
Master’s Degree
Programming from Scratch

Master’s Degree
Programming from Scratch

	» Modality: online
	» Duration: 12 months
	» Certificate: TECH Global University
	» Accreditation: 60 ECTS
	» Schedule: at your own pace
	» Exams: online

Website: www.techtitute.com/us/information-technology/master-degree/master-programming-scratch

http://www.techtitute.com/us/information-technology/professional-master-degree/master-programming-scratch

Introduction to the Program Syllabus

Study MethodologyTeaching Objectives Career Opportunities

CertificateTeaching Staff

p. 4 p. 12

p. 24 p. 30

0301

07

04 05

08

06

Index

p. 44 p. 48

p. 34

p. 8

Why Study at TECH?

02

Programming has become an essential skill in the 21st century, playing a key role in the
digital transformation of societies and economies. According to an OECD report, more
than 60% of current jobs require advanced digital skills, with programming being one
of the most in-demand. Taking into account that it is an essential field in the digital
age, TECH has designed this Master’s Degree that will address the fundamentals
of this discipline and its application in languages for global use. Through a 100% online
methodology, specialists will discover how to structure algorithms, manage data and
develop functional projects, while building a solid foundation for further advancement
in the technological world.

Introduction to the Program
01

Knowing how to program has never been
so accessible. With TECH's Master’s Degree
you will master languages such as Python
and JavaScript from anywhere, thanks
to the 100% online methodology. Enroll
now!”

Introduction | 05

Programming is at the heart of the digital transformation that modern societies
are experiencing. From the development of mobile applications to the automation
of business processes, knowing how to program is a fundamental skill for making one's
way in a constantly evolving work environment. In this sense, professionals who master
this field will not only find better opportunities for growth, but will also enhance their
ability to adapt and prosper in a world where technology is constantly evolving.

Aware of this need, TECH has designed the Master’s Degree in Programming from
Scratch, a comprehensive program that will provide the most up-to-date knowledge
related to this field. The syllabus, designed by experts from the industry, will cover
everything from the basics of algorithms and data structures to the practical use
of languages such as Python, JavaScript and HTML. It will also include specialized
modules in web design, application development and database management. In this
way, specialists will acquire technical knowledge and develop analytical and creative
skills to solve problems through programming. All this, with a practical approach that
will guarantee the implementation of the concepts learned.

By specializing in this field, graduates will not only find new opportunities in the
technology sector, but will also excel in industries such as finance, healthcare and
logistics, where programming plays a key role. In addition, they will be qualified to lead
development projects, automate processes and optimize resources, increasing their job
profile and facilitating their access to highly competitive opportunities.

Finally, the 100% online format of this program will offer the necessary flexibility
to combine learning with other personal or professional responsibilities. TECH will
provide students with an innovative platform accessible 24 hours a day. In addition, its
Relearning methodology will optimize learning by reiterating key concepts in different
contexts, facilitating a progressive and efficient assimilation of the content.

This Master’s Degree in Programming from Scratch contains the most complete and
up-to-date educational program on the market. Its most notable features are:

	� Practical cases presented by experts in programming

	� The graphic, schematic and eminently practical contents with which it is conceived
gather scientific and practical information on those disciplines that are indispensable
for professional practice

	� Practical exercises where the process of self-assessment can be used to improve
learning

	� Its special emphasis on innovative methodologies

	� Theoretical lessons, questions to the expert, debate forums on controversial topics,
and individual reflection assignments

	� Content that is accessible from any fixed or portable device with an Internet
connection

From basic algorithms to application
development, this program will take
you from zero to expert in no time. You
will become the professional that the
technology industry needs!”

06 | Introduction

Its teaching staff includes professionals from the field of programming, who bring
their work experience to this program, as well as renowned specialists from leading
companies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide
the professional with situated and contextual learning, i.e., a simulated environment that
will provide an immersive learning experience designed to prepare for real-life situations.

This program is designed around Problem-Based Learning, whereby the student must
try to solve the different professional practice situations that arise throughout the
program. For this purpose, the professional will be assisted by an innovative interactive
video system created by renowned and experienced experts.

You will discover an innovative approach
that combines theory and real projects
in this Master’s Degree. Enroll now and

bring your ideas to life with code!

Enter the world of programming with
an unbeatable syllabus. You will master
Python, JavaScript and web development
from scratch with the most complete
Master’s Degree on the market”

With the support of expert technology
teachers, this qualification will guide
you step by step to master the most in-
demand languages on the market. Start
today and build a better future!

Introduction | 07

Why Study at TECH?
02

TECH is the world’s largest online university. With an impressive catalog of more
than 14,000 university programs available in 11 languages, it is positioned as a leader
in employability, with a 99% job placement rate. In addition, it relies on an enormous
faculty of more than 6,000 professors of the highest international renown.

Study at the world's largest
online university and guarantee
your professional success. The
future starts at TECH”

Why Study at TECH? | 09

10 | Why Study at TECH?

The world’s best online university, according to FORBES

The prestigious Forbes magazine, specialized in business
and finance, has highlighted TECH as “the best online
university in the world” This is what they have recently
stated in an article in their digital edition in which they
echo the success story of this institution, “thanks to the
academic offer it provides, the selection of its teaching staff,
and an innovative learning method oriented to form the
professionals of the future”.

The best top international faculty

TECH's faculty is made up of more than 6,000 professors of
the highest international prestige. Professors, researchers
and top executives of multinational companies, including
Isaiah Covington, performance coach of the Boston Celtics;
Magda Romanska, principal investigator at Harvard MetaLAB;
Ignacio Wistumba, chairman of the department of translational
molecular pathology at MD Anderson Cancer Center; and D.W.
Pine, creative director of TIME magazine, among others.

The world's largest online university

TECH is the world’s largest online university. We are the
largest educational institution, with the best and widest
digital educational catalog, one hundred percent online
and covering most areas of knowledge. We offer the
largest selection of our own degrees and accredited
online undergraduate and postgraduate degrees. In total,
more than 14,000 university programs, in ten different
languages, making us the largest educational institution
in the world.

The most complete syllabuses on the university
scene

TECH offers the most complete syllabuses on
the university scene, with programs that cover
fundamental concepts and, at the same time, the
main scientific advances in their specific scientific
areas. In addition, these programs are continuously
updated to guarantee students the academic
vanguard and the most demanded professional skills.
and the most in-demand professional competencies.
In this way, the university's qualifications provide its
graduates with a significant advantage to propel their
careers to success.

