Professional Master’'s Degree
Software Development

Q
te C n technological
» university

te C h technological
university

Professional Master’'s Degree
Software Development

» Modality: online

» Duration: 12 months

» Certificate: TECH Technological University
» Dedication: 16h/week

» Schedule: at your own pace

» Exams: online

Website: www.techtitute.com/in/information-technology/professional-master-degree/master-software-development

http://www.techtitute.com/in/information-technology/professional-master-degree/master-software-development

Index

01 02

Introduction Objectives

p. 4 p. 8

03 04 05

Skills Structure and Content Methodology

p. 14 p. 18 p. 32

06

Certificate

p. 40

07
Introduction

To participate in one of the areas with the greatest projection in the IT sector, »
professionals must be prepared scientifically and technologically, as well as to

be able to efficiently face the challenges that arise in the professional practice of

software engineering. This Professional Master's Degree is aimed at achieving

a high mastery of Software Development, through the latest advances and

developments in this field, by means of a study methodology of maximum impact

and extraordinary flexibility.

Introduction | 05 tec!:

@ @ Acquire the most comprehensive knowledge

in software engineering, in the most up-
to-date program of the online educational
market and start working on developments in
this dynamic professional field”

tech 06 | Introduction

With the advance of new technologies, software has become an extremely important
element nowadays. In recent years, the need to be able to develop software products
with the appropriate functionality and quality, while respecting the established time and
budget, has become evident.

This program is aimed at those people interested in reaching a higher level of
knowledge about Software Development. The main objective is to enable students to
apply the knowledge acquired in this Professional Master's Degree in the real world, in a

work environment that reproduces the conditions that may be encountered in the future,

in a rigorous and realistic manner.

Take advantage of the opportunity to take this educational program in a 100% online
format, without having to give up obligations, and making it easy to continue studying.
Update your knowledge and obtain a Professional Master's Degree to continue growing
personally and professionally.

You will gain extensive knowledge in the field of software engineering, but also in the
fleld of computating and computer structure, including the mathematical, statistical and
physical principles that are essential in engineering.

Take advantage of the opportunity to take this educational program in a 100% online
format, without having to give up obligations, and making it easy to continue studying.
Update your knowledge and get your Professional Master's Degree to continue growing
personally and professionally.

This Professional Master's Degree in Software Development contains the most
complete and up-to-date program on the market. The most important features include:

» Development of 100 simulated scenarios presented by experts in Software Development.

» Its graphic, schematic and eminently practical contents, with which they are conceived,
gather scientific and practical information on Software Development

» News on the latest developments in Software Development

» It contains practical exercises where the self-evaluation process can be carried out to
improve learning

» Interactive learning system based on the case method and its application to real practice

» All of this will be complemented by theoretical lessons, questions to the expert, debate
forums on controversial topics, and individual reflection assignments

» Content that is accessible from any fixed or portable device with an Internet connection

This program will allow you to
learn about the basic structure of
a computer and its software, as a
basis for increasing your sKills”

Learn everything you need to work
with programming languages safely,
incorporating to your knowledge the
interpretation and design of basic

algorithms to work in programming

n

Its teaching staff includes professionals belonging to the world of Software
Development, who bring to this program the experience of their work, as well as
recognized specialists belonging to reference companies and prestigious universities.

Thanks to its multimedia content developed with the latest educational technology, they
will allow the professional a situated and contextual learning, that is to say, a simulated
environment that will provide an immersive learning programmed to train in real situations.

This program is designed around Problem-Based Learning, whereby the professional must
try to solve the different professional practice situations that arise throughout the program.
To do so, the professional will be assisted by an innovative interactive video system created
by recognized experts in Software Development with extensive teaching experience.

Introduction | 07 tech

An educational program that will enable you to
understand how to operate and intervene on all
the essential elements of a computer program.

Get to know the latest data systems
on the market, learn how to design
advanced algorithms and all the
aspects that a highly competent
professional must master.

02
Objectives

The objective of this program is to provide professionals working in Software
Development with the knowledge and skills necessary to carry out their activity
using the most advanced protocols and techniques of the moment. Through

a work approach that is totally adaptable to the student, this Professional

e & GET [type]==. |

foto-galerija.phpt

v 1d="left sidebar”
<div id="left ico"
<p <?if (% COOKIE('le

di

SNSRI BEES

~Q0KIE['lang'] =="eng'){
a~md-Frame houses”:

Objectives | 09 tec/:

116_GET(type)) . aemn™y
yre=iftext mro.

