

Mastère Spécialisé Avancé Robotique et Vision Artificielle

» Modalité: en ligne

» Durée: 2 ans

» Diplôme: TECH Euromed University

» Accréditation: 120 ECTS

» Horaire: à votre rythme

» Examens: en ligne

Accès au site web: www.techtitute.com/fr/informatique/mastere-specialise-avance/mastere-specialise-avance-robotique-vision-artificielle

Sommaire

03 Présentation du programme Pourquoi étudier à TECH? Programme d'études Page 4 Page 8 Page 12 05 06 Objectifs Opportunités de carrière Méthodologie Page 32 Page 38 Page 42 80 **Corps Enseignant** Diplôme Page 52 Page 62

tech 06 | Présentation du programme

L'essor de l'Intelligence Artificielle et de la Robotique transforme le paysage technologique, économique et social dans le monde entier. En outre, la spécialisation dans des domaines tels que la Vision Artificielle est devenue cruciale pour garder une longueur d'avance en cette ère de progrès rapides et de changements disruptifs. L'interaction croissante entre les machines et les humains, ainsi que la nécessité de traiter efficacement les informations visuelles, exigent des professionnels hautement qualifiés capables de relever ces défis et de conduire l'innovation.

Le programme en Robotique et Vision Artificielle offre une formation complète dans ces disciplines émergentes, couvrant des sujets tels que la Réalité Augmentée, l'Intelligence Artificielle et le traitement de l'information visuelle dans les machines, parmi d'autres. Les étudiants bénéficieront d'une approche théorique et pratique, apprenant les derniers développements en Robotique et en Vision Artificielle et la manière d'appliquer ces connaissances dans des environnements réels.

En outre, le programme est 100% en ligne, ce qui permet aux étudiants d'adapter leur apprentissage à leur situation personnelle et professionnelle, facilitant ainsi la compatibilité de leur enseignement avec leurs propres responsabilités. Les étudiants auront accès à du matériel pédagogique de haute qualité, tel que des aperçus vidéo, des lectures essentielles et des vidéos approfondies, qui leur donneront une vue d'ensemble de la Robotique et de la Vision Artificielle.

Ce Mastère Spécialisé Avancé en Robotique et Vision Artificielle contient le programme éducatif le plus complet et le plus actualisé du marché. Ses caractéristiques sont les suivantes:

- Le développement d'études de cas présentées par des experts en Robotique et en Vision Artificielle
- Les contenus graphiques, schématiques et éminemment pratiques de l'ouvrage fournissent des informations scientifiques et pratiques sur les disciplines essentielles à la pratique professionnelle
- Les exercices pratiques où effectuer le processus d'auto-évaluation pour améliorer l'apprentissage
- L'accent est mis sur les méthodologies innovantes dans le domaine de la Robotique et de la Vision Artificielle. Conférences théoriques, questions aux experts, forums de discussion sur des sujets controversés et travaux de réflexion individuels
- La possibilité d'accéder aux contenus depuis n'importe quel appareil fixe ou portable doté d'une connexion internet

Transformer l'impact de la robotique et de la vision artificielle sur le tissu économique nécessite une gestion stratégique pour faire la différence entre le succès et l'échec"

Étudier en mode 100% en ligne permet d'apprendre de n'importe où et à n'importe quel moment, en s'adaptant aux besoins individuels"

Son corps enseignant comprend des professionnels du domaine de la Robotique et de la Vision Artificielle, qui apportent l'expérience de leur travail à ce programme, ainsi que des spécialistes reconnus issus de grandes entreprises et d'universités prestigieuses.

Son contenu multimédia, développé avec les dernières technologies éducatives, permettra au professionnel un apprentissage situé et contextuel, c'est-à-dire un environnement simulé qui fournira un étude immersif programmé pour s'entraîner dans des situations réelles

La conception de ce programme est axée sur l'Apprentissage par les Problèmes, grâce auquel l'étudiant doit essayer de résoudre les différentes situations de la pratique professionnelle qui se présentent tout au long du programme académique. Pour ce faire, le professionnel aura l'aide d'un système vidéo interactif innovant créé par des experts reconnus.

L'accès à la méthodologie éducative innovante de TECH Euromed University garantit une formation adaptée aux exigences actuelles du secteur technologique.

La variété des ressources pratiques de ce programme permet de renforcer les connaissances techniques et appliquées.

tech 10 | Pourquoi étudier à TECH?

La meilleure université en ligne selon FORBES

Le prestigieux magazine Forbes, spécialisé dans les affaires et la finance, a désigné TECH Euromed University comme « la meilleure université en ligne du monde ». C'est ce qu'il a récemment déclaré dans un long article de son édition numérique dans lequel il se fait l'écho de la success story de cette institution, "grâce à l'offre académique qu'elle propose, à la sélection de son corps enseignant et à une méthode d'apprentissage innovante visant à former les professionnels du futur".

Un corps professoral international de premier plan

Le corps enseignant de TECH Euromed University est composé de plus de 6 000 professeurs jouissant du plus grand prestige international. Des professeurs, des chercheurs et des cadres supérieurs de multinationales, dont Isaiah Covington, entraîneur de performance des Boston Celtics, Magda Romanska, chercheuse principale au MetaLAB de Harvard, Ignacio Wistumba, président du département de pathologie moléculaire translationnelle au MD Anderson Cancer Center, et D.W. Pine, directeur de la création du magazine TIME, entre autres.

La plus grande université numérique du monde

TECH Euromed University est la plus grande université numérique du monde. Nous sommes le plus grand établissement d'enseignement, avec le meilleur et le plus vaste catalogue d'enseignement numérique, cent pour cent en ligne et couvrant la grande majorité des domaines de la connaissance. Nous proposons le plus grand nombre de diplômes propres, de diplômes officiels de troisième cycle et de premier cycle au monde. Au total, plus de 14 000 diplômes universitaires, dans dix langues différentes, ce qui fait de nous la plus grande institution éducative au monde.

nº1 Mundial Mayor universidad online del mundo

Les programmes d'études les plus complets sur la scène universitaire

TECH Euromed University propose les programmes d'études les plus complets sur la scène universitaire, avec des cursus qui couvrent les concepts fondamentaux et, en même temps, les principales avancées scientifiques dans leurs domaines scientifiques spécifiques. De même, ces programmes sont continuellement mis à jour afin de garantir aux étudiants l'avant-garde académique et les compétences professionnelles les plus demandées. De cette manière, les diplômes de l'université fournissent à ses diplômés un avantage significatif pour propulser leur carrière vers le succès.

Une méthode d'apprentissage unique

TECH Euromed University est la première université à utiliser *Relearning* dans tous ses diplômes. Il s'agit de la meilleure méthode d'apprentissage en ligne, accréditée par des certifications internationales de qualité de l'enseignement délivrées par des agences éducatives prestigieuses. En outre, ce modèle académique perturbateur est complété par la "Méthode des Cas", configurant ainsi une stratégie d'enseignement en ligne unique. Des ressources pédagogiques innovantes sont également mises en œuvre, notamment des vidéos détaillées, des infographies et des résumés interactifs.

L'université en ligne officielle de la NBA

TECH Euromed University est l'université en ligne officielle de la NBA. Grâce à un accord avec la ligue majeure de basket-ball, elle offre à ses étudiants des programmes universitaires exclusifs, ainsi qu'une grande variété de ressources éducatives axées sur les affaires de la ligue et d'autres domaines de l'industrie du sport. Chaque programme est conçu de manière unique et fait appel à des conférenciers exceptionnels: des professionnels issus du monde du sport qui apportent leur expertise sur les sujets les plus pertinents.

Leaders en matière d'employabilité

TECH Euromed University a réussi à devenir la première université en termes d'employabilité. 99% de ses étudiants trouvent un emploi dans le domaine académique qu'ils ont étudié, un an après avoir terminé l'un des programmes de l'université. Un nombre similaire d'entre eux bénéficient d'une amélioration immédiate de leur carrière. Tout cela grâce à une méthodologie d'étude qui fonde son efficacité sur l'acquisition de compétences pratiques, absolument nécessaires au développement professionnel.

Google Partner Premier

Le géant américain de la technologie a décerné à TECH Euromed University le badge Google Partner Premier. Ce prix, qui n'est décerné qu'à 3% des entreprises dans le monde, souligne l'expérience efficace, flexible et adaptée que cette université offre aux étudiants. Cette reconnaissance atteste non seulement de la rigueur, de la performance et de l'investissement maximaux dans les infrastructures numériques de TECH Euromed University, mais place également cette université parmi les entreprises technologiques les plus avant-gardistes au monde.

L'université la mieux évaluée par ses étudiants

Les étudiants ont positionné TECH Euromed University comme l'université la mieux évaluée du monde dans les principaux portails d'opinion, soulignant sa note la plus élevée de 4,9 sur 5, obtenue à partir de plus de 1 000 évaluations. Ces résultats consolident TECH Euromed University en tant qu'institution universitaire de référence internationale, reflétant l'excellence et l'impact positif de son modèle éducatif.

tech 14 | Programme d'études

Module 1. Robotique. Design et modélisation de Robots

- 1.1. Robotique et Industrie 4.0
 - 1.1.1. Robotique et Industrie 4.0
 - 1.1.2. Domaines d'application et cas d'utilisation
 - 1.1.3. Sous-domaines de spécialisation en Robotique
- 1.2. Architectures hardware y software de robots
 - 1.2.1. Architectures hardware et temps réel
 - 1.2.2. Architectures hardware de robots
 - 1.2.3. Modèles de communication et technologies Middleware
 - 1.2.4. Intégration software avec Robot Operating System (ROS)
- 1.3. Modélisation mathématique des robots
 - 1.3.1. Représentation mathématique des solides rigides
 - 1.3.2. Rotations et translations
 - 1.3.3. Représentation hiérarchique de l'État
 - 1.3.4. Représentation d'état distribuée dans ROS (TF Library)
- 1.4. Cinématique et dynamique des robots
 - 1.4.1. Cinématique
 - 1.4.2. Dynamique
 - 1.4.3. Robots sous-actionnés
 - 1.4.4. Robots redondants
- 1.5. Modélisation et simulation de robots
 - 1.5.1. Technologies de modélisation des robots
 - 1.5.2 Modélisation de robots avec URDE
 - 1.5.3. Simulation de robots
 - 1.5.4. Modélisation avec le simulateur Gazebo
- 1.6. Robots manipulateurs
 - 1.6.1. Types de robots manipulateurs
 - 1.6.2. Cinématique
 - 1.6.3. Dynamigue
 - 1.6.4. Simulation

- 1.7. Robots mobiles terrestres
 - 1.7.1. Types de robots mobiles terrestres
 - 1.7.2. Cinématique
 - 1.7.3. Dynamique
 - 1.7.4. Simulation
- 1.8. Robots mobiles aéroportés
 - 1.8.1. Types de robots mobiles aérien
 - 1.8.2. Cinématique
 - 1.8.3. Dynamique
 - 1.8.4. Simulation
- 1.9. Robots mobiles aquatiques
 - 1.9.1. Types de robots mobiles aquatique
 - 1.9.2. Cinématique
 - 1.9.3. Dynamique
 - 1.9.4. Simulation
- 1.10. Robots bio-inspirés
 - 1.10.1. Humanoïdes
 - 1.10.2. Robots à quatre pattes ou plus
 - 1.10.3. Robots modulaires
 - 1.10.4. Robots à parties flexibles (Soft-Robotics)

Module 2. Agents intelligents. Appliquer l'Intelligence Artificielle aux robots et Softbots

- 2.1. Agents Intelligents et Intelligence Artificielle
 - 2.1.1. Robots Intelligents. Intelligence Artificielle
 - 2.1.2. Agents Intelligents
 - 2.1.2.1. Agents hardware Robots
 - 2.1.2.2. Agents software Softbots
 - 2.1.3. Applications à la Robotique