A unique learning method

TECH is the first university to use Relearning in all its
programs. This is the best online learning methodology,
accredited with international teaching quality certifications,
provided by prestigious educational agencies. In addition,
this innovative academic model is complemented by
the “Case Method”, thereby configuring a unique online
teaching strategy. Innovative teaching resources are also
implemented, including detailed videos, infographics and
interactive summaries.

Why Study at TECH? | 11

The official online university of the NBA

TECH is the official online university of the NBA. Thanks
to our agreement with the biggest league in basketball,
we offer our students exclusive university programs, as
well as a wide variety of educational resources focused
on the business of the league and other areas of the
sports industry. Each program is made up of a uniquely
designed syllabus and features exceptional guest hosts:
professionals with a distinguished sports background who
will offer their expertise on the most relevant topics.

Leaders in employability

TECH has become the leading university in employability.
Ninety-nine percent of its students obtain jobs in the
academic field they have studied within one year of
completing any of the university's programs. A similar
number achieve immediate career enhancement. All this
thanks to a study methodology that bases its effectiveness
on the acquisition of practical skills, which are absolutely
necessary for professional development.

Google Premier Partner

The American technology giant has awarded TECH the
Google Premier Partner badge. This award, which is only
available to 3% of the world's companies, highlights the
efficient, flexible and tailored experience that this university
provides to students. The recognition not only accredits
the maximum rigor, performance and investment in
TECH's digital infrastructures, but also places this
university as one of the world's leading technology
companies.

The top-rated university by its students

Students have positioned TECH as the world's top-
rated university on the main review websites, with a
highest rating of 4.9 out of 5, obtained from more than
1,000 reviews. These results consolidate TECH as the
benchmark university institution at an international
level, reflecting the excellence and positive impact of its
educational model.

Syllabus
03

Throughout the program, professionals will address the fundamentals of algorithms,
data structures and programming logic, and then delve into languages such as Python,
JavaScript and HTML. In addition, they will explore essential areas such as web design,
application development and database management, offering a comprehensive view
of the world of programming. Thanks to a progressive and structured approach, this
syllabus will not only guarantee the acquisition of technical knowledge, but also the
development of analytical and creative skills, which are essential in a competitive work
environment.

This postgraduate degree is the ideal option
to start your career in the technology sector
and acquire the necessary tools to excel in any
professional field related to Programming”

Syllabus | 13

Module 1. Programming and Software Development from Scratch
1.1.	 Software and Hardware. Relationship and Differences

1.1.1.	 Software
1.1.2.	 Differences between Software and Hardware
1.1.3.	 Relationship between Software, Hardware and Programming

1.2.	 Programming. Key Aspects
1.2.1.	 Programming
1.2.2.	 Objectives and Applications
1.2.3.	 Programs, Source Code, Compilation and Execution
1.2.4.	 Errors: Syntax, Execution and Logical Errors

1.3.	 Programming from Scratch
1.3.1.	 Program Structure
1.3.2.	 Algorithms: Structure and Examples
1.3.3.	 Relationship between Algorithms and Programs
1.3.4.	 Problem Solving Using Algorithms

1.4.	 Programming Language Paradigms and Types
1.4.1.	 Programming Paradigms

1.4.1.1. Imperative Paradigms
1.4.1.2. Object-Oriented Paradigm
1.4.1.3. Functional Paradigm
1.4.1.4. Declarative Paradigm

1.4.2.	 Low-Level vs. High-Level Languages
1.4.3.	 Compiled vs. Interpreted Languages

1.5.	 Translation of Programming Languages
1.5.1.	 The Compiler. Compilation Process
1.5.2.	 The Interpreter: Interpretation Process
1.5.3.	 Differences between Compilation and Interpretation

1.6.	 Bits, Binary Operations and Logic Gates
1.6.1.	 Bit. Binary Representation
1.6.2.	 Basic Operations with Bits: AND, OR, XOR, NOT
1.6.3.	 Conversion between Binary and Decimal
1.6.4.	 Logic Gates: OR, AND, XOR, NOT, NOR and NAND

14 | Syllabus

1.7.	 Designing Algorithms from Scratch
1.7.1.	 Designing an Algorithm from Scratch
1.7.2.	 Sequential, Conditional and Repetitive Algorithms
1.7.3.	 Recursive Algorithms and their Comparison with Iterative Algorithms

1.8.	 Elements of the Program: Components and Structure
1.8.1.	 Data Input and Output
1.8.2.	 Variables and Constants: Use
1.8.3.	 Data Processing and Manipulation
1.8.4.	 Basic Functions and Procedures with Flowcharts

1.9.	 Control Structures with Flowcharts
1.9.1.	 Control Structures. Functions in Programming
1.9.2.	 Conditional Structures: Examples with Flowcharts
1.9.3.	 Repetitive Structures: Examples with Flowcharts

1.10.	 Software Development Life Cycle and Models
1.10.1.	 Software Life Cycle. Phases
1.10.2.	 Development Models: Waterfall, Iterative and Agile
1.10.3.	 Testing and Maintenance in Software Development

Module 2. Back-End Development I: Python from Scratch
2.1.	 Python from Scratch. Installation

2.1.1.	 Python Language. Features
2.1.2.	 Installing Python on Windows, macOS and Linux
2.1.3.	 Setting up the Development Environment: IDEs and Code Editors
2.1.4.	 First Program in Python: “Hello World”

2.2.	 Syntax and Variables in Python
2.2.1.	 Structure of Python Code: Indentation
2.2.2.	 Comments in Python
2.2.3.	 Variables and Data Types in Python
2.2.4.	 Arithmetic and Logical Operations in Python

2.3.	 Flow Control: Conditionals
2.3.1.	 Control Structures
2.3.2.	 Conditional Statements: if, elif, else
2.3.3.	 Ternary Conditional Operator

Syllabus | 15

Module 3. Back-End Development II - Algorithms and Data Structures with
Python from Scratch
3.1.	 Search Algorithms in Data Structures

3.1.1.	 Purpose of Search Algorithms in Data Structures
3.1.2.	 Linear Search: Implementation and Use Cases
3.1.3.	 Binary Search: Examples
3.1.4.	 Efficiency Comparison: Linear vs Binary Search

3.2.	 Sorting Algorithms in Data Structures (I). Basic Sorting Techniques Bubble Sort and
Insertion Sort
3.2.1.	 Bubble Sort: Implementation and Analysis
3.2.2.	 Insertion Sort: Implementation and Use Cases
3.2.3.	 Comparison between Bubble Sort and Insertion Sort