\ 2

You will delve into the field of computating
and computer structure, essential subjects
for any software developer”

tech 10| Objectives

General Objectives

» Prepare scientifically and technologically, as well as to develop the professional practice
of software engineering, with a transversal and versatile approach adapted to the new
technologies and innovations in this field

» Obtain extensive knowledge in the field of software engineering, but also in the field of
computation and computer structure, including the mathematical, statistical and physical
basis essential in engineering

Achieve the level of knowledge you desire
and master Software Development with
this high-level training"

Objectives |11 tecCn

Specific Objectives

Module 1. Programming Fundamentals

Understand the basic structure of a computer, software and general purpose programming languages

Learn to design and interpret algorithms, which are the necessary basis for developing
computer programs

Understand the essential elements of a computer program, such as the different types of
data, operators, expressions, statements, I/0 and control statements

Understand the different data structures available in general purpose programming languages,
both static and dynamic, as well as to acquire the essential knowledge for file handling

Know the different testing techniques in computer programs and the importance of
generating good documentation together with good source code

Learn the basic concepts of the C++ programming language, one of the most widely used
languages in the world

Module 2. Data Structure

Learn the fundamentals of C++ programming, including classes, variables, conditional
expressions and objects

Understand abstract data types, linear data structure types, simple and complex
hierarchical data structures, as well as their implementation in C++

Understand the operation of advanced data structures other than the usual ones
Know the theory and practice related to the use of priority heaps and queues
Learn how Hash tables work as abstract data types and functions

Understand Graph theory, as well as advanced Graph algorithms and concepts

tecn 12| 0Objectives

Module 3. Algorithm and Complexity Module 5. Advanced Databases
» Learn the main strategies for algorithm design, as well as the different methods and » Introduce the different database systems currently available on the market
measures for algorithm computation » Learn the use of XML and databases for the web
» Know the main sorting algorithms used in software development » Understand the operation of advanced databases such as parallel and distributed databases
» Understand the operation of the different algorithms with trees, Heaps and Graphs » Understand the importance of indexing and association in database systems
» Understand the operation of Greedy algorithms, their strategy and examples of their use in » Understand how transactional processing and retrieval systems work

the main known problems. We will also learn the use of greedy algorithms on graphs » Acquire knowledge related to non-relational databases and data mining

» We will learn the main strategies of minimum path search, with the approach of essential

problems of the field and algorithms for their resolution Module 6. Advanced Algorithm Design
Delve into advanced algorithm design, analyzing recursive and divide-and-conquer
algorithms, as well as performing amortized analysis

» Understand the Backtracking technique and its main uses, as well as other alternative techniques)

Module 4. Databases
Learn the different applications and purposes of database systems, as well as their
operation and architecture

» Understand the concepts of dynamic programming and algorithms for NP problems.

4

P

Understand the operation of combinatorial optimization, as well as the different
randomization algorithms and parallel algorithms

3

Understand the relational model, from its structure and operations to extended relational algebra

» Know and understand the operation of the different local and candidate search methods

Learn in depth what SQL databases are, how they work, the definition of data and the
creation of queries from the most basic to the most advanced and complex

4

P

Learn the mechanisms of formal verification of programs and iterative programs, including
first-order logic and Hoare's formal system

¥

Learn how to design databases using the entity-relationship model, how to create diagrams

and the characteristics of the extended E-R model Learn the operation of some of the main numerical methods such as the bisection method,

the Newton Raphson method and the secant method

P

4

Delve into the design of relational databases, analyzing the different normal forms and
decomposition algorithms

¥

Lay the foundations for understanding the operation of NoSQL databases and to introduce
the MongoDB database

Module 7. Human-Computer Interaction

4

X

v

4

3

4

Acquire solid knowledge related to human-computer interaction and the creation

of usable interfaces

Understand the importance of application usability and why it is important to take it into
account when designing our software

Understand the different types of human diversity, the limitations they imply and how to
adapt interfaces according to the specific needs of each of them

Learn the process of interface design, from requirements analysis to evaluation, going
through the different intermediate stages necessary to carry out an adequate interface

Know the different accessibility guidelines, the standards that establish them and the tools

that allow us to assess them

Understand the different methods of interaction with the computer, by means of
peripherals and devices

Module 8. Advanced Programming

»

»

»

»

»

»

In-depth knowledge of programming, especially as it relates to object-oriented
programming, and the different types of relationships between existing classes

Know the different design patterns for object-oriented problems
Learn about event-driven programming and the development of user interfaces with Qt
Acquire the essential knowledge of Concurrent Programming, processes and threads

Learn how to manage the use of threads and synchronization, as well as the resolution of
common problems within Concurrent Programming

Understand the importance of documentation and testing in software development

Objectives [13 tecn

Module 9. Development of Web Applications
» Know the characteristics of the HTML markup language and its use in web creation
together with CSS style sheets