Programme d'études | 15 tech

- 2.2. Connexion Cerveau-Algorithme
 - 2.2.1. Inspiration biologique de l'Intelligence Artificielle
 - 2.2.2. Raisonnement implémenté dans les algorithmes Typologie
 - 2.2.3. Explicabilité des résultats dans les algorithmes d'Intelligence Artificielle
 - 2.2.4. Évolution des algorithmes jusqu'à Deep Learning
- 2.3. Algorithmes de recherche dans l'espace des solutions
 - 2.3.1. Éléments dans les recherches de l'espace de solution
 - 2.3.2. Algorithmes de recherche dans l'espace des solutions pour les problèmes d'Intelligence Artificielle
 - 2.3.3. Applications des algorithmes de recherche et d'optimisation
 - 2.3.4. Algorithmes de recherche appliqués à l'Apprentissage Automatique
- 2.4. Apprentissage Automatique
 - 2.4.1. Apprentissage automatique
 - 2.4.2. Algorithmes d'Apprentissage Supervisé
 - 2.4.3. Algorithmes d'Apprentissage No Supervisé
 - 2.4.4. Algorithmes d'Apprentissage par Renforcement
- 2.5. Apprentissage Supervisé
 - 2.5.1. Méthodes d'Apprentissage Supervisé
 - 2.5.2. Arbres de décision pour la classification
 - 2.5.3. Machines à vecteurs de support
 - 2.5.4. Réseaux neuronaux artificiels
 - 2.5.5. Applications de l'Apprentissage Supervisé
- 2.6. Apprentissage Non supervisé
 - 2.6.1. Apprentissage Non Supervisé
 - 2.6.2. Réseaux Kohonen
 - 2.6.3. Cartes auto-organisées
 - 2.6.4. Algorithme K-means
- 2.7. Apprentissage par Renforcement
 - 2.7.1. Apprentissage par Renforcement
 - 2.7.2. Agents basés sur des processus de Markov
 - 2.7.3. Algorithmes d'Apprentissage par Renforcement
 - 2.7.4. L'apprentissage par Renforcement appliqué à la robotique

- 2.8. Inférence probabiliste
 - 2.8.1. Inférence probabiliste
 - 2.8.2. Types d'inférence et définition de la méthode
 - 2.8.3. L'inférence bayésienne comme étude de cas
 - 2.8.4. Techniques d'inférence non paramétrique
 - 2.8.5. Filtres gaussiens
- 2.9. De la théorie à la pratique: développement d'un agent intelligent robotique
 - 2.9.1. Inclusion de modules d'apprentissage supervisé dans un agent robotique
 - 2.9.2. Inclusion de modules d'apprentissage par renforcement dans un agent robotique
 - 2.9.3. Architecture d'un agent robotique contrôlé par l'Intelligence Artificielle
 - 2.9.4. Outils professionnels pour la mise en œuvre de l'agent intelligent
 - 2.9.5. Phases de la mise en œuvre des algorithmes d'IA dans les agents robotiques

Module 3. Deep Learning

- 3.1. Intelligence artificielle
 - 3.1.1. Machine Learning
 - 3.1.2. Deep Learning
 - 3.1.3. L'explosion de *Deep Learning*. Pourquoi maintenant?
- 3.2. Réseaux neuronaux
 - 3.2.1. Réseau neuronal
 - 3.2.2. Utilisations des réseaux neuronaux
 - 3.2.3. Régression linéaire et perceptron
 - 3.2.4. Forward Propagation
 - 3.2.5. Backpropagation
 - 3.2.6. Feature vectors
- 3.3. Loss Functions
 - 3.3.1. Loss Functions
 - 3.3.2. Types de Loss Functions
 - 3.3.3. Choix des Loss Functions

tech 16 | Programme d'études

	_				
3.4.		ons d'activation			
		Fonction d'activation			
	3.4.2.	Fonctions linéaires			
	3.4.3.	Fonctions non linéaires			
	3.4.4.	Output vs. Hidden Layer Activation Functions			
3.5.	Régularisation et normalisation				
	3.5.1.	Régularisation et normalisation			
	3.5.2.	Overfitting and Data Augmentation			
	3.5.3.	Regularization Methods: L1, L2 and Dropout			
	3.5.4.	Normalization Methods: Batch, Weight, Layer			
3.6.	Optimisation				
	3.6.1.	Gradient Descent			
	3.6.2.	Stochastic Gradient Descent			
	3.6.3.	Mini Batch Gradient Descent			
	3.6.4.	Momentum			
	3.6.5.	Adam			
3.7.	Hyperparameter Tuning et poids				
	3.7.1.	Hyperparamètres			
	3.7.2.	Batch Size vs. Learning Rate vs. Step Decay			
	3.7.3.	Poids			
3.8.	Mesures d'évaluation des réseaux neuronaux				
	3.8.1.	Précision			
	3.8.2.	Dice Coefficient			
		Sensitivity vs. Specificity/Recall vs. Précision			
	3.8.4.	Courbe ROC (AUC)			
	3.8.5.	F1-score			
	3.8.6.	Confusion des Matrices			
	3.8.7.	Cross-Validation			
3.9.	Frameworks et Hardware				
	3.9.1.	Tensor Flow			
	3.9.2.	Pytorch			
		Caffe			
		Keras			
	3.9.5.				

- 3.10. Création de réseaux neuronaux formation et validation
 - 3.10.1. Dataset
 - 3.10.2. Construction du réseau
 - 3.10.3. Entrainement
 - 3.10.4. Visualisation des résultats

Module 4. La Robotique dans l'Automatisation des Processus Industriels

- 4.1. Conception de systèmes automatisés
 - 4.1.1. Architectures hardware
 - 4.1.2. Contrôleurs logiques programmables
 - 4.1.3. Réseaux de communication industriels
- 4.2. Conception électrique avancée I: automatisation
 - 4.2.1. Conception de panneaux électriques et symbologie
 - 4.2.2. Circuits de puissance et de contrôle. Harmoniques
 - 4.2.3. Éléments de protection et de mise à la terre
- 4.3. Conception électrique avancée II: déterminisme et sécurité
 - 4.3.1. Sécurité et redondance des machines
 - 4.3.2. Relais de sécurité et déclencheurs
 - 4.3.3. Automates de sécurité
 - 4.3.4. Des réseaux sûrs
- 4.4. Performance électrique
 - 4.4.1. Moteurs et servomoteurs
 - 4.4.2. Convertisseurs et contrôleurs de fréquence
 - 4.4.3. Robotique industrielle à commande électrique
- 4.5. Actionnement hydraulique et pneumatique
 - 4.5.1. Conception hydraulique et symbologie
 - 4.5.2. Conception pneumatique et symbologie
 - 4.5.3. Environnements ATEX dans l'automatisation
- 4.6. Transducteurs en robotique et automatisation
 - 4.6.1. Mesure de la position et de la vitesse
 - 4.6.2. Mesure de la force et de la température
 - 4.6.3. Mesure de la présence
 - 4.6.4. Capteurs pour la vision

Programme d'études | 17 tech

- 4.7. Programmation et configuration des automates programmables (PLC)
 - 4.7.1. Programmation de PLC: LD
 - 4.7.2. Programmation de PLC: ST
 - 4.7.3. Programmation de PLC: FBD et CFC
 - 4.7.4. Programmation de PLC: SFC
- 4.8. Programmation et configuration d'équipements dans des installations industrielles
 - 4.8.1. Programmation de variateurs et de contrôleurs
 - 4.8.2. Programmation IHM
 - 4.8.3. Programmation de robots manipulateurs
- 4.9. Programmation et configuration d'équipements informatiques industriels
 - 4.9.1. Programmation de systèmes de vision
 - 4.9.2. SCADA/programmation de logiciels
 - 4.9.3. Configuration du réseau
- 4.10. Implémentation des automatismes
 - 4.10.1. Conception de machines à états
 - 4.10.2. Mise en œuvre de la machine d'état du PLC
 - 4.10.3. Mise en œuvre de systèmes de contrôle analogiques PID dans des PLC
 - 4.10.4. Maintenance des automatismes et hygiène du code
 - 4.10.5. Simulation d'automatismes et de plantes

Module 5. Systèmes de contrôle automatique en Robotique

- 5.1. Analyse et conception de systèmes non-linéaires
 - 5.1.1. Analyse et modélisation des systèmes non-linéaires
 - 5.1.2. Contrôle par rétroaction
 - 5.1.3. Linéarisation avec rétroaction
- 5.2. Conception de techniques de contrôle pour les systèmes non linéaires avancés
 - 5.2.1. Commande par mode glissant (*Sliding Mode control*)
 - 5.2.2. Contrôle basé sur Lyapunov et Backstepping
 - 5.2.3. Contrôle basé sur la passivité
- 5.3. Architectures de contrôle
 - 5.3.1. Le paradigme de la robotique
 - 5.3.2. Architectures de contrôle
 - 5.3.3. Applications et exemples d'architectures de contrôle

- 5.4. Commande de mouvement pour les bras robotiques
 - 5.4.1. Modélisation cinématique et dynamique
 - 5.4.2. Contrôle dans l'espace articulaire
 - 5.4.3. Contrôle dans l'espace opérationnel
- 5.5. Contrôle de la force sur les actionneurs
 - 5.5.1. Contrôle des forces
 - 5.5.2. Contrôle de l'impédance
 - 5.5.3. Contrôle hybride
- 5.6. Robots mobiles terrestres
 - 5.6.1. Équations du mouvement
 - 5.6.2. Techniques de commande pour les robots terrestres
 - 5.6.3. Manipulateurs mobiles
- 5.7. Robots mobiles aéroportés
 - 5.7.1. Équations du mouvement
 - 5.7.2. Techniques de contrôle pour les robots aériens
 - 5.7.3. Manipulation aérienne
- 5.8. Contrôle basé sur des techniques d'apprentissage automatique
 - 5.8.1. Contrôle par Apprentissage Supervisé
 - 5.8.2. Contrôle par apprentissage renforcé
 - 5.8.3. Contrôle par Apprentissage Non Supervisé
- 5.9. Contrôle basé sur la vision.
 - 5.9.1. Visual Servoing basé sur la position
 - 5.9.2. Visual Servoing basé sur l'image
 - 5.9.3. Visual Servoing hybride
- 5.10. Contrôle prédictif
 - 5.10.1. Modèles et estimation d'état
 - 5.10.2. MPC appliquée aux Robots Mobiles
 - 5.10.3. MPC appliqué aux drones

tech 18 | Programme d'études

Module 6. Algorithmes de planification des robots

- 6.1. Algorithmes de planification classiques
 - 6.1.1. Planification discrète: espace des états
 - 6.1.2. Problèmes de planification en robotique Modèles de systèmes robotiques
 - 6.1.3. Classification des planificateurs
- 6.2. Le problème de la planification de la trajectoire des robots mobiles
 - 6.2.1. Modes de représentation de l'environnement: les graphes
 - 6.2.2. Algorithmes de recherche graphique
 - 6.2.3. Saisie des coûts dans les réseaux
 - 6.2.4. Algorithmes de recherche dans les réseaux lourds
 - 6.2.5. Algorithmes avec approache tout angle
- 6.3. Planification dans les systèmes robotiques de haute dimension
 - 6.3.1. Problèmes de robotique à haute dimension: Manipulateurs
 - 6.3.2. Modèle cinématique direct/inverse
 - 6.3.3. Algorithmes de planification de l'échantillonnage PRM et RRT
 - 6.3.4. Planification sous contraintes dynamiques
- 6.4. Planification optimale de l'échantillonnage
 - 6.4.1. Problèmes des planificateurs basés sur l'échantillonnage
 - 6.4.2. RRT Concept d'optimalité probabiliste
 - 6.4.3. Étape de reconnexion: contraintes dynamiques
 - 6.4.4. CForest. Parallélisation de la planification
- 6.5. Implémentation réelle d'un système de planification des mouvements
 - 6.5.1. Problème de planification globale Environnements dynamiques
 - 6.5.2. Cycle d'action, sensorisation Acquisition d'informations à partir de l'environnement
 - 6.5.3. Planification locale et mondiale
- 6.6. Coordination des systèmes multi-robots I: système centralisé
 - 6.6.1. Problème de coordination multi-robots
 - 6.6.2. Détection et résolution des collisions: modification de la trajectoire à l'aide d'algorithmes génétiques
 - 6.6.3. Autres algorithmes bio-inspirés: essaimage de particules et feux d'artifice
 - 6.6.4. Choix de l'algorithme d'évitement des collisions lors des manœuvres