3.3.	 Sorting Algorithms in Data Structures (II). Advanced Sorting Techniques: Selection Sort,
Merge Sort and Quick Sort
3.3.1.	 Selection Sort. Implementation and Analysis
3.3.2.	 Merge Sort: Implementation
3.3.3.	 Quick Sort: Implementation
3.3.4.	 Comparison of Efficiency between Sorting Algorithms

3.4.	 Recursive Algorithms for Searching in Data Structures
3.4.1.	 Recursion. Use
3.4.2.	 Direct and Indirect Recursion
3.4.3.	 Recursive Algorithms: Factorial and Fibonacci. Examples

3.5.	 Complexity of Search Algorithms in Data Structures
3.5.1.	 Algorithmic Complexity. Efficiency Measurement
3.5.2.	 Big-O Notation
3.5.3.	 Complexity Analysis in Search and Sorting Algorithms

3.6.	 Advanced Data Structures
3.6.1.	 Trees: Terminology
3.6.2.	 Binary Trees: Operations
3.6.3.	 Binary Search Trees (BST): Search, Insertion and Deletion

2.4.	 Loops in Python
2.4.1.	 Use of Loops in Programming
2.4.2.	 “for” and "while" Loops
2.4.3.	 Flow Control in Loops: Break and Continue
2.4.4.	 Nested Loops

2.5.	 Functions in Python
2.5.1.	 Functions in Python. Uses
2.5.2.	 Parameters and Arguments of Functions
2.5.3.	 Return Values
2.5.4.	 Predefined Functions vs. User-Created Functions

2.6.	 Lists and Tuples in Python
2.6.1.	 Creation and Use of List in Phyton
2.6.2.	 Common Operations with Lists: Add, Remove, Modify
2.6.3.	 Tuples: Differences with Lists
2.6.4.	 Creating and Using Lists in Python

2.7.	 Dictionaries and Sets in Python
2.7.1.	 Dictionaries: Key-Value
2.7.2.	 Methods for Manipulating Dictionaries
2.7.3.	 Sets: Use
2.7.4.	 Comparison of Dictionaries and Sets.

2.8.	 File Handling in Python from Scratch
2.8.1.	 Opening and Closing Files
2.8.2.	 Opening Modes: Reading, Writing and Appending
2.8.3.	 Reading and Writing Text Files

2.9.	 Handling Errors and Exceptions
2.9.1.	 Types of Exceptions
2.9.2.	 Using Try, Except to Handle Errors
2.9.3.	 Creating Custom Exceptions

2.10.	 Best Practices and Debugging in Python
2.10.1.	 Debugging: Purpose
2.10.2.	 Debugging Techniques: Use of Print and Breakpoints
2.10.3.	 Best Practices in Code Writing

16 | Syllabus

3.7.	 Graph Algorithms
3.7.1.	 Graphs. Representation
3.7.2.	 Graph Algorithms: DFS and BFS
3.7.3.	 Comparison between DFS and BFS

3.8.	 Dynamic Programming
3.8.1.	 Dynamic Programming. Application
3.8.2.	 Differences between Dynamic Programming and Recursion
3.8.3.	 Optimization through Dynamic Programming

3.9.	 Data Search Algorithm Optimization Techniques
3.9.1.	 Data Search Algorithm Optimization Importance
3.9.2.	 Optimization Techniques: Memoization
3.9.3.	 Divide and Conquer Divide y vencerás

3.10.	 Other Algorithms in Python
3.10.1.	 Permutation and Combination Algorithms
3.10.2.	 Basic Hashing Algorithms
3.10.3.	 Counting and Subsets Generation Algorithms

Module 4. Back-End Development III - Flask, API Creation and Basic Architecture
from Scratch
4.1.	 Flask as Back-End Framework

4.1.1.	 Back-End Framework. Purpose
4.1.2.	 Flask. Features
4.1.3.	 Preparing the Development Environment and Installing Flask
4.1.4.	 First Project with Flask: “Hello World”

4.2.	 Routes and HTTP Requests in Flask
4.2.1.	 Routes: How They Work in a Web Application
4.2.2.	 HTTP Methods in Flask: GET, POST, PUT and DELETE
4.2.3.	 Routes in Flask with Parameters and Data
4.2.4.	 Organizing Routes in a Project

4.3.	 Controllers and Handling Responses in Flask
4.3.1.	 Controller: Function and Responsibilities
4.3.2.	 Types of Responses in Flask: Text, JSON and HTML
4.3.3.	 Creating Controllers for APIs in Flask
4.3.4.	 CRUD Operations in Controllers

4.4.	 RESTful APIs
4.4.1.	 RESTful APIs. Principles
4.4.2.	 HTTP Methods and Conventions in RESTful APIs
4.4.3.	 Creating a RESTful API in Flask
4.4.4.	 Designing a RESTful API with CRUD Operations

4.5.	 Databases and Flask with SQLite
4.5.1.	 Databases in Web Applications
4.5.2.	 Connecting to SQLite in Flask Projects
4.5.3.	 Creating Tables and Models using SQLAlchemy
4.5.4.	 CRUD Queries in SQLite for Data Management

4.6.	 Authentication and Basic Security in APIs
4.6.1.	 Authentication and Authorization in APIs
4.6.2.	 Creating a User Authentication System
4.6.3.	 Using Tokens for Authentication in Flask
4.6.4.	 Protecting User Paths and Data in APIs

4.7.	 Data Validation and Error Handling
4.7.1.	 Error and Exception Handling in Flask
4.7.2.	 Data Validation in API Requests
4.7.3.	 Creating Custom Error Messages
4.7.4.	 Validation Strategies and Error Handling in CRUD

4.8.	 Structuring Scalable APIs
4.8.1.	 Organization and Structure of a Scalable Flask Project
4.8.2.	 Modularization and Separation of Responsibilities in APIs
4.8.3.	 Basic Optimization of APIs for Performance and Scalability
4.8.4.	 Organizational Strategy for Large Projects

Syllabus | 17

5.5.	 Polymorphism and Overloading in Python
5.5.1.	 Polymorphism: Duck Typing
5.5.2.	 Polymorphism with Classes and Methods in Python
5.5.3.	 Overloading and Overwriting Methods in Python
5.5.4.	 Polymorphism in Software Design. Applications and Advantages

