 6.2.1. Analisi dei sistemi di monitoraggio solare
 - 6.2.2. Topologia dell'inverter: Centrale o string
 - 6.2.3. Alternative di utilizzo: Agrivoltaica
- 6.3. Dimensionamento dei componenti nel campo solare
 - 6.3.1. Dimensionamento del campo solare
 - 6.3.2. Dimensionamento dell'inseguitore solare
 - 6.3.3. Dimensionamento del cablaggio e delle protezioni

- 5.4. Dimensionamento dei componenti ca/BT
 - 6.4.1. Dimensionamento degli inverter
 - 6.4.2. Altri elementi: Monitoraggio, controllo e contatori
 - 6.4.3. Dimensionamento del cablaggio e delle protezioni
- 6.5. Dimensionamento dei componenti ca/AT
 - 6.5.1. Dimensionamento dei trasformatori
 - 6.5.2. Altri elementi: Monitoraggio, controllo e contatori
 - 6.5.3. Dimensionamento del cablaggio ad alta tensione e delle protezioni
- 6.6. Stimare di produzioni energetiche
 - 6.6.1. Produzioni giornaliere, mensili e annuali
 - 6.6.2. Parametri di produzione: Performance ratio
 - 6.6.3. Strategie di ottimizzazione del dimensionamento: Ratio potenza di picco e nominale
- 6.7. Monitoraggio delle variabili
 - 6.7.1. Identificazione delle variabili da monitorare
 - 6.7.2. Strategie di emissione degli allarmi
 - 6.7.3. Alternative per il monitoraggio e gli allarmi dell'impianto fotovoltaico
- 6.8. Integrazione nella rete
 - 6.8.1. Oualità elettrica
 - 6.8.2. Codici di rete
 - 6.8.3. Centro di controllo
- 5.9. Salute e sicurezza degli impianti fotovoltaici
 - 6.9.1. Analisi dei rischi
 - 6.9.2. Misure preventive
 - 6.9.3. Metodi di protezione
- 6.10. Esempi di progettazione di impianti fotovoltaici
 - 6.10.1. Progettazione di un impianto con inverter centrale e fisso
 - 6.10.2. Progettazione di un impianto con modulo fotovoltaico monofacciale, inverter di *string* e inseguimento monoassiale
 - 6.10.3. Progettazione di un impianto con modulo fotovoltaico bifacciale, inverter di *string* e inseguimento monoassiale

tech 28 | Struttura e contenuti

Modulo 7. Progettazione di impianti fotovoltaici autoconsumabili

- 7.1. Sistemi off-grid e di autoconsumo
 - 7.1.1. Struttura dei costi elettrici: Prezzi
 - 7.1.2 Dati climatici
 - 7.1.3. Restrizioni: Urbanistica
- 7.2. Caratterizzazione dei profili di domanda
 - 7.2.1. Elettrificazione della domanda
 - 7.2.2. Alternative di modifica del profilo
 - 7.2.3. Stima del profilo della domanda di progetto
- 7.3. Selezione e layout del sito
 - 7.3.1. Restrizioni: Superfici esterne, pendenze, orientamenti, accessibilità
 - 7.3.2. Gestione delle eccedenze: Batteria virtuale o reale, deviazione verso le attrezzature
 - 7.3.3. Selezione del layout dell'installazione
- 7.4. Inclinazione e orientamenti del campo solare
 - 7.4.1. Inclinazione ottimale del campo solare
 - 7.4.2. Orientamento ottimale del campo solare
 - 7.4.3. Gestione di diverse inclinazioni/orientamenti
- 7.5. Dimensionamento dei componenti nel campo solare
 - 7.5.1. Dimensionamento del campo solare
 - 7.5.2. Dimensionamento dell'inseguitore solare
 - 7.5.3. Dimensionamento del cablaggio e delle protezioni
- 7.6. Dimensionamento dei componenti
 - 7.6.1. Dimensionamento degli inverter
 - 7.6.2. Altri elementi: Monitoraggio, controllo e contatori
 - 7.6.3. Dimensionamento del cablaggio e delle protezioni
- 7.7. Stimare di produzioni energetiche
 - 7.7.1. Produzioni giornaliere, mensili e annuali
 - 7.7.2. Parametri di produzione: Autoconsumo, eccedenza
 - 7.7.3. Strategie di ottimizzazione del dimensionamento: Ratio potenza di picco e nominale