- 6.7. Coordination dans les systèmes multi-robots II: approches distribuées I
 - 6.7.1. Utilisation de fonctions objectives complexes
 - 6.7.2. Front de Pareto
 - 6.7.3. Algorithmes évolutionnaires multi-objectifs
- 6.8. Coordination dans les systèmes multi-robots III: approches distribuées II
 - 6.8.1. Commande 1 Systèmes de planification
 - 6.8.2. Algorithme ORCA
 - 6.8.3. Ajout de contraintes cinématiques et dynamiques dans ORCA
- 6.9. Théorie de la planification des Décisions
 - 6.9.1. Théorie de la décision
 - 6.9.2. Systèmes de décision séquentielle
 - 6.9.3. Capteurs et espaces d'information
 - 6.9.4. Planification de l'incertitude dans la détection et l'actionnement
- 6.10. Systèmes de planification d'apprentissage par renforcement
 - 6.10.1. Obtention de la récompense attendue d'un système
 - 6.10.2. Techniques d'apprentissage de la récompense moyenne
 - 6.10.3. Apprentissage par renforcement inverse

Module 7. Vision artificielle

- 7.1. La perception humaine
 - 7.1.1. Système visuel humain
 - 7.1.2. La couleur
 - 7.1.3. Fréquences visibles et non visibles
- 7.2. Chronique de la Vision Artificielle
 - 7.2.1. Principes
 - 7.2.2. Évolution
 - 7.2.3. L'importance de la vision industrielle

Programme d'études | 19 tech

- 7.3. Composition d'images numériques
 - 7.3.1. L'image numérique
 - 7.3.2. Types d'images
 - 7.3.3. Espaces de couleurs
 - 7.3.4. RGB
 - 7.3.5. HSV et HSL
 - 7.3.6. CMY-CMYK
 - 7.3.7. YCbCr
 - 7.3.8. Image indexée
- 7.4. Systèmes d'acquisition d'images
 - 7.4.1. Fonctionnement d'un appareil photo numérique
 - 7.4.2. L'exposition correcte pour chaque situation
 - 7.4.3. Profondeur de champ
 - 7.4.4. Résolution
 - 7.4.5. Formats d'image
 - 7.4.6. Mode HDR
 - 7.4.7. Caméras à haute résolution
 - 7.4.8. Caméras à haute vitesse
- 7.5. Systèmes optiques
 - 7.5.1. Principes optiques
 - 7.5.2. Lentilles conventionnelles
 - 7.5.3. Lentilles télécentriques
 - 7.5.4. Types d'objectifs autofocus
 - 7.5.5. Longueur focale
 - 7.5.6. Profondeur de champ
 - 7.5.7. Distorsion optique
 - 7.5.8. Calibrage d'une image

- 7.6. Systèmes d'éclairage
 - 7.6.1. Importance de l'éclairage
 - 7.6.2. Réponse en fréquence
 - 7.6.3. Éclairage LED
 - 7.6.4. Éclairage extérieur
 - 7.6.5. Types d'éclairage pour les applications industrielles. Effets
- 7.7. Systèmes de capture 3D
 - 7.7.1. Vision stéréo
 - 7.7.2. Triangulation
 - 7.7.3. Lumière structurée
 - 7.7.4. Time of Flight
 - 7.7.5. Lidar
- 7.8. Multispectre
 - 7.8.1. Caméras multispectrales
 - 7.8.2. Caméras hyperspectrales
- 7.9. Spectre proche non visible
 - 7.9.1. Caméras IR
 - 7.9.2. Caméras UV
 - 7.9.3. Conversion du non-visible au visible par illumination
- 7.10. Autres bandes de fréquences
 - 7.10.1. Rayons X
 - 7.10.2. Terahertz

Module 8. Applications et état de l'art

- 8.1. Applications industrielles
 - 8.1.1. Bibliothèques de vision industrielle
 - 8.1.2. Appareils photo compacts
 - 8.1.3. Systèmes basés sur PC

tech 20 | Programme d'études

8.1.4. Robotique industrielle

	0.1.0.	rick and place 2D				
	8.1.6.	Bin picking				
	8.1.7.	Contrôle de la qualité				
	8.1.8.	Présence absence de composants				
	8.1.9.	Contrôle dimensionnel				
	8.1.10	Contrôle de l'étiquetage				
	8.1.11	Traçabilité				
8.2.	Le véhicule autonome					
	8.2.1.	Assistance au conducteur				
	8.2.2.	Conduite autonome				
8.3.	La vision artificielle pour l'analyse de contenu					
	8.3.1.	Filtrage du contenu				
	8.3.2.	Modération du contenu visuel				
	8.3.3.	Systèmes de suivi				
	8.3.4.	Identification des marques et des logos				
	8.3.5.	Étiquetage et classification des vidéos				
	8.3.6.	Détection des changements de scène				
	8.3.7.	Extraction de textes ou de crédits				
8.4.	Applica	tions médicales				
	8.4.1.	Détection et localisation des maladies				
	8.4.2.	Cancer et analyse aux rayons X				
	8.4.3.	Les progrès de la vision industrielle donnés Covid-19				
	8.4.4.	Assistance en salle d'opération				
8.5.	Applica	Applications spatiales				
	8.5.1.	Analyse d'images satellites				
	8.5.2.	La vision artificielle pour la surveillance de l'espace				
	8.5.3.	Mission vers Mars				

8.6.	Applications	commerciales

- 8.6.1. Contrôle des stocks
- 8.6.2. Vidéo surveillance, sécurité domestique
- 8.6.3. Caméras de parking
- 8.6.4. Des caméras pour contrôler la population
- 8.6.5. Radars de vitesse

8.7. La vision appliquée à la robotique

- 8.7.1. Drones
- 8.7.2. AGV
- 8.7.3. La vision dans les robots collaboratifs
- 8.7.4. Les yeux des robots
- 8.8. Réalité augmentée
 - 8.8.1. Fonctionnement
 - 8.8.2. Dispositifs
 - 8.8.3. Applications dans l'industrie
 - 8.8.4. Applications commerciales
- 8.9. Cloud computing
 - 8.9.1. Plateformes de Cloud Computing
 - 8.9.2. Du Cloud Computing à la production
- 8.10. Recherche et état de l'art
 - 8.10.1. La communauté scientifique
 - 8.10.2. Qu'est-ce qui se passe?
 - 8.10.3. L'avenir de la vision industrielle

Module 9. Techniques de Vision Artificielle en Robotique: traitement et analyse d'images

- 9.1. La Vision par Ordinateur
 - 9.1.1. La Vision par Ordinateur

Programme d'études | 21 tech

9.1.2. Éléments d'un système de Vision par Ordinate	us
---	----

9.1.3. Outils mathématiques

9.2. Capteurs optiques pour la Robotique

- 9.2.1. Capteurs optiques passifs
- 9.2.2. Capteurs optiques actifs
- 9.2.3. Capteurs non optiques

9.3. Acquisition d'images

- 9.3.1. Représentation de l'image
- 9.3.2. Espace couleur
- 9.3.3. Processus de numérisation

9.4. Géométrie de l'image

- 9.4.1. Modèles d'objectifs
- 9.4.2. Modèles de caméras
- 9.4.3. Calibrage de la caméra

9.5. Outils mathématiques

- 9.5.1. Histogramme d'une image
- 9.5.2. Convolution
- 9.5.3. Transformée de Fourier

9.6. Prétraitement des images

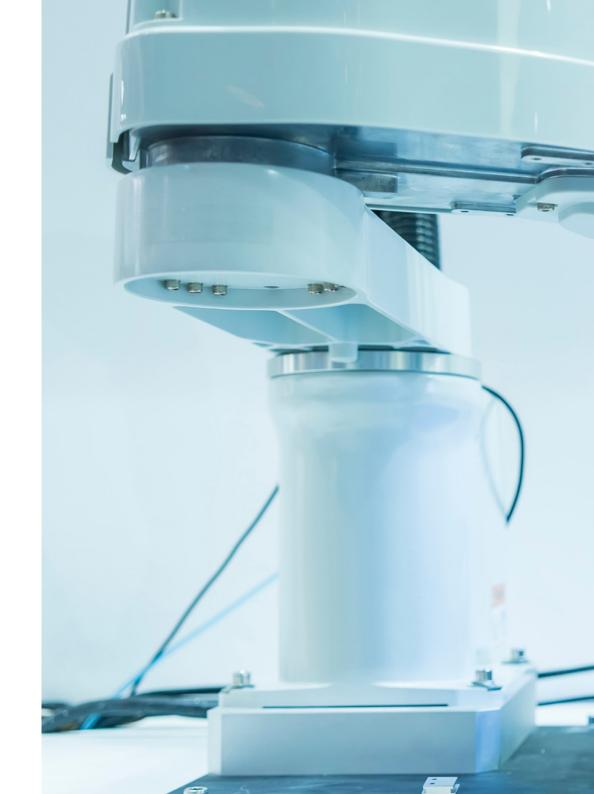
- 9.6.1. Analyse du bruit
- 9.6.2. Lissage d'image
- 9.6.3. Amélioration de l'image

9.7. Segmentation d'images

- 9.7.1. Techniques basées sur les contours
- 9.7.2. Techniques basées sur l'histogramme
- 9.7.3. Opérations morphologiques

9.8. Détection des caractéristiques de l'image

- 9.8.1. Détection des points d'intérêt
- 9.8.2. Descripteurs de caractéristiques
- 9.8.3. Correspondance des caractéristiques
- 9.9. Systèmes de vision 3D.


- 9.9.1. Perception 3D
- 9.9.2. Correspondance des caractéristiques entre les images
- 9.9.3. Géométrie à vues multiples
- 9.10. Localisation par vision artificielle
 - 9.10.1. Le problème de la localisation des robots
 - 9.10.2. Odométrie visuelle
 - 9.10.3. Fusion sensorielle

Module 10. Systèmes de Perception Visuelle des Robots avec Apprentissage Automatique

- 10.1. Méthodes d'Apprentissage Non Supervisé Appliquées à la Vision Artificielle
 - 10.1.1. Clustering
 - 10.1.2. PCA
 - 10.1.3. Nearest Neighbors
 - 10.1.4. Similarity and matrix decomposition
- 10.2. Méthodes d'Apprentissage Supervisé Appliquées à la Vision Artificielle
 - 10.2.1. Concept "Bag of words"
 - 10.2.2. Machines à vecteurs de support
 - 10.2.3. Latent Dirichlet Allocation
 - 10.2.4. Réseaux neuronaux
- 10.3. Réseaux neuronaux profonds: structures, Backbones et Transfer Learning
 - 10.3.1. Génération de couches Features
 - 10.3.1.1. VGG
 - 10.3.1.2. Densenet
 - 10.3.1.3. ResNet
 - 10.3.1.4. Inception
 - 10.3.1.5. GoogLeNet
 - 10.3.2. Transfer Learning
 - 10.3.3. Les données. Préparation de la formation

tech 22 | Programme d'études

- 10.4. Vision Artificielle avec apprentissage profond I: détection et segmentation
 - 10.4.1. Différences et similitudes entre YOLO et SSD
 - 10.4.2. Unet
 - 10.4.3. Autres structures
- 10.5. Vision Artificielle avec apprentissage profond II: Generative Adversarial Networks
 - 10.5.1. Super-résolution d'images à l'aide de GAN
 - 10.5.2. Création d'images réalistes
 - 10.5.3. Scene understanding
- 10.6. Techniques d'apprentissage pour la localisation et la cartographie en Robotique mobile
 - 10.6.1. Détection et déplacement de boucles
 - 10.6.2. Magic Leap. Super Point et Super Glue
 - 10.6.3. Depth from Monocular
- 10.7. Inférence bayésienne et modélisation 3D
 - 10.7.1. Modèles bayésiens et apprentissage "classique"
 - 10.7.2. Surfaces implicites avec processus gaussiens (GPIS)
 - 10.7.3. Segmentation 3D à l'aide du GPIS
 - 10.7.4. Réseaux neuronaux pour la modélisation de surfaces en 3D
- 10.8. Applications End-to-End des Réseaux Neuronaux Profonds
 - 10.8.1. Système end-to-end. Exemple d'identification de personnes
 - 10.8.2. Manipulation d'objets à l'aide de capteurs visuels
 - 10.8.3. Génération et planification de mouvements avec des capteurs visuels
- 10.9. Des technologies en nuage pour accélérer le développement d'algorithmes de *Deep Learning*
 - 10.9.1. Utilisation des GPU pour le Deep Learning
 - 10.9.2. Développement agile avec Google IColab
 - 10.9.3. GPU à distance, Google Cloud et AWS
- 10.10. Déploiement de réseaux neuronaux dans des applications réelles
 - 10.10.1. Systèmes embarqués
 - 10.10.2. Déploiement des Réseaux Neuronaux. Utilisation