5.6.	 Class Relations and Complex Structure Design
5.6.1.	 Types of Relations: Association, Aggregation and Composition
5.6.2.	 Differences between Aggregation and Composition: Examples
5.6.3.	 Design of Complex Structures Using Class Relations

5.7.	 Design Patterns and SOLID Principles
5.7.1.	 Relevance of Design Patterns
5.7.2.	 Application of Design Patterns in OOP Projects. Advantages
5.7.3.	 Classification of Design Patterns.
5.7.4.	 SOLID Principles and their Importance in Object-Oriented Design

5.8.	 Creative Design Patterns
5.8.1.	 Purpose of the Creational Design Patterns
5.8.2.	 Singleton Pattern
5.8.3.	 Factory and Factory Method Pattern
5.8.4.	 Builder Pattern

5.9.	 Structural Design Patterns
5.9.1.	 Purpose of the Structural Design Patterns
5.9.2.	 Adapter Pattern
5.9.3.	 Decorator Pattern
5.9.4.	 Facade Pattern

5.10.	 Behavioral Design Patterns
5.10.1.	 Behavioral Patterns. Applications
5.10.2.	 Observer Pattern
5.10.3.	 Strategy Pattern

4.9.	 Real-Time Communication with WebSockets
4.9.1.	 Websockets. Applications
4.9.2.	 Implementation of WebSockets in Flask with Flask-SocketIO
4.9.3.	 Real-Time Communication in Flask Applications

4.10.	 Application Deployment and Maintenance
4.10.1.	 Preparing Flask Applications for Production
4.10.2.	 Deployment on Popular Platforms such as Heroku and Render
4.10.3.	 Using Docker for Containerized Deployment
4.10.4.	 Monitoring and Maintaining Back-end Applications

Module 5. Object-Oriented Programming and Design Patterns from Scratch
5.1.	 Object-Oriented Programming (OOP) from Scratch

5.1.1.	 Object Oriented Programming
5.1.2.	 Differences between OOP and Structured Programming
5.1.3.	 OOP Elements: Classes, Objects, Methods and Attributes

5.2.	 Classes and Objects in Python
5.2.1.	 Creation of Classes and Objects in Python
5.2.2.	 Instance and Class Attributes
5.2.3.	 Special Methods (init, str, repr, etc.)
5.2.4.	 Static and Class Methods: Uses

5.3.	 Encapsulation and Abstraction in Classes
5.3.1.	 Encapsulation: Uses
5.3.2.	 Access Modifiers in Python

5.3.2.1. Public, Protected and Private
5.3.3.	 Abstraction: Hiding Details and Improving Simplicity
5.3.4.	 Use of Properties (@property) for Access Control

5.4.	 Inheritance in Python. Usefulness in OOP
5.4.1.	 Inheritance: Usefulness in OOP
5.4.2.	 Creating Derived Classes and Multiple Inheritance in Python
5.4.3.	 Inherited Methods and Attributes and Overloading in Inheritance
5.4.4.	 Class Hierarchies and Base Class Management

18 | Syllabus

Module 6. Front End I - HTML and CSS from Scratch
6.1.	 HTML from Scratch

6.1.1.	 HTML. Purpose in Web Development
6.1.2.	 Structure of an HTML Document: DOCTYPE, <html>, <head>, <body>
6.1.3.	 Semantic and Content Tags: <header>, <nav>, <section>, <footer>
6.1.4.	 Essential Elements: Paragraphs (<p>), Lists (,), Links (<a>), Images

()
6.1.5.	 Best Practices in HTML

6.2.	 Text and Multimedia Elements in HTML
6.2.1.	 Essential Text Tags: <p>, Headings, Lists, Bold and Italics
6.2.2.	 Multimedia Embedding: Attributes of , <audio>, <video>
6.2.3.	 Essential Attributes for Accessibility (alt, aria-label)

6.3.	 HTML Forms
6.3.1.	 Form Structure and Components: <form>, <input>, <label>, <button>
6.3.2.	 Types of Input: Text, Email, Password, Submit Buttons
6.3.3.	 HTML5 Validation: Client-Side Field Validation
6.3.4.	 Forms with Basic Validation. Examples

6.4.	 CSS from Scratch
6.4.1.	 CSS Language from Scratch: Use and Relationship with HTML
6.4.2.	 CSS Syntax: Selectors, Properties and Values
6.4.3.	 Application of Styles in Line, Internal and External
6.4.4.	 Advanced Selectors: Of Type, Class, ID, Pseudoclasss (:hover, :focus)

6.5.	 Box Model in CSS
6.5.1.	 Box Model: Importance in CSS
6.5.2.	 Key Properties: Margin, Padding, Border, Width, Height
6.5.3.	 Using Box-Sizing for Precise Control of the Box Model
6.5.4.	 Design Applied to the Box Model. Examples

6.6.	 Typography and Text Styles in CSS
6.6.1.	 Color and Font Properties: Color, Font-Family, Font-Size
6.6.2.	 Advanced Text Styles: Bold, Italic, Alignment (text-align)
6.6.3.	 Text Spacing and Separation: Line-Height, Letter-Spacing
6.6.4.	 CSS Units of Measurement (px, em, rem) and Their Use in Typography

6.7.	 Layout Design with CSS - Flexbox
6.7.1.	 Flexbox: Purpose
6.7.2.	 Flexbox Properties: justify-content, align-items, flex-direction
6.7.3.	 Element Distribution and Alignment in Flexbox
6.7.4.	 Examples of Layouts with Flexbox

6.8.	 CSS Grid and Responsive Design with CSS
6.8.1.	 CSS Grid: Rows, Columns and Areas
6.8.2.	 Media Queries: Structure and Application on Different Devices
6.8.3.	 Responsive Design for Mobile, Tablet and Desktop
6.8.4.	 Adjusting Typography and Fluid Units in Responsive Design

6.9.	 Animations and Transitions in CSS
6.9.1.	 Transitions: Transition Property, Effects on :hover
6.9.2.	 Animations with CSS: Using @keyframes, Basic Animations
6.9.3.	 Techniques for Smoothing Transitions and Animations on the Web

6.10.	 Web Accessibility in Design
6.10.1.	 Web Accessibility: Importance
6.10.2.	 Accessible Site Design. Best Practices
6.10.3.	 ARIA Tags and Accessibility Validation Tools