» Learn to use the browser-oriented programming language JavaScript, and some of its main features

>

» Understand the concepts of Component Oriented Programming and Component Architecture
» Learn how to use the Bootstrap Frontend Framework for website design

» Understand the structure of the controller view model in the development of dynamic web sites

>

» Know the service-oriented architecture and the basics of the HTTP protocol

Module 10. Software Engineering
Lay the foundations of software engineering and modeling, learning the main processes
and concepts

P

»

Understand the software process and the different models for its development including
agile technologies

P

Understand requirements engineering, their development, elaboration, negotiation and validation

Learn the modeling of requirements and the different elements such as scenarios,
information, analysis classes, flow, behavior and patterns

P

Understand the concepts and processes of software design, learning also about
architecture design and design at component level and based on patterns

P

Know the main standards related to software quality and project management

°
SKills ~ Y
>
By passing the assessments of the Professional Master's Degree in Software J
Development, you will have acquired the professional skills necessary to carry out

quality work and you will also be able to acquire new skills and techniques that will
help you to complement the computer knowledge you previously possessed. . 1

-%

@ @ Enhance your skills in Software

Development and move to the next level as a
professional in this constantly evolving field"

tecn 16/ Skills

\’ General Skill

» Respond to the current needs of the field of Software Development

‘ ‘ An exceptional program in terms

of its density, its current relevance
and the way in which it is offered,
which will allow you to advance
quickly and efficiently”

skills |17 tecn

Specific Skills

Be able to understand the basic structure of a computer, software and general purpose
programming languages

Know how to apply the fundamentals of C++ programming, including classes, variables,
conditional expressions and objects

Know, in depth, the main strategies for algorithm design, as well as the different methods
and measures for their calculation

Know the different applications and purposes of database systems, as well as their
operation and architecture, and to apply them on a day-to-day basis

Be able to introduce the different database systems currently on the market

Know how to analyze recursive and divide and conquer algorithms, as well as how to
perform amortized analysis

Use the knowledge of human-computer interaction and the creation of usable interfaces
in the daily practice of the profession

Acquire in-depth knowledge of Programming

Know the characteristics of the HTML markup language and its use in web creation
together with CSS style sheets

Be able to apply the main processes and concepts of the basics of software engineering
and modeling

04
Structure and Content

The structure of the contents has been designed by a team of Computer Engineering
professionals with the aim of ensuring that students of this Professional Master's
Degree can learn efficiently and quickly. For this purpose, the contents have been
organized in such a way that learning is intensive and constant, trying to maintain
motivation based on the student's sense of progress.

, e
:ﬂ\dﬂnﬁl
Structure and Content | 19 tec'.

An educational program aimed at achieving
complete software development skills, which will
propel you to a new professional level"

tecn 20| Structure and Content

Module 1. Programming Fundamentals 16

1.1.

1.2.

1.3.

1.4.

1.5.