- 7.8. Copertura della domanda
 - 7.8.1. Classificazioni della domanda: Fissa e variabile
 - 7.8.2. Gestione della domanda
 - 7.8.3. Rapporti di copertura della domanda: Ottimizzazione
- 7.9. Gestione delle eccedenze
 - 7.9.1. Valorizzazione delle eccedenze
 - 7.9.2. Derivazione delle eccedenze in magazzino reale o virtuale
 - 7.9.3. Derivazione dell'eccedenza ai carichi regolati
- 7.10. Esempi di progettazione di impianti fotovoltaici in autoconsumo
 - 7.10.1. Progettazione di un singolo impianto fotovoltaico in autoconsumo, con eccedenze, senza batterie
 - 7.10.2. Progettazione di un impianto fotovoltaico individuale in autoconsumo, con eccedenze e con batterie
 - 7.10.3. Progettazione di un impianto fotovoltaico collettivo per l'autoconsumo, senza batterie in eccesso

Modulo 8. Progettazione di impianti fotovoltaici isolati dalla rete

- 8.1. Contesto e applicazioni degli impianti fotovoltaici on-grid
 - 8.1.1. Alternative di approvvigionamento energetico
 - 8.1.2. Aspetti sociali
 - 8.1.3. Applicazioni
- 3.2. Caratterizzazione della degli impianti fotovoltaici on-grid
 - 8.2.1. Profili di domanda
 - 8.2.2. Requisiti di qualità del servizio
 - 8.2.3. Continuità della fornitura
- 8.3. Configurazioni e layout degli impianti fotovoltaici off-grid
 - 8.3.1. Sito
 - 8.3.2. Configurazioni
 - 8.3.3. Schemi dettagliati
- 3.4. Funzionalità dei componenti degli impianti fotovoltaici off-grid
 - 8.4.1. Generazione, accumulo, controllo
 - 8.4.2. Conversione, monitoraggio
 - 8.4.3. Gestione e consumo

Struttura e contenuti | 29 tech

- 8.5. Dimensionamento dei componenti degli impianti fotovoltaici off-grid
 - 8.5.1. Dimensionamento del generatore solare-accumulatore-inverter
 - 8.5.2. Dimensionamento delle batterie
 - 8.5.3. Dimensionamento di altri componenti
- 8.6. Stimare di produzioni energetiche
 - 8.6.1. Produzione del generatore solare
 - 8.6.2. Stoccaggio
 - 8.6.3. Uso finale della produzione
- 3.7. Copertura della domanda
 - 8.7.1. Copertura solare fotovoltaica
 - 8.7.2. Copertura con generatori ausiliari
 - 8.7.3. Perdite di energia
- 8.8. Gestione della domanda
 - 8.8.1. Caratterizzazione della domanda
 - 8.8.2. Modifica della domanda: Carichi variabili
 - 8.8.3. Sostituzione della domanda
- 8.9. Particolarità dei sistemi di pompaggio a corrente continua e a corrente alternata
 - 8.9.1. Alternative di stoccaggio
 - 8.9.2. Accoppiamento motore-pompa-generatore fotovoltaico
 - 8.9.3. Mercato del pompaggio dell'acqua
- 8.10. Esempi di progettazione di impianti fotovoltaici isolati
 - 8.10.1. Progettazione di un impianto fotovoltaico per una singola casa isolata
 - 8.10.2. Progettazione di un impianto fotovoltaico per una comunità di case isolate
 - 8.10.3. Progettazione di un impianto fotovoltaico e di un gruppo elettrogeno per una singola casa isolata

Modulo 9. Software di progettazione, simulazione e dimensionamento

- 9.1. Software per la progettazione e la simulazione di impianti fotovoltaici sul mercato
 - 9.1.1. Software di progettazione e simulazione
 - 9.1.2. Dati necessari e rilevanti
 - 9.1.3. Vantaggi e svantaggi
- 9.2. Applicazione pratica del software PVGIS
 - 9.2.1. Objettivi: Schermate di dati
 - 9.2.2. Database dei prodotti e del clima