Module 7. Front End II - JavaScript from Scratch
7.1.	 JavaScript from Scratch

7.1.1.	 JavaScript Language
7.1.2.	 Integration of JavaScript in HTML
7.1.3.	 First Program in JavaScript: “Hello World”

7.2.	 Variables and Data Types in JavaScript
7.2.1.	 Declaring Variables with var, let and const
7.2.2.	 Data Types: Numbers, Strings, Booleans
7.2.3.	 Converting Between Data Types

7.3.	 Control Structures in JavaScript
7.3.1.	 Conditional Statements: if, else if, else
7.3.2.	 Loops: for, while, do...while
7.3.3.	 Switch-case: Alternative to Multiple Conditional Statements
7.3.4.	 Break and Continue in Loops

Syllabus | 19

Module 8. Front End III - React.js from Scratch
8.1.	 React.js from Scratch

8.1.1.	 React JS as a Library for Developing Web Applications
8.1.2.	 Components and Virtual DOM in React JS: Architecture and Operation
8.1.3.	 Installation and Configuration with the NextJS Frameworks
8.1.4.	 First Component in React: “Hello World”

8.2.	 JavaScript XML or JSX, and Components in React
8.2.1.	 JSX: Syntax and Features
8.2.2.	 Creating Functional Components in React.js
8.2.3.	 Using Props to Pass Data Between Components
8.2.4.	 Functional Components vs. Class Components for Development in React.js

8.3.	 State and Events in React.js
8.3.1.	 Component State in React
8.3.2.	 Use of useState for State Management
8.3.3.	 Event Handling in React.js: onClick, onChange, Among Others
8.3.4.	 Examples of State and Event Management in React.js

8.4.	 Component Lifecycle and Effects in React
8.4.1.	 Component Lifecycle in React
8.4.2.	 Using useEffect to Manage Effects in React
8.4.3.	 Components with Mounting, Updating and Unmounting in React

8.5.	 Routing with React Router
8.5.1.	 SPA (Single Page Applications) and Routing in Web Applications
8.5.2.	 React Router Installation and Configuration
8.5.3.	 Creating Routes and Navigating Between Pages with React Router

8.6.	 Forms and Validation in React
8.6.1.	 Creating Interactive Forms in React
8.6.2.	 Handling User Input and Sending Data in React
8.6.3.	 Real-Time Form Validation in React

8.7.	 Consuming APIs in React
8.7.1.	 Consuming APIs with Fetch and Axios in React
8.7.2.	 Handling Loading, Success and Error States in React
8.7.3.	 Updating Components According to API Data in React

7.4.	 JavaScript Functions
7.4.1.	 Function Declaration
7.4.2.	 Parameters, Return Values and Scope
7.4.3.	 Arrow Functions (=>) and Anonymous Functions
7.4.4.	 Callbacks and Recursion in Functions

7.5.	 DOM (Document Object Model) Manipulation with JavaScript
7.5.1.	 DOM: Structure of an HTML Document
7.5.2.	 Selecting DOM Elements (getElementById, querySelector)
7.5.3.	 Manipulating Elements: Changing Text, Styles, and Attributes
7.5.4.	 Events: Click, Input, Submit, and More

7.6.	 Arrays and Objects in JavaScript
7.6.1.	 Declaring and Using Arrays
7.6.2.	 Common Array Methods: push, pop, map, filter
7.6.3.	 Creating and Using Objects
7.6.4.	 Iterating over Arrays and Objects

7.7.	 Promises and Async in JavaScript
7.7.1.	 Async and Using Callbacks in JavaScript
7.7.2.	 Promises in JavaScript: Creation and Handling
7.7.3.	 Using Async and Await in JavaScript

7.8.	 APIs and Fetch in JavaScript
7.8.1.	 API in JavaScript: Purpose
7.8.2.	 Consuming REST APIs with Fetch
7.8.3.	 Handling Errors and Request Status

7.9.	 Local Storage in Web Browsers
7.9.1.	 Local Storage and Session Storage in Web Services and Applications
7.9.2.	 Storage and Retrieval of Data in Local Storage
7.9.2.	 IndexedDB as a Browser Database
7.9.3.	 Handling Cookies in JavaScript
7.9.4.	 Browser Storage: Examples

7.10.	 Best Practices in JavaScript and Tools for Developers
7.10.1.	 Code in JavaScript: Best Practices
7.10.2.	 Use of Browser Development Tools in JavaScript
7.10.3.	 Debugging and Error Handling in JavaScript

20 | Syllabus

8.8.	 Reusable Components and External Libraries in React
8.8.1.	 Reusable Components in React
8.8.2.	 Creating Reusable Components in React
8.8.3.	 Using External Libraries like Material UI and Bootstrap in React

8.9.	 Global State Management in React
8.9.1.	 Global State Management with Native Options: Context API and Custom Hooks
8.9.2.	 External Libraries for Data Management
8.9.3.	 Comparing Approaches to Global State Management. Examples

8.10.	 React Application Deployment and Optimization
8.10.1.	 Preparing a React Application for Production
8.10.2.	 Deploying on Platforms such as Netlify and Vercel
8.10.3.	 Performance Optimization: Lazy Loading, Memoization, Server Components and

Code Splitting
8.10.4.	 Monitoring and Maintaining React Applications in Production. Tools and

Performance Analysis

Module 9. Database Management and Optimization from Scratch
9.1.	 Database from Scratch

9.1.1.	 Databases. Types
9.1.2.	 Relational vs. Non-relational Databases
9.1.3.	 SQL and NoSQL Programming Languages

9.2.	 Relational Data Modeling
9.2.1.	 Relational Database Model
9.2.2.	 Tables, Rows, and Columns in a Relational Database
9.2.3.	 Primary and Foreign Keys: Relationships Between Tables
9.2.4.	 Normalization: 1NF, 2NF, 3NF

9.3.	 SQL Language: DML and DDL
9.3.1.	 SQL: Structured Query Language
9.3.2.	 Create and Delete Queries: CREATE, DROP
9.3.3.	 SELECT, INSERT, UPDATE and DELETE Queries
9.3.4.	 Filtering and Sorting Data with SQL

9.4.	 Advanced SQL Queries
9.4.1.	 Joins: INNER JOIN and OUTER JOIN
9.4.2.	 Subqueries and Nested Queries
9.4.3.	 Aggregate Functions in SQL: SUM, AVG, COUNT

9.5.	 NoSQL Databases and MongoDB
9.5.1.	 NoSQL Database
9.5.2.	 Comparison between SQL and NoSQL
9.5.3.	 MongoDB: Document Database
9.5.4.	 Flexible Schemas in NoSQL