Programme d'études | 23 tech

10.10.3. Optimisations du réseau en cours de déploiement, exemple avec TensorRT

Module 11. SLAM visuel. Localisation de robots et cartographie simultanée Par Techniques de Vision Artificielle

- 11.1. Localisation et cartographie simultanées (SLAM)
 - 11.1.1. Localisation et cartographie simultanée SLAM
 - 11.1.2. Mise en œuvre du SLAM
 - 11.1.3. Fonctions du SLAM
- 11.2. Géométrie projective
 - 11.2.1. Modèle Pin-Hole
 - 11.2.2. Estimation de paramètres de intrinsèques d'une caméra
 - 11.2.3. Homographie, principes de base et estimation
 - 11.2.4. Matrice fondamentale, principes et estimation
- 11.3. Filtres gaussiens
 - 11.3.1. Filtre de Kalman
 - 11.3.2. Filtre d'information
 - 11.3.3. Accord et paramétrage des filtres Gaussiens
- 11.4. Stéréo EKF-SLAM
 - 11.4.1. Géométrie de la caméra stéréo
 - 11.4.2. Extraction et recherche de caractéristiques
 - 11.4.3. Filtre de Kalman pour le SLAM stéréo
 - 11.4.4. Réglage des paramètres de l'EKF-SLAM stéréo
- 11.5. EKF-SLAM monoculaire
 - 11.5.1. Paramétrage de Landmarks sur EKF-SLAM
 - 11.5.2. Filtre de Kalman pour le SLAM monoculaire
 - 11.5.3. Réglage des paramètres l'EKF-SLAM monoculaire
- 11.6. Détection des fermetures de boucles
 - 11.6.1. Algorithme de force brute
 - 11.6.2. FABMAP
 - 11.6.3. Abstraction à l'aide de GIST et HOG
 - 11.6.4. Détection par apprentissage profond
- 11.7. Graph-SLAM
 - 11.7.1. Graph-SLAM

tech 24 | Programme d'études

- 11.7.2. RGBD-SLAM
- 11.7.3. ORB-SLAM
- 11.8. Direct Visual SLAM
 - 11.8.1. Analyse de l'algorithme Direct Visual SLAM
 - 11.8.2. LSD-SLAM
 - 11.8.3. SVO
- 11.9. Visual Inertial SLAM
 - 11.9.1. Intégration des mesures inertielles
 - 11.9.2. Faible couplage: SOFT-SLAM
 - 11.9.3. Couplage élevé: Vins-Mono
- 11.10. Autres technologies SLAM
 - 11.10.1. Applications au-delà du SLAM visuel
 - 11.10.2. Lidar-SLAM
 - 11.10.3. Range-only SLAM

Module 12. Application à la Robotique des Technologies de Réalité Virtuelle et Augmentée

- 12.1. Technologies immersives en Robotique
 - 12.1.1. Réalité virtuelle en robotique
 - 12.1.2. Réalité augmentée en robotique
 - 12.1.3. Réalité mixte en robotique
 - 12.1.4. Différence entre les réalités
- 12.2. Construction d'environnements virtuels
 - 12.2.1. Matériaux et textures
 - 12.2.2. Éclairage
 - 12.2.3. Son et odeur virtuels
- 12.3. Modélisation de robots dans des environnements virtuels
 - 12.3.1. Modélisation géométrique
 - 12.3.2. Modélisation physique
 - 12.3.3. Normalisation des modèles
- 12.4. Modélisation de la Dynamique et de la Cinématique des Robots: Moteurs Physiques Virtuels
 - 12.4.1. Moteurs physiques. Typologie

- 12.4.2. Configuration d'un moteur physique
- 12.4.3. Moteurs physiques dans l'industrie
- 12.5. Plateformes, périphériques et outils les plus couramment utilisés en Réalité Virtuelle
 - 12.5.1. Visionneuses de réalité virtuelle
 - 12.5.2. Périphériques d'interaction
 - 12.5.3. Capteurs virtuels
- 12.6. Systèmes de Réalité Augmentée
 - 12.6.1. Insertion d'éléments virtuels dans la réalité
 - 12.6.2. Types de marqueurs visuels
 - 12.6.3. Technologies de la réalité augmentée
- 12.7. Metaverse: Environnements Virtuels d'Agents Intelligents et de Personnes
 - 12.7.1. Création d'un avatar
 - 12.7.2. Agents intelligents dans les environnements virtuels
 - 12.7.3. Création d'environnements VR/AR multi-utilisateurs
- 12.8. Création de projets de réalité virtuelle pour la robotique
 - 12.8.1. Phases de développement d'un projet de réalité virtuelle
 - 12.8.2. Déploiement de systèmes de réalité virtuelle
 - 12.8.3. Ressources en matière de réalité virtuelle
- 12.9. Création de projets de Réalité Augmentée pour la Robotique
 - 12.9.1. Phases de développement d'un projet de Réalité Augmentée
 - 12.9.2. Déploiement de projet de réalité Augmentée
 - 12.9.3. Ressources en réalité augmentée
- 12.10. Téléopération de robots avec des dispositifs mobiles
 - 12.10.1. Réalité mixte mobile
 - 12.10.2. Systèmes immersifs utilisant des capteurs de dispositifs mobiles
 - 12.10.3. Exemples de projets mobiles

Module 13. Systèmes de Communication et d'Interaction avec les Robots

- 13.1. Reconnaissance de la parole: systèmes stochastiques
 - 13.1.1. Modélisation acoustique de la parole
 - 13.1.2 Modèles de Markov cachés

- 13.1.3. Modélisation linguistique de la parole: N-Grammaires, grammaires BNF
- 13.2. Reconnaissance de la parole: Deep Learning
 - 13.2.1. Réseaux neuronaux profonds
 - 13.2.2. Réseaux neuronaux récurrents
 - 13.2.3. Cellules LSTM
- 13.3. Reconnaissance de la Parole: Prosodie et effets environnementaux
 - 13.3.1. Bruit ambiant
 - 13.3.2. Reconnaissance de plusieurs locuteurs
 - 13.3.3. Pathologies de parole
- 13.4. Compréhension du Langage Naturel: Systèmes Heuristiques et Probabilistes
 - 13.4.1. Parsage syntaxique-sémantique: règles linguistiques
 - 13.4.2. Compréhension heuristique basée sur des règles
 - 13.4.3. Systèmes probabilistes: régression logistique et SVMs
 - 13.4.4. Compréhension basée sur les réseaux neuronaux
- 13.5. Gestion du dialogue: stratégies heuristiques/probabilistes
 - 13.5.1. Intention de l'interlocuteur
 - 13.5.2. Dialogue basé sur des modèles
 - 13.5.3. Gestion du dialogue stochastique: réseaux bayésiens
- 13.6. Gestion du dialogue: Stratégies avancées
 - 13.6.1. Systèmes d'apprentissage par renforcement
 - 13.6.2. Systèmes basés sur les réseaux neuronaux
 - 13.6.3. De la parole à l'intention dans un seul réseau
- 13.7. Génération de réponses et synthèse vocale
 - 13.7.1. Génération de réponses: De l'idée au texte cohérent
 - 13.7.2. Synthèse vocale par concaténation
 - 13.7.3. Synthèse stochastique de la parole
- 13.8. Adaptation et contextualisation du dialogue
 - 13.8.1. Initiative de dialogue
 - 13.8.2. Adaptation à l'interlocuteur
 - 13.8.3. Adaptation au contexte du dialogue
- 13.9. Robots et interactions sociales: reconnaissance, synthèse et expression des

émotions

- 13.9.1. Paradigmes de la voix artificielle: voix robotique et voix naturelle
- 13.9.2. Reconnaissance des émotions et analyse des sentiments
- 13.9.3. Synthèse vocale émotionnelle
- 13.10. Robots et Interactions Sociales: Interfaces Multimodales Avancées
 - 13.10.1. Combinaison d'interfaces vocales et tactiles
 - 13.10.2. Reconnaissance et traduction de la langue des signes
 - 13.10.3. Avatars visuels: traduction de la parole en langue des signes

Module 14. Traitement numérique des images

- 14.1. Environnement de développement de la vision par ordinateur
 - 14.1.1. Bibliothèques de vision par ordinateur
 - 14.1.2. Environnement de programmation
 - 14.1.3. Outils de visualisation
- 14.2. Traitement numérique des images
 - 14.2.1. Relations entre les pixels
 - 14.2.2. Opérations sur les images
 - 14.2.3. Transformations géométriques
- 14.3. Opérations sur les pixels
 - 14.3.1. Histogramme
 - 14.3.2. Transformations de l'histogramme
 - 14.3.3. Opérations sur les images en couleur
- 14.4. Opérations logiques et arithmétiques
 - 14.4.1. Addition et soustraction
 - 14.4.2. Produit et division
 - 14.4.3. And/Nand
 - 14.4.4. Or/Nor
 - 14.4.5. Xor/Xnor
- 14.5. Filtres
 - 14.5.1. Masgues et convolution
 - 14.5.2. Filtrage linéaire
 - 14.5.3. Filtrage non linéaire
 - 14.5.4. Analyse de Fourier

tech 26 | Programme d'études

- 14.6. Opérations morphologiques
 - 14.6.1. Erode and Dilating
 - 14.6.2. Closing and Open
 - 14.6.3. Top hat et Black hat
 - 14.6.4. Détection des contours
 - 14.6.5. Squelette
 - 14.6.6. Remplissage des trous
 - 14.6.7. Convex hull
- 14.7. Outils d'analyse d'images
 - 14.7.1. Détection des bords
 - 14.7.2. Détection de blobs
 - 14.7.3. Contrôle dimensionnel
 - 14.7.4. Contrôle des couleurs
- 14.8. Segmentation d'objets
 - 14.8.1. Segmentation d'images
 - 14.8.2. Techniques classiques de segmentation
 - 14.8.3. Application réelle
- 14.9. Calibrage de l'image
 - 14.9.1. Calibrage de l'image
 - 14.9.2. Méthodes d'étalonnage
 - 14.9.3. Processus d'étalonnage dans un système caméra/robot 2D
- 14.10. Traitement des images dans un environnement réel
 - 14.10.1. Analyse de la problématique
 - 14.10.2. Traitement des images
 - 14.10.3. Extraction de caractéristiques
 - 14.10.4. Résultat final

Module 15. Traitement numérique avancé des images

- 15.1. Reconnaissance optique de caractères (OCR)
 - 15.1.1. Prétraitement des images
 - 15.1.2. Détection de texte
 - 15.1.3. Reconnaissance du texte
- 15.2. Lecture du code
 - 15.2.1. Codes 1D
 - 15.2.2. Codes 2D
 - 15.2.3. Applications
- 15.3. Recherche de motifs
 - 15.3.1. Recherche de motifs
 - 15.3.2. Modèles basés sur le niveau de gris
 - 15.3.3. Modèles basés sur les contours
 - 15.3.4. Motifs basés sur des formes géométriques
 - 15.3.5. Autres techniques
- 15.4. Suivi d'objets avec la vision conventionnelle
 - 15.4.1. Extraction de l'arrière-plan
 - 15.4.2. Meanshift
 - 15.4.3. Camshift
 - 15.4.4. Optical flow
- 15.5 Reconnaissance faciale
 - 15.5.1. Facial Landmark detection
 - 15.5.2. Applications
 - 15.5.3. Reconnaissance faciale
 - 15.5.4. Reconnaissance des émotions
- 15.6. Panoramique et alignements
 - 15.6.1. Stitching
 - 15.6.2. Composition d'images
 - 15.6.3. Photomontage

- 15.7. High Dinamic Range (HDR) and Photometric Stereo
 - 15.7.1. Amélioration de la plage dynamique
 - 15.7.2. Composition d'images pour l'amélioration des contours
 - 15.7.3. Techniques d'utilisation des applications dynamiques
- 15.8. Compression d'images
 - 15.8.1. Compression d'images
 - 15.8.2. Types de compresseurs
 - 15.8.3. Techniques de compression d'images
- 15.9. Traitement vidéo
 - 15.9.1. Séquences d'images
 - 15.9.2. Formats vidéo et codecs
 - 15.9.3. Lecture d'une vidéo
 - 15.9.4. Traitement des cadres
- 15.10. Application réelle du traitement des images
 - 15.10.1. Analyse de la problématique
 - 15.10.2. Traitement des images
 - 15.10.3. Extraction de caractéristiques
 - 15.10.4. Résultat final