- 9.2.3. Applicazioni pratiche
- 9.3. Software PVSYST
 - 9.3.1. Alternative
 - 9.3.2. Database dei prodotti
 - 9.3.3. Database del clima
- 9.4. Dati del programma PVSYST
 - 9.4.1. Inclusione di nuovi prodotti
 - 9.4.2. Inclusione di database climatici
 - 9.4.3. Simulazione di un progetto
- 9.5. Gestione del programma PVSYST
 - 9.5.1. Selezione delle alternative
 - 9.5.2. Analisi delle ombre
 - 9.5.3. Schermate dei risultati
- 9.6. Applicazione pratica del PVSYST: Impianti fotovoltaici
 - 9.6.1. Applicazione per impianto fotovoltaico
 - 9.6.2. Ottimizzazione del generatore solare
 - 9.6.3. Ottimizzazione di altri componenti
- 9.7. Esempio di applicazione con PVSYST
 - 9.7.1. Esempio di applicazione per impianto fotovoltaico
 - 9.7.2. Esempio di applicazione per impianti fotovoltaici in autoconsumo
 - 9.7.3. Esempio di applicazione per impianti fotovoltaici isolati
- 9.8. Programma SAM (System Advisor Model)
 - 9.8.1. Obiettivo: Schermate di dati
 - 9.8.2. Database dei prodotti e del clima
 - 9.8.3. Schermate dei risultati
- 9.9. Applicazione pratica del SAM
 - 9.9.1. Applicazione per impianto fotovoltaico
 - 9.9.2. Applicazione per impianti fotovoltaici in autoconsumo
 - 9.9.3. Applicazione per impianti fotovoltaici isolati
- 9.10. Esempio di applicazione con SAM
 - 9.10.1. Esempio di applicazione per impianto fotovoltaico
 - 9.10.2. Esempio di applicazione per impianti fotovoltaici in autoconsumo
 - 9.10.3. Esempio di applicazione per impianti fotovoltaici isolati

tech 30 | Struttura e contenuti

Modulo 10. Montaggio, funzionamento e manutenzione degli impianti fotovoltaici

- 10.1. Installazione di impianti fotovoltaici
 - 10.1.1. Salute e sicurezza
 - 10.1.2. Selezione della strumentazione sul mercato
 - 10.1.3. Gestione degli incidenti
- 10.2. Avvio di impianti fotovoltaici: Aspetti tecnici
 - 10.2.1. Operazioni di avvio
 - 10.2.2. Codici di rete: Centro di controllo
 - 10.2.3. Gestione degli incidenti: Termografia, elettroluminescenza, certificazioni
- 10.3. Avvio di impianti di autoconsumo: Aspetti tecnici
 - 10.3.1. Operazioni di avvio
 - 10.3.2. Monitoraggio
 - 10.3.3. Gestione degli incidenti: Termografia, elettroluminescenza, certificazioni
- 10.4. Avvio di impianti isolati: Aspetti tecnici
 - 10.4.1. Operazioni di avvio
 - 10.4.2. Monitoraggio
 - 10.4.3. Gestione degli incidenti
- 10.5. Strategie di gestione e manutenzione dell'impianto fotovoltaico
 - 10.5.1. Strategie di gestione
 - 10.5.2. Strategie di manutenzione: Rilevamento dei guasti
 - 10.5.3. Gestione degli incidenti interni ed esterni
- 10.6. Strategie di funzionamento e manutenzione per gli impianti di autoconsumo senza batterie
 - 10.6.1. Strategie di gestione: Gestione delle eccedenze
 - 10.6.2. Strategie di manutenzione: Rilevamento dei guasti
 - 10.6.3. Gestione degli incidenti interni ed esterni

Struttura e contenuti | 31 tech

- 10.7. Strategie di funzionamento e manutenzione per gli impianti di autoconsumo con batterie
 - 10.7.1. Strategie di gestione: Gestione delle eccedenze
 - 10.7.2. Strategie di manutenzione: Rilevamento dei guasti
 - 10.7.3. Gestione degli incidenti interni ed esterni
- 10.8. Strategie di funzionamento e manutenzione per gli impianti off-grid
 - 10.8.1. Strategie di gestione
 - 10.8.2. Strategie di manutenzione: Rilevamento dei guasti
 - 10.8.3. Gestione degli incidenti interni ed esterni
- 10.9. Salute e sicurezza durante il montaggio, il funzionamento e la manutenzione
 - 10.9.1. Lavori in altezza: Tetti, pali elettrici
 - 10.9.2. Lavori in tensione
 - 10.9.3. Altri lavori
- 10.10. Documentazione di progetto As built
 - 10.10.1. Documenti di avvio
 - 10.10.2. Certificazioni finali
 - 10.10.3. Modifica e progetto As built

Raggiungerai i tuoi obiettivi professionali grazie a questa qualifica unica nel suo genere, che ti fornirà le più recenti conoscenze in materia di Energia Fotovoltaica. Iscriviti subito e fai un salto di qualità nella tua carriera!"

tech 34 | Metodologia

Caso di Studio per contestualizzare tutti i contenuti

Il nostro programma offre un metodo rivoluzionario per sviluppare le abilità e le conoscenze. Il nostro obiettivo è quello di rafforzare le competenze in un contesto mutevole, competitivo e altamente esigente.