9.6.	 Database Optimization
9.6.1.	 Importance of Query Optimization
9.6.2.	 Using Indexes in Relational Databases
9.6.3.	 NoSQL Database Optimization

9.7.	 Database Security
9.7.1.	 Database Security
9.7.2.	 Encryption of Sensitive Data
9.7.3.	 User and Permission Management in Databases
9.7.4.	 Database Protection Strategies against Attacks

9.8.	 Database Scalability
9.8.1.	 Database Scalability
9.8.2.	 Horizontal and Vertical Partitioning
9.8.3.	 Database Replication and Clustering

9.9.	 Data Backup and Recovery
9.9.1.	 Importance of Database Backup
9.9.2.	 Automatic and Manual Backup Techniques
9.9.3.	 Data Recovery in Relational and NoSQL Databases

9.10.	 Database Implementation in Projects
9.10.1.	 Database Design for a Real Project
9.10.2.	 Database Integration with Back-End Applications

Syllabus | 21

Module 10. Development Tools from Scratch: Linux, Version Control, CI/CD,
Docker and Agile Methodologies
10.1.	 Linux from Scratch

10.1.1.	 Linux
10.1.2.	 Differences between Linux and Other Operating Systems
10.1.3.	 Popular Linux Distributions for Developers
10.1.4.	 Configuration and Customization of the Development Environment
10.1.5.	 Text Editors in Linux

10.2.	 Using the Linux Terminal from Scratch
10.2.1.	 The Terminal. Uses and Functions
10.2.2.	 Navigation Commands and File Management in the Terminal
10.2.3.	 File and Directory Permissions in Linux
10.2.4.	 Command Redirection and Use of Pipes to Optimize Tasks

10.3.	 Version Control with Git from Scratch
10.3.1.	 Git: Cloud Providers
10.3.2.	 Creation and Management of Repositories
10.3.3.	 Workflow: git init, git add, git commit and git status
10.3.4.	 Working with Branches: Creation, Merging and Conflict Resolution

10.4.	 Collaborating in Teams with GitHub from Scratch
10.4.1.	 GitHub: Remote Repositories
10.4.2.	 Connecting a Local Repository to GitHub: git remote. Initial Configuration
10.4.3.	 Synchronization with Remote Repositories
10.4.4.	 Pull Requests and Collaborative Code Review

10.5.	 CI/CD (I) - Continuous Integration (CI) with GitHub Actions from Scratch
10.5.1.	 Continuous Integration (CI)
10.5.2.	 Workflow Configuration in GitHub Actions
10.5.3.	 Automation of Tests and Deployments

10.6.	 Docker from Scratch
10.6.1.	 Docker and Containers
10.6.2.	 Docker Installation and Configuration
10.6.3.	 Docker Container Creation and Management
10.6.4.	 Dockerfiles: Custom Image Creation

22 | Syllabus

10.7.	 CI/CD (II) - Continuous Delivery (CD) with Docker and GitHub Actions from Scratch
10.7.1.	 Continuous Delivery (CD)
10.7.2.	 CD Pipeline Configuration with Docker and GitHub Actions
10.7.3.	 Automated Deployment with Docker Compose

10.8.	 Agile Methodologies from Scratch (I). Principles and Values
10.8.1.	 Agile Methodologies: Principles
10.8.2.	 The Agile Manifesto: Fundamental Values and Principles
10.8.3.	 Comparison with Traditional Methodologies: Waterfall vs. Agile

10.9.	 Agile Methodologies (II): Scrum from Scratch
10.9.1.	 Scrum and its Applicability
10.9.2.	 Key Roles in Scrum: Product Owner, Scrum Master and Development Team
10.9.3.	 Scrum Artifacts: Product Backlog, Sprint Backlog and Product Increment
10.9.4.	 Scrum Events: Sprint Planning, Daily Scrum, Sprint Review and Sprint

Retrospective
10.10.	Agile Methodologies (III): Kanban and Metrics from Scratch

10.10.1.	Kanban and its Visual Approach
10.10.2.	Key Elements in Kanban: Columns, Cards and WIP Limits
10.10.3.	Agile Metrics: Burnup, Burndown Charts, Velocity and Lead Time

You will learn from the comfort of your
own home and at your own pace, with
the innovative online methodology
and flexibility you need. Don't wait
any longer to boost your career
in technology! Enroll today"

Syllabus | 23

Teaching Objectives
04

The main goal of this Master’s Degree is to provide professionals with the necessary
skills to start their career in the world of programming in a solid and effective way.
Throughout the program, they will develop a deep understanding of the fundamental
concepts of programming, such as algorithms, data structures and programming
logic, which form the basis on which they will build more advanced skills. In addition,
they will acquire a mastery of programming languages widely used in the industry
(Python, JavaScript and HTML), which will enable them to confidently tackle a variety
of technology projects.

You will acquire the necessary
skills to lead development projects,
manage databases and optimize
processes, increasing your professional
competitiveness in the technology sector"

Teaching Objectives | 25

General Objectives

	� Understand the fundamentals of programming and software development by identifying
the essential elements of a program, control structures and the relationship between
software and hardware

	� Understand the fundamentals of Python and its basic syntax, developing a suitable
environment for back-end development

	� Acquire a solid understanding of fundamental algorithms and data structures

	� Master the fundamentals of back-end development and its role within a software
architecture

	� Manage the principles of object-oriented programming and apply them in the construction
of flexible, reusable and maintainable software, using Python as the programming
language

	� Develop the fundamental concepts of HTML and CSS to structure and style web pages

	� Analyze the JavaScript language, from the basics to advanced techniques

	� Introduce the fundamental concepts of React.js to build interactive web applications

	� Manage database types and their query languages, both in relational and NoSQL
environments

	� Detail the automation of testing, integration and code deployment

26 | Teaching Objectives

Module 1. Programming and Software Development from Scratch
	� Define and differentiate between software and hardware

	� Understand the basic concepts of programming

	� Understand the basic structure of a program

	� Explore and analyze the different programming paradigms

Module 2. Back-End Development I: Python from Scratch
	� Master the characteristics of Python

	� Understand the structure and basic syntax of Python

	� Develop skills in flow control using conditionals

	� Apply loops to create repetition cycles in Python

Module 3. Back-End Development II - Algorithms and Data Structures with
Python from Scratch

	� Implement and compare types of search algorithms in data structures

	� Analyze sorting algorithms such as bubble, insertion, selection, merge sort and quick sort