Module 16. Traitement des images 3D

- 16.1. Image 3D
 - 16.1.1. Image 3D
 - 16.1.2. Logiciels de traitement d'images 3D et visualisations
 - 16.1.3. Logiciels de métrologie
- 16.2. Open 3D
 - 16.2.1. Bibliothèque pour le traitement des données 3D
 - 16.2.2. Caractéristiques
 - 16.2.3. Installation et utilisation

- 16.3. Les données
 - 16.3.1. Cartes de profondeur d'images 2D
 - 16.3.2. Pointclouds
 - 16.3.3. Normales
 - 16.3.4. Surfaces
- 16.4. Visualisation
 - 16.4.1. Visualisation des données
 - 16.4.2. Contrôles
 - 16.4.3. Visualisation du Web
- 16.5. Filtres
 - 16.5.1. Distance entre les points, suppression des outliers
 - 16.5.2. Filtre passe-haut
 - 16.5.3. Downsampling
- 16.6. Géométrie et extraction de caractéristiques
 - 16.6.1. Extraction de profils
 - 16.6.2. Mesure de la profondeur
 - 16.6.3. Volume
 - 16.6.4. Formes géométriques 3D
 - 16.6.5. Plans
 - 16.6.6. Projection d'un point
 - 16.6.7. Distances géométriques
 - 16.6.8. Kd Tree
 - 16.6.9. Features 3D
- 16.7. Enregistrement et Meshing
 - 16.7.1. Concaténation
 - 16.7.2. ICP
 - 16.7.3. Ransac 3D

tech 28 | Programme d'études

- 16.8. Reconnaissance d'objets en 3D
 - 16.8.1. Recherche d'un objet dans la scène 3D
 - 16.8.2. Segmentation
 - 16.8.3. Bin picking
- 16.9. Analyse de surface
 - 16.9.1. Smoothing
 - 16.9.2. Surfaces orientables
 - 16.9.3. Octree
- 16.10. Triangulation
 - 16.10.1. De Mesh a Point Cloud
 - 16.10.2. Triangulation des cartes de profondeur
 - 16.10.3. Triangulation de PointClouds non ordonnés

Module 17. Réseaux convolutifs et classification d'images

- 17.1. Réseaux neuronaux convolutifs
 - 17.1.1. Introduction
 - 17.1.2. Convolution
 - 17.1.3. CNN Building Blocks
- 17.2. Types de bouchons CNN
 - 17.2.1. Convolutionnel
 - 17.2.2. Activation
 - 17.2.3. Normalisation par lots
 - 17.2.4. Polling
 - 17.2.5. Fully connected
- 17.3. Métriques
 - 17.3.1. Confusion Matrix
 - 17.3.2. Précision
 - 17.3.3. Précision
 - 17.3.4. Recall
 - 17.3.5. F1 Score
 - 17.3.6. ROC Curve
 - 17.3.7. AUC

- 17.4. Architectures Pincipales
 - 17.4.1. AlexNet
 - 17.4.2. VGG
 - 17.4.3. Resnet
 - 17.4.4. GoogleLeNet
- 17.5. Classification des images
 - 17.5.1. Introduction
 - 17.5.2. Analyse des données
 - 17.5.3. Préparations des données
 - 17.5.4. Formation au modèle
 - 17.5.5. Validation du modèle
- 17.6. Considérations pratiques pour la formation CNN
 - 17.6.1. Sélection de l'optimiseur
 - 17.6.2. Learning Rate Scheduler
 - 17.6.3. Vérifier le pipeline d'apprentissage
 - 17.6.4. Formation avec régularisation
- 17.7. Meilleures pratiques en Deep Learning
 - 17.7.1. Transfer Learning
 - 17.7.2. Fine Tuning
 - 17.7.3. Data Augmentation
- 17.8. Évaluation statistique des données
 - 17.8.1. Nombre d'ensembles de données
 - 17.8.2. Nombre d'étiquettes
 - 17.8.3. Nombre d'images
 - 17.8.4. Équilibrage des données
- 17.9. Deployment
 - 17.9.1. Sauvegarde et chargement des modèles
 - 17.9.2. Onnx
 - 17.9.3. Inférence
- 17.10. Étude de cas: classification des images
 - 17.10.1. Analyse et préparation des données
 - 17.10.2. Tester le pipeline de formation
 - 17.10.3. Formation au modèle
 - 17.10.4. Validation du modèle

Module 18. Détection d'objets

- 18.1. Détection et suivi des objets
 - 18.1.1. Détection d'objets
 - 18.1.2. Cas d'utilisation
 - 18.1.3. Suivi des objets
 - 18.1.4. Cas d'utilisation
 - 18.1.5. Occlusions, Rigid and No Rigid Poses
- 18.2. Mesures d'évaluation
 - 18.2.1. IOU Intersection Over Union
 - 18.2.2. Confidence Score
 - 18.2.3. Recall
 - 18.2.4. Précision
 - 18.2.5. Recall-Precisión Curve
 - 18.2.6. Mean Average Precision (mAP)
- 18.3. Méthodes traditionnelles
 - 18.3.1. Sliding window
 - 18.3.2. Viola detector
 - 18.3.3. HOG
 - 18.3.4. Non Maximal Supresion (NMS)
- 18.4. Datasets
 - 18.4.1 Pascal VC
 - 18.4.2. MS Coco
 - 18.4.3. ImageNet (2014)
 - 18.4.4. MOTA Challenge
- 18.5. Two Shot Object Detector
 - 18.5.1. R-CNN
 - 18.5.2. Fast R-CNN
 - 18.5.3. Faster R-CNN
 - 18.5.4. Mask R-CNN

- 18.6. Single Shot Object Detector
 - 18.6.1. SSD
 - 18.6.2. YOLO
 - 18.6.3. RetinaNet
 - 18.6.4. CenterNet
 - 18.6.5. EfficientDet
- 18.7. Backbones
 - 18.7.1. VGG
 - 18.7.2. ResNet
 - 18.7.3. Mobilenet
 - 18.7.4. Shufflenet
 - 18.7.5. Darknet
- 18.8. Object Tracking
 - 18.8.1. Approches classiques
 - 18.8.2. Filtres à particules
 - 18.8.3. Kalman
 - 18.8.4. Sorttracker
 - 18.8.5. Deep Sort
- 18.9. Déploiement
 - 18.9.1. Plateforme de calcul
 - 18.9.2. Choix de la Backbone
 - 18.9.3. Choix de Framework
 - 18.9.4. Optimisation du modèle
 - 18.9.5. Version du Modèle
- 18.10. Enquête: détection et suivi des personnes
 - 18.10.1. Détection de personnes
 - 18.10.2. Suivi des personnes
 - 18.10.3. Ré-identification
 - 18.10.4. Compter les personnes dans les foules

tech 30 | Programme d'études

Module 19. Segmentation des Images avec Deep Learning

19.1.	Détection	et	segmentation	d'ob	jets
-------	-----------	----	--------------	------	------

- 19.1.1. Segmentation sémantique
 - 19.1.1.1. Cas d'utilisation de la segmentation sémantique
- 19.1.2. Segmentation Instanciée
 - 19.1.2.1. Cas d'utilisation de la segmentation instanciée
- 19.2. Mesures d'évaluation
 - 19.2.1. Similitudes avec d'autres méthodes
 - 19.2.2. Pixel Accuracy
 - 19.2.3. Dice Coefficient (F1 Score)
- 19.3. Fonctions de coût
 - 19.3.1. Dice Loss
 - 19.3.2. Focal Loss
 - 19.3.3. Tversky Loss
 - 19.3.4. Autres fonctions
- 19.4. Méthodes de segmentation traditionnelles
 - 19.4.1. Application de seuils avec Otsu y Riddlen
 - 19.4.2. Cartes auto-organisées
 - 19.4.3. Algorithme GMM-EM
- 19.5. Segmentation sémantique par Deep Learning: FCN
 - 19.5.1. FCN
 - 19.5.2. Architecture
 - 19.5.3. Applications du FCN
- 19.6. Segmentation sémantique par Deep Learning: U-NET
 - 19.6.1. U-NET
 - 19.6.2. Architecture
 - 19.6.3. Application U-NET
- 19.7. Segmentation sémantique grâce à Deep Learning: Deep Lab
 - 19.7.1. Deep Lab
 - 19.7.2. Architecture
 - 19.7.3. Application de Deep Lab
- 19.8. Segmentation Instances par Deep Learning: Mask RCNN
 - 19.8.1. Mask RCNN
 - 19.8.2. Architecture
 - 19.8.3. Mise en œuvre d'un Mas RCNN

19.9. Segmentation vidéo

19.9.1. STFCN

19.9.2. Semantic Video CNNs

19.9.3. Clockwork Convnets

19.9.4. Low-Latency

19.10. Segmentation des nuages de points

19.10.1. Nuage de points

19.10.2. PointNet

19.10.3. A-CNN

Module 20. Segmentation des images avancées et techniques avancées de vision par ordinateur

20.1. Base de données pour les problèmes généraux de segmentation

20.1.1. Pascal Context

20.1.2. CelebAMask-HQ

20.1.3. Cityscapes Dataset

20.1.4. CCP Dataset

20.2. Segmentation sémantique en médecine

20.2.1. Segmentation sémantique en médecine

20.2.2. Datasets de données pour les problèmes médicaux

20.2.3. Application pratique

20.3. Outils d'annotation

20.3.1. Computer Vision Annotation Tool

20.3.2. LabelMe

20.3.3. Autres outils

20.4. Outils de Segmentation utilisant différents Frameworks

20.4.1. Keras

20.4.2. Tensorflow v2

20.4.3. Pytorch

20.4.4. Autres

20.5. Projet de Segmentation sémantique. Les données, phase 1

20.5.1. Analyse du problème

20.5.2. Source d'entrée des données

20.5.3. Analyse des données

20.5.4. Préparations des données

20.6. Projet de Segmentation sémantique. Formation, phase 2

20.6.1. Sélection de l'algorithme

20.6.2. Entrainement

20.6.3. Évaluation

20.7. Projet de Segmentation sémantique. Résultats, phase 3

20.7.1. Réglage fin

20.7.2. Présentation de la solution

20.7.3. Conclusions

20.8. Auto-codeurs

20.8.1. Auto-codeurs

20.8.2. Architecture de l'auto-codeur

20.8.3. Denoising Autoencodeurs

20.8.4. Auto-codeur de coloration automatique

20.9. Réseaux Adversariaux Génératifs (GAN)

20.9.1. Réseaux Adversariaux Génératifs (GAN)

20.9.2. Architecture du DCGAN

20.9.3. Architecture GAN Conditionnelle

20.10. Réseaux adversariens génératifs améliorés

20.10.1. Aperçu du problème

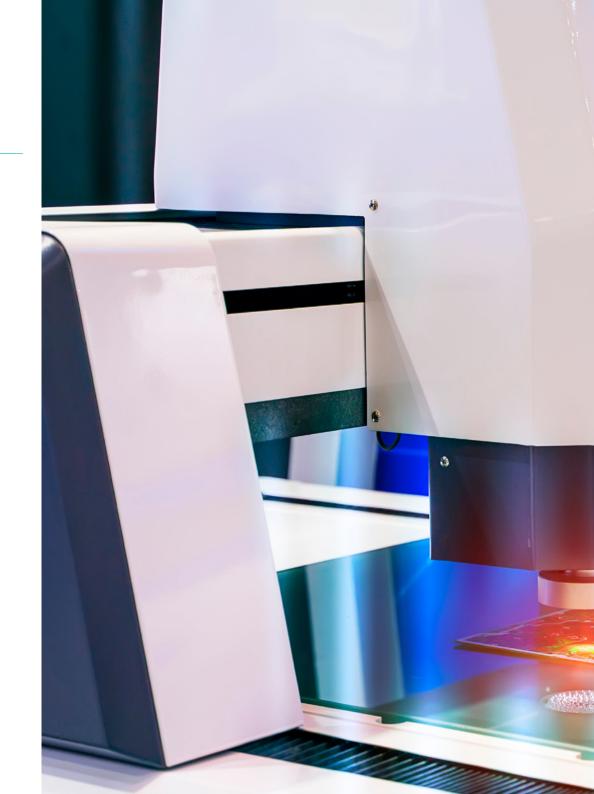
20.10.2. WGAN

20.10.3. LSGAN

20.10.4. ACGAN

Perfectionnez vos compétences en matière de conception, de programmation et de contrôle de robots en utilisant des algorithmes de vision et d'apprentissage automatiques"

tech 34 | Objectifs



Objectifs généraux

- Développer la capacité à modéliser et à simuler des robots en appliquant les principes mathématiques fondamentaux et les technologies avancées de programmation et de hardware
- Analyser et appliquer des techniques de vision artificielle et des algorithmes d'apprentissage automatique pour améliorer la perception et l'autonomie des robots
- Mettre en œuvre des solutions innovantes dans le domaine de l'automatisation industrielle, en évaluant les avancées technologiques et en surmontant les limites actuelles des applications robotiques
- Concevoir des systèmes de perception et de traitement d'images en 3D et des réseaux neuronaux, en optimisant leur utilisation dans des environnements réels et des applications spécifiques