Con TECH potrai sperimentare un modo di imparare che sta scuotendo le fondamenta delle università tradizionali in tutto il mondo"

Avrai accesso a un sistema di apprendimento basato sulla ripetizione, con un insegnamento naturale e progressivo durante tutto il programma.

Imparerai, attraverso attività collaborative e casi reali, la risoluzione di situazioni complesse in ambienti aziendali reali.

Un metodo di apprendimento innovativo e differente

Questo programma di TECH consiste in un insegnamento intensivo, creato ex novo, che propone le sfide e le decisioni più impegnative in questo campo, sia a livello nazionale che internazionale. Grazie a questa metodologia, la crescita personale e professionale viene potenziata, effettuando un passo decisivo verso il successo. Il metodo casistico, la tecnica che sta alla base di questi contenuti, garantisce il rispetto della realtà economica, sociale e professionale più attuali.

Il nostro programma ti prepara ad affrontare nuove sfide in ambienti incerti e a raggiungere il successo nella tua carriera"

Il metodo casistico è stato il sistema di apprendimento più usato nelle migliori facoltà del mondo. Sviluppato nel 1912 affinché gli studenti di Diritto non imparassero la legge solo sulla base del contenuto teorico, il metodo casistico consisteva nel presentare loro situazioni reali e complesse per prendere decisioni informate e giudizi di valore su come risolverle. Nel 1924 fu stabilito come metodo di insegnamento standard ad Harvard.

Cosa dovrebbe fare un professionista per affrontare una determinata situazione? Questa è la domanda con cui ti confrontiamo nel metodo dei casi, un metodo di apprendimento orientato all'azione. Durante il programma, gli studenti si confronteranno con diversi casi di vita reale. Dovranno integrare tutte le loro conoscenze, effettuare ricerche, argomentare e difendere le proprie idee e decisioni.

tech 36 | Metodologia

Metodologia Relearning

TECH coniuga efficacemente la metodologia del Caso di Studio con un sistema di apprendimento 100% online basato sulla ripetizione, che combina 8 diversi elementi didattici in ogni lezione.

Potenziamo il Caso di Studio con il miglior metodo di insegnamento 100% online: il Relearning.

Nel 2019 abbiamo ottenuto i migliori risultati di apprendimento di tutte le università online del mondo.

In TECH si impara attraverso una metodologia all'avanguardia progettata per formare i manager del futuro. Questo metodo, all'avanguardia della pedagogia mondiale, si chiama Relearning.

La nostra università è l'unica autorizzata a utilizzare questo metodo di successo. Nel 2019, siamo riusciti a migliorare il livello di soddisfazione generale dei nostri studenti (qualità dell'insegnamento, qualità dei materiali, struttura del corso, obiettivi...) rispetto agli indicatori della migliore università online.

Metodologia | 37 tech

Nel nostro programma, l'apprendimento non è un processo lineare, ma avviene in una spirale (impariamo, disimpariamo, dimentichiamo e re-impariamo). Pertanto, combiniamo ciascuno di questi elementi in modo concentrico. Questa metodologia ha formato più di 650.000 laureati con un successo senza precedenti in campi diversi come la biochimica, la genetica, la chirurgia, il diritto internazionale, le competenze manageriali, le scienze sportive, la filosofia, il diritto, l'ingegneria, il giornalismo, la storia, i mercati e gli strumenti finanziari. Tutto questo in un ambiente molto esigente, con un corpo di studenti universitari con un alto profilo socio-economico e un'età media di 43,5 anni.

Il Relearning ti permetterà di apprendere con meno sforzo e più performance, impegnandoti maggiormente nella tua specializzazione, sviluppando uno spirito critico, difendendo gli argomenti e contrastando le opinioni: un'equazione diretta al successo.

Dalle ultime evidenze scientifiche nel campo delle neuroscienze, non solo sappiamo come organizzare le informazioni, le idee, le immagini e i ricordi, ma sappiamo che il luogo e il contesto in cui abbiamo imparato qualcosa è fondamentale per la nostra capacità di ricordarlo e immagazzinarlo nell'ippocampo, per conservarlo nella nostra memoria a lungo termine.

In questo modo, e in quello che si chiama Neurocognitive Context-dependent E-learning, i diversi elementi del nostro programma sono collegati al contesto in cui il partecipante sviluppa la sua pratica professionale. Questo programma offre i migliori materiali didattici, preparati appositamente per i professionisti:

Materiale di studio

Tutti i contenuti didattici sono creati appositamente per il corso dagli specialisti che lo impartiranno, per fare in modo che lo sviluppo didattico sia davvero specifico e concreto.