	� Examine algorithmic complexity and efficiency measurement using Big O notation

	� Represent graphs and perform depth-first (DFS) and breadth-first (BFS) searches

Specific Objectives

Teaching Objectives | 27

Module 4. Back-End Development III - Flask, API Creation and Basic
Architecture from Scratch

	� Develop RESTful APIs using Flask

	� Integrate databases into Flask applications

	� Implement authentication and security in APIs

	� Design the basic architecture of a back-end application with Flask

Module 5. Object-Oriented Programming and Design Patterns from Scratch
	� Define the key concepts of Object-Oriented Programming such as classes, objects,
attributes, methods, encapsulation, abstraction, inheritance and polymorphism

	� Understand the use of encapsulation and abstraction in classes using the Python
programming language

	� Examine the concept of polymorphism and overloading within the Python language,
understanding its applications and advantages

	� Determine the types of relationships between classes such as association, aggregation
and composition

Module 6. Front End I - HTML and CSS from Scratch
	� Identify the basic structure of an HTML document and its importance in web development

	� Use HTML to organize and present content on the web in a semantic and accessible way:
Web architecture

	� Apply styles with CSS to improve the visual presentation of elements

	� Use the CSS box model to structure and distribute elements in the interface

28 | Teaching Objectives

Module 7. Front End II - JavaScript from Scratch
	� Understand syntax and data types in JavaScript

	� Learn to structure code using functions and control structures

	� Manipulate the DOM to interact with dynamic web pages

	� Work with APIs and handle asynchrony using Promises and async/await

Module 8. Front End III - React.js from Scratch
	� Understand the use of JSX to create declarative interfaces

	� Learn to work with functional components, props and life cycles

	� Manage local and global states using modern tools such as Context API and Redux Toolkit

	� Implement routing to build single-page applications (SPAs)

Module 9. Database Management and Optimization from Scratch
	� Identify the different types of databases and their characteristics

	� Understand and apply the relational data model

	� Develop SQL skills for database management

	� Use advanced SQL queries

Do you want to master the
language of the future? This
Master’s Degree represents
the first step towards the
technological future you have
always wanted. Enroll now!"

Module 10. Development Tools from Scratch: Linux, Version Control, CI/CD,
Docker and Agile Methodologies

	� Operate the Linux operating system at the command line level

	� Master the use of Git for version control

	� Implement Continuous Integration and Deployment (CI/CD) pipelines

	� Create and manage Docker containers

Teaching Objectives | 29

Career Opportunities
05

This degree opens up a wide range of career opportunities in a constantly expanding
technology sector. As companies in all sectors become increasingly digital, the demand
for professionals with programming skills is not only growing, but also diversifying,
opening up opportunities in areas as varied as software development, database
management, web design and process automation. Upon graduation, students will
be perfectly qualified to take on roles in technology companies, innovative start-ups and
organizations in any sector looking to integrate digital solutions into their operations.

Not only will you become a high-level expert,
but you will also address a wide variety
of professional opportunities, ensuring your
success in a labor market in continuous
growth and transformation”

Career Opportunities | 31

32 | Career Opportunities

Graduate Profile

Graduates will be highly skilled professionals, ready to face the technological
challenges of the future. They will not only have a firm grasp of the fundamental
concepts of algorithms, data structures and programming languages, but will also
have developed a deep understanding of the tools and technologies most in demand
in the industry. With a solid foundation in programming and application development,
these experts will be able to tackle technological projects autonomously and effectively.
Furthermore, they will stand out for their ability to solve complex problems, apply
innovative solutions and manage systems and databases.

You will become a versatile professional, with
solid technical expertise and strategic vision,
capable of integrating programming into
technological solutions that respond to the
needs of companies and society.

	� Critical thinking and problem solving: Analyze complex situations and find innovative and
efficient solutions through programming

	� Teamwork and multidisciplinary collaboration: Work in multidisciplinary teams,
collaborating effectively with professionals from different areas, such as designers,
engineers and data analysts, to achieve common goals in technology projects

	� Time management and learning autonomy: Manage time effectively to meet tight
deadlines and develop projects independently and responsibly

	� Adaptability to new technologies: Manage new tools and programming languages,
ensuring they are constantly kept up to date in a technological environment that is evolving
at a fast pace

Career Opportunities | 33

After completing the program, you will be able to use your knowledge and skills in the
following positions:

1.	 	Software Developer: Responsible for designing, creating and maintaining computer
applications and programs according to the needs of the client or company

2.	 	Web Developer: Manages the creation, design and maintenance of websites, ensuring
their functionality and optimization on different devices

3.	 	Database Engineer: Responsible for designing, implementing and managing databases,
guaranteeing their efficiency, security and availability

4.	 	Systems Analyst: Developer of existing computer systems, proposing improvements
to optimize the performance and efficiency of processes

5.	 	Front-End Programmer: Responsible for the development of the visual part
of applications and websites, improving the user experience

6.	 		 Back-End Programmer: Responsible for developing the server logic and databases
of applications and websites, guaranteeing their correct functioning

7.	 	Network Administrator: Responsible for managing and maintaining network
infrastructures within a company, ensuring their stability and security

8.	 	Technology Consultant: Advisor and consultant in companies, providing information
on the implementation of technological solutions appropriate to their needs, improving
their performance and competitiveness

9.	 	Mobile Application Developer: Manager of the design, development and maintenance
of applications for mobile devices, ensuring their usability and performance

10.	 	Automation Software Engineer: Responsible for designing and developing automated
solutions to improve the efficiency of business processes, using advanced programming
and technology.

06

TECH will prepare you to face new
challenges in uncertain environments
and achieve success in your career”

Study Methodology | 35

36 | Study Methodology

At TECH you will NOT have live classes
(which you might not be able to attend)”

TECH's model is asynchronous, so it
allows you to study with your pc, tablet
or your smartphone wherever you
want, whenever you want and for as
long as you want”

Study Methodology | 37

38 | Study Methodology

Study Methodology | 39

40 | Study Methodology

The online study mode of this
program will allow you to organize
your time and learning pace,
adapting it to your schedule”

4. 	Students like to feel that the effort they put into their studies is worthwhile.
This then translates into a greater interest in learning and more time
dedicated to working on the course.

3. 	 Ideas and concepts are understood more efficiently, given that the example
situations are based on real-life.

2. 	Learning is solidly translated into practical skills that allow the student to
better integrate into the real world.

1. 	Students who follow this method not only achieve the assimilation of
concepts, but also a development of their mental capacity, through
exercises that assess real situations and the application of knowledge.