Explorez un programme de spécialisation conçu pour vous amener à l'avant-garde des cadres supérieurs dans le domaine de la robotique et de l'intelligence artificielle"

Objectifs spécifiques

Module 1. Robotique. Design et modélisation de Robots

- Appliquer les outils et les techniques de modélisation pour concevoir des robots de différents degrés de complexité
- Développer des compétences dans l'utilisation de logiciels de conception assistée par ordinateur pour créer des modèles de robots fonctionnels

Module 2. Agents intelligents. Appliquer l'Intelligence Artificielle aux robots et Softbots

- Comprendre les principes fondamentaux des agents intelligents et leur relation avec la robotique
- Appliquer les techniques d'intelligence artificielle, telles que les algorithmes d'apprentissage automatique, dans la programmation des robots et des softbots

Module 3. Deep Learning

- Comprendre les réseaux neuronaux profonds et leur utilisation dans la résolution de problèmes complexes en Robotique
- Mettre en œuvre des modèles de *deep learning* dans les robots afin d'améliorer leurs capacités d'apprentissage et de prise de décision autonome

Module 4. La Robotique dans l'Automatisation des Processus Industriels

- Analyser comment la robotique améliore l'efficacité, la précision et la sécurité des processus industriels
- Développer des solutions robotiques pour automatiser les tâches répétitives et complexes dans les environnements industriels

Module 5. Systèmes de contrôle automatique en Robotique

- Étudier les principes du contrôle PID et d'autres algorithmes de contrôle utilisés en Robotique
- Appliquer les systèmes de contrôle dans les robots pour améliorer leurs performances, leur stabilité et leur précision dans différentes tâches

Module 6. Algorithmes de planification des robots

- Explorer les algorithmes de planification utilisés pour la navigation et la prise de décision des robots
- Développer des compétences dans la mise en œuvre d'algorithmes tels que A*, D* et d'autres méthodes de planification de trajectoire sur des robots mobiles

Module 7. Vision artificielle

- Comprendre les principes de la vision artificielle et son importance en Robotique
- Analyser les algorithmes de traitement d'images et comment les robots peuvent utiliser des caméras pour percevoir leur environnement

Module 8. Applications et état de l'art

- Analyser les applications actuelles de la Robotique et de la Vision Artificielle dans divers secteurs industriels
- Étudier les avancées récentes dans le domaine de la Robotique et de la Vision Artificielle, et la manière dont ces technologies transforment l'industrie

Module 9. Techniques de Vision Artificielle en Robotique: Traitement et analyse d'images

- Appliquer des techniques de traitement et d'analyse d'images pour améliorer la perception des robots
- Développer des solutions pour que les robots interprètent les images en temps réel et prennent des décisions sur la base de ces informations

Module 10. Systèmes de Perception Visuelle des Robots avec Apprentissage Automatique

- Mettre en œuvre des techniques d'apprentissage supervisé et non supervisé pour améliorer la capacité des robots à reconnaître des objets et des modèles
- Développer des systèmes autonomes capables d'apprendre et de s'adapter à de nouveaux environnements en utilisant la Vision Artificielle

Module 11. SLAM visuel. Localisation de robots et cartographie simultanée Par Techniques de Vision Artificielle

- Appliquer des techniques de Vision Artificielle pour permettre aux robots de localiser et de cartographier simultanément leur environnement
- Développer des algorithmes SLAM visual pour améliorer l'autonomie et la précision des robots dans des environnements dynamiques

Module 12. Application à la Robotique des Technologies de Réalité Virtuelle et Augmentée

- Développer des applications robotiques utilisant ces technologies pour améliorer l'expérience de l'utilisateur et l'efficacité opérationnelle
- Améliorer la simulation et la visualisation des environnements robotiques

Module 13. Systèmes de communication et d'interaction avec les robots

- Mettre en œuvre des protocoles de communication efficaces et sûrs dans les robots autonomes et collaboratifs
- Développer des interfaces utilisateurs qui facilitent l'interaction avec les robots dans une variété d'environnements

Module 14. Traitement numérique des images

- Comprendre les principes du traitement numérique de l'image et son application en Robotique
- Appliquer les techniques de prétraitement, d'amélioration et de filtrage des images pour améliorer la perception visuelle des robots

Module 15. Traitement numérique avancé des images

- Mettre en œuvre des méthodes avancées de reconstruction d'images et de fusion de données dans les robots
- Développer des solutions de Vision Artificielle qui améliorent la capacité des robots à comprendre leur environnement et à y réagir

Module 16. Traitement des images 3D

- Appliquer des techniques de reconstruction em 3D et de visualisation pour améliorer la perception de l'environnement du robot
- Développer des applications robotiques utilisant l'imagerie 3D pour des tâches complexes telles que la manipulation d'objets

Module 17. Réseaux convolutifs et classification d'images

- Appliquer les CNN pour que les robots reconnaissent et classifient les objets dans leur environnement
- Développer des solutions basées sur le deep learning pour améliorer la précision et l'efficacité de la classification d'images

Module 18. Détection d'objets

- Mettre en œuvre des algorithmes de détection en temps réel pour identifier et suivre les objets dans l'environnement du robot
- Développer des systèmes de Vision Artificielle pour les robots afin d'effectuer des tâches telles que la saisie, la classification et le suivi d'objets

Module 19. Segmentation des Images avec Deep Learning

- Mettre en œuvre des réseaux neuronaux profonds pour segmenter les images avec précision et efficacité
- Développer des solutions de Vision Artificielle pour les robots afin d'effectuer des tâches de segmentation complexes dans des environnements dynamiques

Module 20. Segmentation des images avancées et techniques avancées de vision par ordinateur

- Appliquer des méthodes avancées de vision par ordinateur pour améliorer les capacités des robots dans des environnements non structurés
- Développer des solutions de Vision Artificielle pour les robots nécessitant une segmentation d'image précise dans des situations complexes

tech 40 | Opportunités de carrière


Profil des diplômés

Les diplômés du programme en Robotique et Vision Artificielle sont hautement qualifiés pour concevoir, développer et mettre en œuvre des solutions technologiques avancées en robotique et vision artificielle. Ils ont une connaissance approfondie des algorithmes, des méthodologies innovantes et des outils technologiques nécessaires pour promouvoir l'automatisation et l'intelligence artificielle dans divers secteurs. Ils sont également prêts à diriger des projets technologiques, à collaborer avec des équipes pluridisciplinaires et à servir de lien stratégique entre l'innovation technologique et les besoins de l'industrie, en favorisant le développement de solutions efficaces et durables.

Vous intégrerez des connaissances théoriques et des compétences pratiques en robotique, en vision artificielle et en développement de technologies innovantes.

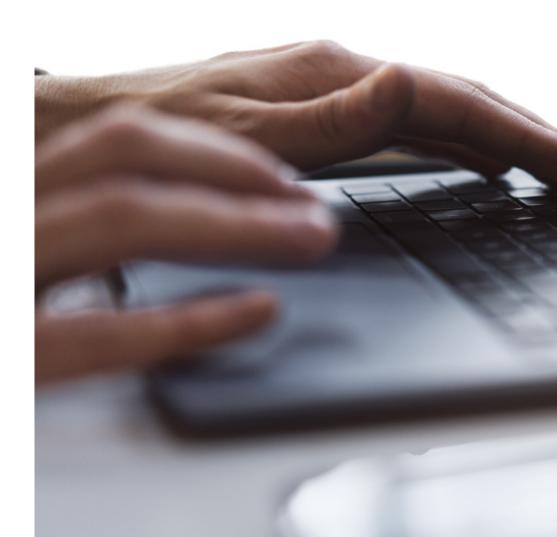
- Communication Efficace: Vous développerez des compétences pour transmettre des idées de manière claire et efficace, en adaptant votre langage et votre style de communication à différents publics et niveaux de compréhension
- Gestion des Projets et des Ressources: Vous acquerrez la capacité d'organiser et de gérer efficacement des projets technologiques, notamment en planifiant le temps, en coordonnant les activités et en résolvant les problèmes
- Pensée Critique et Résolution de Problèmes: Vous développerez votre capacité à faire preuve d'esprit critique pour analyser des problèmes technologiques complexes, identifier des solutions viables et concevoir des stratégies innovantes
- Compétence Numérique: Dans un environnement hautement technologique, vous manipulerez des outils avancés pour la mise en œuvre de systèmes, l'analyse de données et la création de solutions interactives dans les domaines de la robotique et de la vision artificielle

Opportunités de carrière | 41 tech

À l'issue de ce Mastère Spécialisé Avancé, vous serez en mesure d'utiliser vos connaissances et vos compétences pour occuper les postes suivants:

- **1. Chef de Projets Technologiques:** expert dans la gestion et la direction de programmes et d'équipes dédiés au développement de solutions de robotique et de vision artificielle.
- **2. Ingénieur en Robotique:** professionnel spécialisé dans la conception, le développement et la mise en œuvre de systèmes robotiques avancés pour différents secteurs.
- 3. Spécialiste de la Vision Artificielle: expert dans le développement de technologies de traitement d'images et d'analyse visuelle appliquées à des environnements industriels, médicaux et commerciaux.
- **4. Chercheur en Intelligence Artificielle:** professionnel spécialisé dans la recherche, la conception et l'amélioration d'algorithmes d'apprentissage automatique et de techniques innovantes en vue de leur application à la robotique.
- **5. Coordinateur de l'Innovation Technologique:** chargé de superviser et de coordonner les projets liés à l'intégration des nouvelles technologies dans les processus industriels et académiques.
- **6. Développeur de Systèmes Autonomes:** spécialiste de la création de systèmes robotiques autonomes pour des tâches complexes dans des environnements dynamiques.
- 7. Consultant en Transformation Numérique: expert en conseil aux entreprises et aux institutions pour la mise en œuvre de solutions basées sur la robotique et l'intelligence artificielle.
- **8. Spécialiste de l'Automatisation Industrielle:** professionnel spécialisé dans la conception, la programmation et la maintenance de systèmes de contrôle et d'automatisation dans les processus industriels.
- **9. Ingénieur en Perception et Capteurs:** il se consacre au développement et à l'intégration de systèmes de perception basés sur des capteurs avancés et la vision artificielle.

L'étudiant: la priorité de tous les programmes de **TECH Euromed University**


Dans la méthodologie d'étude de TECH Euromed University, l'étudiant est le protagoniste absolu.

Les outils pédagogiques de chaque programme ont été sélectionnés en tenant compte des exigences de temps, de disponibilité et de rigueur académique que demandent les étudiants d'aujourd'hui et les emplois les plus compétitifs du marché.

Avec le modèle éducatif asynchrone de TECH Euromed University, c'est l'étudiant qui choisit le temps qu'il consacre à l'étude, la manière dont il décide d'établir ses routines et tout cela dans le confort de l'appareil électronique de son choix. L'étudiant n'a pas besoin d'assister à des cours en direct, auxquels il ne peut souvent pas assister. Les activités d'apprentissage se dérouleront à votre convenance. Vous pouvez toujours décider quand et où étudier.

À TECH Euromed University, vous n'aurez PAS de cours en direct (auxquelles vous ne pourrez jamais assister)"

Les programmes d'études les plus complets au niveau international

TECH Euromed University se caractérise par l'offre des itinéraires académiques les plus complets dans l'environnement universitaire. Cette exhaustivité est obtenue grâce à la création de programmes d'études qui couvrent non seulement les connaissances essentielles, mais aussi les dernières innovations dans chaque domaine.