Questi contenuti sono poi applicati al formato audiovisivo che supporterà la modalità di lavoro online di TECH. Tutto questo, con le ultime tecniche che offrono componenti di alta qualità in ognuno dei materiali che vengono messi a disposizione dello studente.

Master class

Esistono evidenze scientifiche sull'utilità dell'osservazione di esperti terzi.

Imparare da un esperto rafforza la conoscenza e la memoria, costruisce la fiducia nelle nostre future decisioni difficili.

Pratiche di competenze e competenze

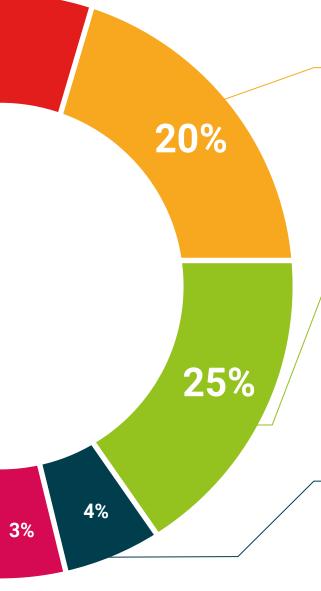
Svolgerai attività per sviluppare competenze e capacità specifiche in ogni area tematica. Pratiche e dinamiche per acquisire e sviluppare le competenze e le abilità che uno specialista deve sviluppare nel quadro della globalizzazione in cui viviamo.

Letture complementari

Articoli recenti, documenti di consenso e linee guida internazionali, tra gli altri. Nella biblioteca virtuale di TECH potrai accedere a tutto il materiale necessario per completare la tua specializzazione.

Completerai una selezione dei migliori casi di studio scelti appositamente per questo corso. Casi presentati, analizzati e monitorati dai migliori specialisti del panorama internazionale.

Riepiloghi interattivi


Il team di TECH presenta i contenuti in modo accattivante e dinamico in pillole multimediali che includono audio, video, immagini, diagrammi e mappe concettuali per consolidare la conoscenza.

Questo esclusivo sistema di specializzazione per la presentazione di contenuti multimediali è stato premiato da Microsoft come "Caso di successo in Europa".

Testing & Retesting

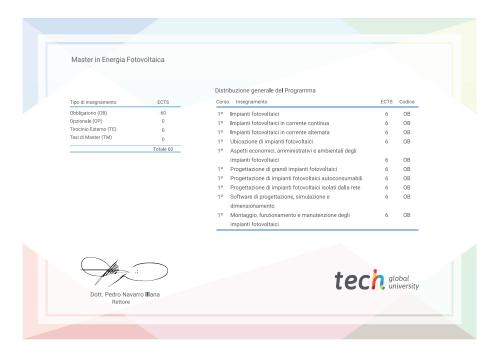
Valutiamo e rivalutiamo periodicamente le tue conoscenze durante tutto il programma con attività ed esercizi di valutazione e autovalutazione, affinché tu possa verificare come raggiungi progressivamente i tuoi obiettivi.

tech 42 | Titolo

Questo programma ti consentirà di ottenere il titolo di studio privato di **Master in Energia Fotovoltaica** rilasciato da **TECH Global University**, la più grande università digitale del mondo.

TECH Global University, è un'Università Ufficiale Europea riconosciuta pubblicamente dal Governo di Andorra (*bollettino ufficiale*). Andorra fa parte dello Spazio Europeo dell'Istruzione Superiore (EHEA) dal 2003. L'EHEA è un'iniziativa promossa dall'Unione Europea che mira a organizzare il quadro formativo internazionale e ad armonizzare i sistemi di istruzione superiore dei Paesi membri di questo spazio. Il progetto promuove valori comuni, l'implementazione di strumenti congiunti e il rafforzamento dei meccanismi di garanzia della qualità per migliorare la collaborazione e la mobilità tra studenti, ricercatori e accademici.

Questo titolo privato di **TECH Global University**, è un programma europeo di formazione continua e aggiornamento professionale che garantisce l'acquisizione di competenze nella propria area di conoscenza, conferendo allo studente che supera il programma un elevato valore curriculare.


Titolo: Master in Energia Fotovoltaica

Modalità: online

Durata: 12 mesi

Accreditamento: 60 ECTS

^{*}Apostilla dell'Aia. Se lo studente dovesse richiedere che il suo diploma cartaceo sia provvisto di Apostille dell'Aia, TECH Global University effettuerà le gestioni opportune per ottenerla pagando un costo aggiuntivo.

tech global university Master

Energia Fotovoltaica

- » Modalità: online
- » Durata: 12 mesi
- » Titolo: TECH Global University
- » Accreditamento: 60 ECTS
- » Orario: a tua scelta
- » Esami: online