The effectiveness of the method is justified by four fundamental achievements:  

Study Methodology | 41

You will be able to learn with the
advantages that come with having access

to simulated learning environments and
the learning by observation approach,

that is, Learning from an expert.

Access the study contents from any device
with an Internet connection (computer, tablet,
smartphone) thanks to the fact that TECH is
at the forefront of technology and teaching.

The students’ assessment of the teaching quality, the quality of the materials,
the structure of the program and its objectives is excellent. Not surprisingly,
the institution became the top-rated university by its students according to
the global score index, obtaining a 4.9 out of 5.

42 | Study Methodology

Study Methodology | 43

Teaching Staff
The teaching staff is made up of highly qualified professionals with extensive
experience in the field of technology. Each one has been carefully selected to guarantee
that the students receive quality education, based on up-to-date knowledge and real-
world practice in the field. In this sense, their work experience in renowned companies
and their academic background allow them to offer a comprehensive and applied
perspective on Programming. In short, the mentors are experts in various areas
of technology, which provides a multidisciplinary and enriching vision.

07

The teaching staff is a fundamental pillar
in the success of the program. The quality
and experience of the mentors will ensure
a comprehensive education that will prepare
you to face the technology sector with
confidence and ability”

Teaching Staff | 45

Management

Dr. Lucas Cuesta, Juan Manuel
	� Senior Software Engineer and Analyst at Indizen – Believe in Talent

	� Senior Software Engineer and Analyst at Krell Consulting and IMAGiNA Artificial Intelligence

	� Software Engineer at Intel Corporation

	� Software Engineer at Intelligent Dialog Systems

	� PhD's Degree in Electronic Systems Engineering for Intelligent Environments from the Polytechnic University of Madrid

	� Graduate in Telecommunications Engineering at the Polytechnic University of Madrid

	� Master's Degree in Electronic Systems Engineering for Intelligent Environments from the Polytechnic University of Madrid

Mr. Márquez Ruiz de Lacanal, Juan Antonio
	� Software Developer at GTD Defense & Security Solutions

	� Software Developer at Solera Inc

	� Development and Research Engineer at GRVC Sevilla

	� Co-founder of Unmute

	� Co-founder of VR Educa

	� Academic Exchange in Engineering and Entrepreneurship at the University of California, Berkeley

	� Degree in Industrial Engineering from the University of Sevilla

46 | Teaching Staff

Professors
Dr. Luna Perejón, Francisco

	� Specialist in Computer Architecture and Technology
	� PhD in Computer Engineering from the University of Sevilla
	� Master's Degree in Computer Engineering from the University of Sevilla
	� Degree in Health Engineering from the University of Sevilla
	� Degree in Computer Engineering and Computer Technology from the University of Sevilla

	� Member of: Robotics and Computer Technology Research Group (TEP108)

Mr. Péris Millán, Eduardo
	� Director of the Technological Consultancy Department
	� Specialist in Computer Engineering
	� Master's Degree in Strategic Management of Information and Knowledge in Organizations
	� Master's Degree in Leadership and Public Management
	� Expert in Public Management

	� Expert in Computer Systems for Smart CITIES

Mr. Pi Morell, Oriol
	� Functional Analyst at Fihoca
	� Hosting and Mail Product Owner CDMON
	� Functional Analyst and Software Engineer at Atmira and CapGemini
	� Teacher at ORACLE Forms CapGemini and Atmira
	� Degree in Technical Engineering in Computer Management from the Autonomous
University of Barcelona

	� Master's Degree in Artificial Intelligence from the Catholic University of Avila
	� Professional's Degree in Business Administration and Management by IMF Smart
Education

	� Master's Degree in Information of Systems Management by IMF Smart Education
	� Postgraduate Degree in Design in Patterns from the Open University of Catalonia

Mr. Grillo Hernández, José Enrique
	� Application Developer and Technology Analyst
	� Senior Mobile Applications Developer at Globant
	� Android Developer at Plexus Tech
	� Senior Android Developer at RoadStr
	� Senior Mobile Developer at Avantgarde IT-Information Technology Services
	� Project Leader at Smartdess
	� Developer at Educatablet
	� Technology Analyst at Corporate Mobile Solutions

	� Master's Degree in System Engineering from the Simón Bolívar University

Ms. Domínguez Valderrama, Desirée
	� Lead Product & Growth Strategist
	� Master's Degree in Graphic Design and Creativity from the Business School of the Sevilla
Chamber of Commerce

	� Expert in UX/UI Designer from CoderHouse
	� Expert in Technology and Entrepreneurship

Take this opportunity to learn about
the latest advances in this field in order
to apply it to your daily practice"

Teaching Staff | 47

Certificate
08

The Master’s Degree in Programming from Scratch guarantees students, in addition
to the most rigorous and up-to-date education, access to a Master’s Degree diploma
issued by TECH Global University.

Successfully complete this
program and receive your university
qualification without having to travel
or fill out laborious paperwork"

Certificate | 49

This private qualification will allow you to obtain a Master’s Degree diploma in
Programming from Scratch endorsed by TECH Global University, the world’s largest
online university.

TECH Global University, is an official European University publicly recognized by the Government

of Andorra (official bulletin). Andorra is part of the European Higher Education Area (EHEA)

since 2003. The EHEA is an initiative promoted by the European Union that aims to organize

the international training framework and harmonize the higher education systems of the

member countries of this space. The project promotes common values, the implementation

of collaborative tools and strengthening its quality assurance mechanisms to enhance

collaboration and mobility among students, researchers and academics.

This TECH Global University private qualification is a European program of continuing
education and professional updating that guarantees the acquisition of competencies
in its area of knowledge, providing a high curricular value to the student who completes
the program.

Title: Master’s Degree in Programming from Scratch

Modality: online

Duration: 12 months

Accreditation: 60 ECTS

*Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

Master's Degree in Programming from Scratch

Master's Degree in Programming from Scratch

50 | Certificate

https://bopadocuments.blob.core.windows.net/bopa-documents/036016/pdf/GV_2024_02_01_09_43_31.pdf

Master’s Degree
Programming from Scratch

	» Modality: online
	» Duration: 12 months
	» Certificate: TECH Global University
	» Accreditation: 60 ECTS
	» Schedule: at your own pace
	» Exams: online

Master’s Degree
Programming from Scratch