Grâce à une mise à jour constante, ces programmes permettent aux étudiants de suivre les évolutions du marché et d'acquérir les compétences les plus appréciées par les employeurs. Ainsi, les diplômés de TECH Euromed University reçoivent une préparation complète qui leur donne un avantage concurrentiel significatif pour progresser dans leur carrière.

De plus, ils peuvent le faire à partir de n'importe quel appareil, PC, tablette ou smartphone.

Le modèle de TECH Euromed University est asynchrone, de sorte que vous pouvez étudier sur votre PC, votre tablette ou votre smartphone où vous voulez, quand vous voulez et aussi longtemps que vous le voulez"

tech 46 | Méthodologie d'étude

Case studies ou Méthode des cas

La méthode des cas est le système d'apprentissage le plus utilisé par les meilleures écoles de commerce du monde. Développée en 1912 pour que les étudiants en Droit n'apprennent pas seulement le droit sur la base d'un contenu théorique, sa fonction était également de leur présenter des situations réelles et complexes. De cette manière, ils pouvaient prendre des décisions en connaissance de cause et porter des jugements de valeur sur la manière de les résoudre. Elle a été établie comme méthode d'enseignement standard à Harvard en 1924.

Avec ce modèle d'enseignement, ce sont les étudiants eux-mêmes qui construisent leurs compétences professionnelles grâce à des stratégies telles que *Learning by doing* ou le *Design Thinking*, utilisées par d'autres institutions renommées telles que Yale ou Stanford.

Cette méthode orientée vers l'action sera appliquée tout au long du parcours académique de l'étudiant avec TECH Euromed University. Vous serez ainsi confronté à de multiples situations de la vie réelle et devrez intégrer des connaissances, faire des recherches, argumenter et défendre vos idées et vos décisions. Il s'agissait de répondre à la question de savoir comment ils agiraient lorsqu'ils seraient confrontés à des événements spécifiques complexes dans le cadre de leur travail quotidien.

Méthode Relearning

À TECH Euromed University, les *case studies* sont complétées par la meilleure méthode d'enseignement 100% en ligne: le *Relearning*.

Cette méthode s'écarte des techniques d'enseignement traditionnelles pour placer l'apprenant au centre de l'équation, en lui fournissant le meilleur contenu sous différents formats. De cette façon, il est en mesure de revoir et de répéter les concepts clés de chaque matière et d'apprendre à les appliquer dans un environnement réel.

Dans le même ordre d'idées, et selon de multiples recherches scientifiques, la répétition est le meilleur moyen d'apprendre. C'est pourquoi TECH Euromed University propose entre 8 et 16 répétitions de chaque concept clé au sein d'une même leçon, présentées d'une manière différente, afin de garantir que les connaissances sont pleinement intégrées au cours du processus d'étude.

Le Relearning vous permettra d'apprendre plus facilement et de manière plus productive tout en développant un esprit critique, en défendant des arguments et en contrastant des opinions: une équation directe vers le succès.

Un Campus Virtuel 100% en ligne avec les meilleures ressources didactiques

Pour appliquer efficacement sa méthodologie, TECH Euromed University se concentre à fournir aux diplômés du matériel pédagogique sous différents formats: textes, vidéos interactives, illustrations et cartes de connaissances, entre autres. Tous ces supports sont conçus par des enseignants qualifiés qui axent leur travail sur la combinaison de cas réels avec la résolution de situations complexes par la simulation, l'étude de contextes appliqués à chaque carrière professionnelle et l'apprentissage basé sur la répétition, par le biais d'audios, de présentations, d'animations, d'images, etc.

Les dernières données scientifiques dans le domaine des Neurosciences soulignent l'importance de prendre en compte le lieu et le contexte d'accès au contenu avant d'entamer un nouveau processus d'apprentissage. La possibilité d'ajuster ces variables de manière personnalisée aide les gens à se souvenir et à stocker les connaissances dans l'hippocampe pour une rétention à long terme. Il s'agit d'un modèle intitulé *Neurocognitive context-dependent e-learning* qui est sciemment appliqué dans le cadre de ce diplôme d'université.

D'autre part, toujours dans le but de favoriser au maximum les contacts entre mentors et mentorés, un large éventail de possibilités de communication est offert, en temps réel et en différé (messagerie interne, forums de discussion, service téléphonique, contact par courrier électronique avec le secrétariat technique, chat et vidéoconférence).

De même, ce Campus Virtuel très complet permettra aux étudiants TECH Euromed University d'organiser leurs horaires d'études en fonction de leurs disponibilités personnelles ou de leurs obligations professionnelles. De cette manière, ils auront un contrôle global des contenus académiques et de leurs outils didactiques, mis en fonction de leur mise à jour professionnelle accélérée.

Le mode d'étude en ligne de ce programme vous permettra d'organiser votre temps et votre rythme d'apprentissage, en l'adaptant à votre emploi du temps"

L'efficacité de la méthode est justifiée par quatre acquis fondamentaux:

- 1. Les étudiants qui suivent cette méthode parviennent non seulement à assimiler les concepts, mais aussi à développer leur capacité mentale au moyen d'exercices pour évaluer des situations réelles et appliquer leurs connaissances.
- 2. L'apprentissage est solidement traduit en compétences pratiques ce qui permet à l'étudiant de mieux s'intégrer dans le monde réel.
- 3. L'assimilation des idées et des concepts est rendue plus facile et plus efficace, grâce à l'utilisation de situations issues de la réalité.
- 4. Le sentiment d'efficacité de l'effort investi devient un stimulus très important pour les étudiants, qui se traduit par un plus grand intérêt pour l'apprentissage et une augmentation du temps passé à travailler sur le cours.

Méthodologie d'étude | 49 tech

La méthodologie universitaire la mieux évaluée par ses étudiants

Les résultats de ce modèle académique innovant sont visibles dans les niveaux de satisfaction générale des diplômés de TECH Euromed University.

L'évaluation par les étudiants de la qualité de l'enseignement, de la qualité du matériel, de la structure du cours et des objectifs est excellente. Il n'est pas surprenant que l'institution soit devenue l'université la mieux évaluée par ses étudiants selon l'indice global score, obtenant une note de 4,9 sur 5.

Accédez aux contenus de l'étude depuis n'importe quel appareil disposant d'une connexion Internet (ordinateur, tablette, smartphone) grâce au fait que TECH Euromed University est à la pointe de la technologie et de l'enseignement.

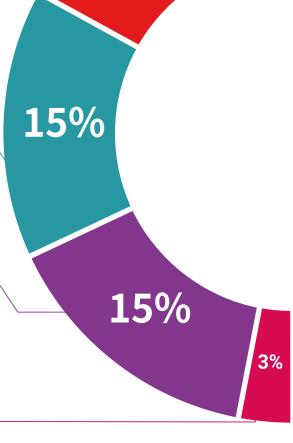
Vous pourrez apprendre grâce aux avantages offerts par les environnements d'apprentissage simulés et à l'approche de l'apprentissage par observation: le Learning from an expert. Ainsi, le meilleur matériel pédagogique, minutieusement préparé, sera disponible dans le cadre de ce programme:

Matériel didactique

Tous les contenus didactiques sont créés par les spécialistes qui enseignent les cours. Ils ont été conçus en exclusivité pour le programme afin que le développement didactique soit vraiment spécifique et concret.

Ces contenus sont ensuite appliqués au format audiovisuel afin de mettre en place notre mode de travail en ligne, avec les dernières techniques qui nous permettent de vous offrir une grande qualité dans chacune des pièces que nous mettrons à votre service.

Pratique des aptitudes et des compétences


Vous effectuerez des activités visant à développer des compétences et des aptitudes spécifiques dans chaque domaine. Pratiques et dynamiques permettant d'acquérir et de développer les compétences et les capacités qu'un spécialiste doit acquérir dans le cadre de la mondialisation dans laquelle nous vivons.

Résumés interactifs

Nous présentons les contenus de manière attrayante et dynamique dans des dossiers multimédias qui incluent de l'audio, des vidéos, des images, des diagrammes et des cartes conceptuelles afin de consolider les connaissances.

Ce système éducatif unique de présentation de contenu multimédia a été récompensé par Microsoft en tant que »European Success Story".

Lectures complémentaires

Articles récents, documents de consensus, guides internationaux, etc... Dans notre bibliothèque virtuelle, vous aurez accès à tout ce dont vous avez besoin pour compléter votre formation

17% 7%

Case Studies

Vous réaliserez une sélection des meilleures case studies dans le domaine. Des cas présentés, analysés et encadrés par les meilleurs spécialistes internationaux.

Testing & Retesting

Nous évaluons et réévaluons périodiquement vos connaissances tout au long du programme. Nous le faisons sur 3 des 4 niveaux de la Pyramide de Miller.

Cours magistraux

Il existe des preuves scientifiques de l'utilité de l'observation par un tiers expert.

La méthode Learning from an Expert permet au professionnel de renforcer ses connaissances ainsi que sa mémoire, puis lui permet d'avoir davantage confiance en lui concernant la prise de décisions difficiles.

Guides d'action rapide

TECH Euromed University propose les contenus les plus pertinents du programme sous forme de fiches de travail ou de guides d'action rapide. Un moyen synthétique, pratique et efficace pour vous permettre de progresser dans votre apprentissage.

Directeur International Invité

Seshu Motamarri est un expert en automatisation et en robotique qui possède plus de 20 ans d'expérience dans divers secteurs tels que le commerce électronique, l'automobile, le pétrole et le gaz, l'alimentation et les produits pharmaceutiques. Tout au long de sa carrière, il s'est spécialisé dans la gestion de l'ingénierie et de l'innovation et dans la mise en œuvre de nouvelles technologies, toujours à la recherche de solutions évolutives et efficaces. Il a également contribué de manière significative à l'introduction de produits et de solutions qui optimisent à la fois la sécurité et la productivité dans des environnements industriels complexes.

Il a également occupé des postes clés, notamment celui de Directeur Principal de l'Automatisation et de la Robotique chez 3M, où il dirige des équipes interfonctionnelles chargées de développer et de mettre en œuvre des solutions d'automatisation avancées. Chez Amazon, son rôle de Responsable Technique l'a amené à gérer des projets qui ont amélioré de manière significative la chaîne d'approvisionnement mondiale, tels que le système d'ensachage semi-automatique "SmartPac" et la solution robotique de préparation de commandes et d'entreposage intelligents. Ses compétences en matière de gestion de projet, de planification opérationnelle et de développement de produits lui ont permis d'obtenir d'excellents résultats dans des projets de grande envergure.

Au niveau international, il est reconnu pour ses réalisations dans le domaine de l'Informatique. Il a reçu le prestigieux prix **Door Desk d'Amazon**, décerné par Jeff Bezos, ainsi que le prix **Excellence en Sécurité de Fabrication**, ce qui témoigne de son approche pratique de l'ingénierie. En outre, il a été un "Bar Raiser" chez Amazon, participant à plus de 100 entretiens en tant qu'évaluateur objectif dans le processus d'embauche.

Il est également titulaire de plusieurs brevets et publications dans le domaine de l'ingénierie électrique et de la sécurité fonctionnelle, ce qui renforce son impact sur le développement de technologies avancées. Ses projets ont été mis en œuvre dans le monde entier, notamment dans des régions telles que l'Amérique du Nord, l'Europe, le Japon et l'Inde, où elle a favorisé l'adoption de solutions durables dans les secteurs de l'industrie et du commerce électronique.

M. Motamarri, Seshu

- Directeur Principal de la Technologie de Fabrication Mondiale chez 3M, Arkansas, États-Unis
- Directeur de l'Automatisation et de la Robotique chez Tyson Foods
- Responsable du Développement de Hardware III chez Amazon
- Responsable de l'Automatisation chez Corning Incorporated
- Fondateur et membre de Quest Automation LLC
- Master en Sciences (MS), Ingénierie Éléctrique et Éléctronique de l'Université de Houston
- Licence en Ingénierie (B.E.), Ingénierie Éléctrique et Éléctronique de l'Université d'Andhra
- Certification en Machinerie, Groupe TÜV, Rheinland

Grâce à TECH Euromed University, vous pourrez apprendre avec les meilleurs professionnels du monde"

Direction

Dr Ramón Fabresse, Felipe

- Ingénieur Logiciel Senior chez Acurable
- Ingénieur Logiciel chez NLP en Intel Corporation
- Ingénieur Logiciel CATEC chez Acurable
- Chercheur en Robotique Aérienne à l'Université de Séville
- Docteur Cum Laude en Robotique, Systèmes Autonomes et Télérobotique de l'Université de Séville
- Diplôme en Ingénierie Informatique Supérieur de l'Université de Séville
- Master en Robotique, Automatique et Télématique de l'Université de Séville

M. Redondo Cabanillas, Sergio

- Spécialiste en Recherche et Développement en Vision Artificielle chez BCN Vision
- Chef d'Équipe de Développement et Backoffice chez BCN Vision
- · Chef de Projets et Développement dans le domaine des Solutions de Vision Artificielle
- Technicien du Son à Media Arts Studio
- Ingénieur Technique en Télécommunications avec une Spécialisation en Image et Son de l'Université Polytechnique de Catalogne
- Diplôme en Intelligence Artificielle appliquée à l'Industrie de l'Université Autonome de Barcelone
- Cycle de formation Supérieure en Son par CP Villa

Professeurs

Dr Íñigo Blasco, Pablo

- Ingénieur en Software à PlainConcepts
- Fondateur de Intelligent Behavior Robots
- Ingénieur en Robotique au Centre Avancé des Technologies Aérospatiales CATEC
- Développeur et Consultant à Syderis
- Doctorat en Ingénierie Informatique Industrielle à l'Université de Séville
- Diplôme d'Ingénieur en Informatique de l'Université de Séville
- Master en Génie Logiciel et Technologie

M. Campos Ortiz, Roberto

- Ingénieur en Software Quasar Scence Resources
- Ingénieur en Software à l'Agence Spatiale Européenne (ESA-ESAC) pour la mission Solar Orbiter
- Créateur de contenu et expert en Intelligence Artificielle dans le cours: "Intelligence artificielle: la technologie du présent et de l'avenir" pour le Gouvernement Andaloux Groupe Euroformac
- Scientifique en Informatique Quantique Zapata Computing Inc
- Diplôme en Ingénierie Informatique à l'Université Carlos III
- Master en Science et Technologie Informatique à l'Université Carlos III

M. Rosado Junquera, Pablo J.

- Ingénieur Spécialiste en Robotique et Automatisation
- Ingénieur R&D en Automatisation et Contrôle chez Becton Dickinson & Company
- Ingénieur en Systèmes de Contrôle de la Logistique d'Amazon chez Dematic
- Ingénieur en Automatisation et Contrôle chez Aries Ingeniería y Sistemas
- Diplômé en Ingénierie de l'Énergie et des Matériaux de l'Université Rey Juan Carlos
- Master en Robotique et Automatisation à l'Université Polytechnique de Madrid
- · Master en Ingénierie Industrielle et de l'Université d'Alcalá

Dr Jiménez Cano, Antonio Enrique

- Ingénieur en Aeronautical Data Fusion Engineer
- Chercheur en Projets Européens (ARCAS, AEROARMS y AEROBI) à l'Université de Séville
- · Chercheur en Systèmes de Navigation au CNRS-LAAS
- Développeur du Système LAAS MBZIRC2020
- Groupe de Robotique, Vision et Contrôle (GRVC) de l'Université de Séville
- Doctorat en Automatique, Électronique et Télécommunications à l'Université de Séville
- Diplômé en Génie Automatique et en Électronique Industrielle de l'Université de Séville
- Diplôme d'Ingénieur Technique en Systèmes Informatiques à l'Université de Séville


tech 58 | Corps Enseignant

Dr Alejo Teissière, David

- Ingénieur en Télécommunications spécialisé en Robotique
- Chercheur Postdoctoral dans les Projets Européens SIAR et NIx ATEX à l'Université Pablo de Olavide
- Développeur de Systèmes chez Aertec
- Doctorat en Automatique, Robotique et Télématique à l'Université de Séville
- Diplôme en Ingénierie des Télécommunications de l'Université de Séville Master en Automatique, Robotique et Télématique à l'Université de Séville

Dr Pérez Grau, Francisco Javier

- Responsable de l'Unité de Perception et Software chez CATEC
- R&D Project Manager chez CATEC
- R&D Project Engineer à CATEC
- Professeur Associé à l'Université de Cádiz
- Professeur Associé à l'Université Internationale de L'Andalousie
- Chercheur dans le groupe Robotique et Perception de l'Université de Zurich
- Chercheur au Centre Australien de Robotique de Terrain, Université de Sydney
- Docteur en Robotique et Systèmes Autonomes l'Université de Séville
- Diplôme en Ingénierie des Télécommunications et Ingénierie de Réseaux et Informatique de l'Université de Séville

Dr Caballero Benítez, Fernando

- Chercheur dans les projets européens COMETS, AWARE, ARCAS et SIAR.
- Licence d'Ingénieur en Télécommunications de de l'Université de Séville
- Doctorat en Ingénierie Télécommunications de à l'Université de Séville
- Professeur Titulaire en Ingénierie des Systèmes et Automatique à l'Université de Séville
- Rédacteur associé de la revue Robotics and Automation Letters

Dr Lucas Cuesta, Juan Manuel

- Ingénieur Logiciel Senior et Analyste à Indizen Believe in Talent
- Ingénieur Logiciel Senior et Analyste à Krell Consulting et IMAGiNA Artificial Intelligence
- Ingénieur Logiciel à Intel Corporation
- Ingénieur Logiciel à Intel à Intelligent Dialogue Systems
- Docteur en Génie Électronique des Systèmes relatives aux environnements de l'Université Polytechnique de Madrid
- Diplôme en Ingénierie des Télécommunications de l'Université Polytechnique de Madrid
- Master en Ingénierie Électronique des Systèmes Environnements Intelligents l'Université Polytechnique de Madrid

tech 60 | Corps Enseignant

M. Gutiérrez Olabarría, José Ángel

- Gestion de Projets, Analyse et Conception de Logiciels et Programmation en C d'Applications de Contrôle de Qualité et d'Informatique Industrielle
- Ingénieur spécialisé dans la Vision Artificielle et les Capteurs
- Gestionnaire de Marché dans le Secteur du Fer et de l'Acier, exerçant des fonctions de Contact avec les Clients, de Passation de Marchés, de Plans de Marché et de Comptes Stratégiques
- Ingénieur Informaticien l'Université de Deusto
- Master en Robotique et Automatisation de l'ETSII/IT de Bilbao
- Diplôme d'Études Avancées de Programme de Doctorat en Automatique et Électronique par l'ETSII/IT de Bilbao

M. Enrich Llopart, Jordi

- Directeur Technologique de Benvision Vision Artificielle
- Ingénieur de projet et d'application. Benvision Vision artificielle
- Ingénieur de projet et d'application. PICVISA Machine Vision
- Diplôme en Ingénierie Technique des Télécommunications. Spécialité en Image et Son de l'Université Ecole d'Ingénierie de Terrassa (EET) / Université Polytechnique de Catalogne (UPC)
- MPM Master in Project Management. Université La Salle Universitat Ramon Llull

Mme Riera i Marín, Meritxell

- Développeuse de Systèmes Deep Learning chez Sycai Medical
- Chercheuse au Centre National de la Recherche Scientifique (CNRS), France
- Ingénieure en Software chez Zhilabs
- IT Technician, Mobile World Congress
- Ingénieure en Software chez Avanade
- Ingénierie des Télécommunications de l'Université Polytechnique de Catalogne
- Master of Science: Spécialité Signal, Image, Systèmes Embarqués, Automatique (SISEA) d'IMT Atlantique, France
- Master en Ingénierie des Télécommunications de l'Université Polytechnique de Catalogne

M. González González, Diego Pedro

- Architecte logiciel pour systèmes basés sur l'Intelligence Artificielle
- Développeur des application de deep learning et machine learning
- · Architecte logiciel pour systèmes embarqués pour applications ferroviaires de sécurité
- Développeur de pilotes pour Linux
- Ingénieur système pour les équipements de voie ferrée
- Ingénieur système embarqué
- Ingénieur en Deep Learning
- Master officiel en Intelligence Artificielle de l'Université Internationale de La Rioja
- · Ingénieur Industriel Supérieur de l'Université Miguel Hernández

M. Higón Martínez, Felipe

- Ingénieur en Électronique, Télécommunications et Informatique
- Ingénieur en Validation et Prototype
- Ingénieur d'Applications
- Ingénieur du Support
- Master en Intelligence Artificielle Avancée et Appliquée par l'IA3
- Ingénieur Technique en Télécommunications
- Licence en Génie Électronique de l'Université de Valence

Mme García Moll, Clara

- Ingénieure en Informatique Visuelle Junior à LabLENI
- Ingénieure Informatique de Vision. Satellogic
- Développeuse Full Stack. Groupe Catfons
- Ingénierie des Systèmes Audiovisuels. Université Pompeu Fabra (Barcelone)
- Master en Vision par Ordinateur. Université Autonome de Barcelone

M. Delgado Gonzalo, Guillem

- Chercheur en Computer Vision et Intelligence Artificielle à Vicomtech
- Ingénieur de Computer Vision et Intelligence Artificielle à Gestoos
- Ingénieur Junior chez Sogeti
- Diplôme en Génie des Systèmes Audiovisuels à l'Université Polytechnique de Catalogne
- MSc à Computer Vision à l'Université autonome de Barcelone
- Diplôme en Sciences Informatiques de Aalto University
- Diplôme en Systèmes Audiovisuels. UPC ETSETB Telecos BCN

M. Bigata Casademunt, Antoni

- Ingénieur de Perception dans le Centre de Vision par Ordinateur (CVC)
- Ingénieur de Machine Learning chez Visium SA, Suisse
- Licence en Microtechnologie de l'École Polytechnique Fédérale de Lausanne (EPFL)
- Master en Robotique de l'École Polytechnique Fédérale de Lausanne (EPFL)

M. Solé Gómez, Alex

- Chercheur chez Vicomtech dans le département Intelligent Security Video Analytics
- MSc en *Télécommunications Engineering*, mention en Systèmes Audiovisuels de l'Université Polytechnique de Catalogne
- BSc en *Télécommunications Technologies and Services Engineering*, mention en Systèmes Audiovisuels de l'Université Polytechnique de Catalogne

M. Olivo García, Alejandro

- Vision Application Engineer chez Bcnvision
- Diplôme d'Ingénieur des Technologies Industrielle de d'École Technique Supérieure d'Ingénierie Industrielle de l'Université Polytechnique de Cartagena
- Master en Ingénierie Industrielle de d'École Technique Supérieure d'Ingénierie Industrielle de l'Université Polytechnique de Cartagena
- Bourse Chaire de Recherche de l'entreprise MTorres
- Programmation C# .NET dans les Applications de Vision Artificielle

Le programme du **Mastère Spécialisé Avancé en Robotique et Vision Artificielle** est le programme le plus complet sur la scène académique actuelle. Après avoir obtenu leur diplôme, les étudiants recevront un diplôme d'université délivré par TECH Global University et un autre par Université Euromed de Fès.

Ces diplômes de formation continue et et d'actualisation professionnelle de TECH Global University et d'Université Euromed de Fès garantissent l'acquisition de compétences dans le domaine de la connaissance, en accordant une grande valeur curriculaire à l'étudiant qui réussit les évaluations et accrédite le programme après l'avoir suivi dans son intégralité.

Ce double certificat, de la part de deux institutions universitaires de premier plan, représente une double récompense pour une formation complète et de qualité, assurant à l'étudiant l'obtention d'une certification reconnue au niveau national et international. Ce mérite académique vous positionnera comme un professionnel hautement qualifié, prêt à relever les défis et à répondre aux exigences de votre secteur professionnel.

Diplôme: Mastère Spécialisé Avancé en Robotique et Vision Artificielle

Modalité: **en ligne** Durée: **2 ans**

Accréditation: 120 ECTS

tech Euromed University Robotique et Vision Artificielle » Modalité: en ligne » Durée: 2 ans » Diplôme: TECH Euromed University

Mastère Spécialisé Avancé

» Accréditation: 120 ECTS

» Horaire: à votre rythme

» Examens: en ligne

Mastère Spécialisé Avancé Robotique et Vision Artificielle