Introduction to Programming

1.1.1. Basic Structure of a Computer

1.1.2. Software

1.1.3. Programming Languages

1.1.4. Life Cycle of a Software Application

Algorithm Design 17
1.2.1. Problem Solving

1.2.2. Descriptive Techniques

1.2.3. Algorithm Elements and Structure

Elements of a Program

1.3.1. C++ Origin and Features

1.3.2. Development Environment

1.3.3. Concept of Program

1.34. Types of Fundamental Data

1.3.5. Operators

1.3.6. Expressions 18
1.3.7. Statements

1.3.8. Data Input and Output

Control Sentences

1.471. Statements

1.4.2. Branches

1.43. Loops

Abstraction and Modularity: Functions 10
1.5.1. Modular Design

1.5.2. Concept of Function and Utility

1.5.3. Definition of a Function

1.5.4. Execution Flow in a Function Call

1.5.5. Function Prototypes

1.5.6. Results Return

1.5.7. Calling a Function: Parameters

1.5.8. Passing Parameters by Reference and by Value
1.59. Scope Identifier

Static Data Structures

1.6.1. Arrays

1.6.2. Matrices. Polyhedra

1.6.3. Searching and Sorting

1.6.4. Chaining: I/0 Functions for Chains
1.6.5. Structures. Unions

1.6.6. New Types of Data

Dynamic Data Structures: Pointers

1.7.1. Concept. Definition of Pointer
1.7.2. Pointer Operators and Operations
1.7.3. Pointer Arrays

1.7.4. Pointers and Arrays

1.7.5. Chain Pointers

1.7.6. Structure Pointers

1.7.7. Multiple Indirection

1.7.8. Function Pointers

1.7.9. Function, Structure and Array Passing as Function Parameters
Files

1.8.1. Basic Concepts

1.8.2. File Operations

1.8.3. Types of Files

1.84. File Organization

1.8.5. Introduction to C++ Files

1.8.6. Managing Files

Recursion

1.9.1. Definition of Recursion

1.9.2. Types of Recursion

1.9.3. Advantages and Disadvantages
1.9.4. Considerations

1.9.5. lterative Recursive Conversion
1.9.6. Recursion Stack

Structure and Content | 21 tech

1.10. Testing and Documentation
1.10.1. Program Testing
1.10.2. White Box Testing
1.10.3. Black Box Testing
1.10.4. Testing Tools
1.10.5. Program Documentation

Module 2. Data Structure

2.1. Introduction to C ++ Programming
2.1.1. Classes, Constructors, Methods and Attributes
2.1.2. Variables
2.1.3. Conditional Expressions and Loops
2.1.4. Objects
2.2, Abstract Data Types (ADT)
221, Types of Data
2.2.2. Basic Structures and TADs
2.2.3. Vectors and Arrays
2.3. Linear data Structures
2.3.1. TAD List Definition
2.3.2. Linked and Doubly Linked Lists
2.3.3. Sorted Lists
2.3.4. Listsin C++
2.3.5. TAD Stack
2.3.6. TAD Queue
2.3.7. Stack and Queue in C++
2.4, Hierarchical Data Structures
247, TAD Tree
2472 Paths
24.3. N-Ary Trees
244 Binary Trees
2.4.5. Binary Search Trees

tecn 22| Structure and Content

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Hierarchical Data Structures: Complex Trees
2.5.1. Perfectly Balanced or Minimum Height Trees
2.5.2. Multipath Trees

2.5.3. Bibliographical References

Mounds and Priority Queue

2.6.1. TAD Mounds

2.6.2. TAD Priority Queue

Hash Tables

2.7.1. TAD Hash Table

2.7.2. Hash Functions

2.7.3. Hash Function in Hash Tables
2.7.4. Redispersion

2.7.5. Open Hash Tables

Graphs

2.8.1. TAD Graph

2.82. Graph Types

2.8.3. Graphical Representation and Basic Operations
2.8.4. Graph Design

Advanced Graph Algorithms and Concepts
29.1. Graph Problems

2.9.2. Path Algorithms

2.9.3. Search or Path Algorithms

2.9.4. Other Algorithms

Other Data Structures

2.10.1. Sets

2.10.2. Parallel Arrays

2.10.3. Symbol Tables

2.10.4. Tries

Module 3. Algorithm and Complexity

3.1.

3.2.

3.3.

3.4.

3.5.

Introduction to Algorithm Design Strategies
3.1.1. Recursion

3.1.2. Divide and Conquer

3.1.3. Other Strategies

Efficiency and Analysis of Algorithms
3.2.1. Efficiency Measures

3.2.2. Measuring the Size of the Input
3.2.3. Measuring Execution Time
3.2.4. Worst, Best and Average Case
3.2.5. Asymptotic Notation

3.2.6. Criteria for Mathematical Analysis of Non-Recursive Algorithms
3.2.7. Mathematical Analysis of Recursive Algorithms
3.2.8. Empirical Analysis of Algorithms
Sorting Algorithms

3.3.1. Concept of Sorting

3.3.2. Bubble Sorting

3.3.3. Sorting by Selection

3.3.4. Sorting by Insertion

3.3.5. Merge Sort

3.3.6. Quick Sort

Algorithms with Trees

3.4.1. Tree Concept

3.4.2. Binary Trees

3.4.3. TreePaths

3.4.4. Representing Expressions

3.4.5. Ordered Binary Trees

3.4.6. Balanced Binary Trees
Algorithms Using Heaps

3.5.1. Heaps

3.5.2. The Heapsort Algorithm

3.5.3. Priority Queues

3.6.

3.7.

3.8.

3.9.

3.10.

Graph Algorithms

3.6.1. Representation

3.6.2. Traversal in Width

3.6.3. Depth Travel

3.6.4. Topological Sorting

Greedy Algorithms

3.7.1. Greedy Strategy

3.7.2. Elements of the Greedy Strategy
3.7.3. Currency Exchange

3.7.4. Traveler's Problem

3.7.5. Backpack Problem

Minimal Path Finding

3.8.1. The Minimum Path Problem
3.8.2. Negative Arcs and Cycles
3.8.3. Dijkstra's Algorithm

Greedy Algorithms on Graphs

3.9.1. The Minimum Covering Tree
3.9.2. Prim's Algorithm

3.9.3. Kruskal's Algorithm

3.9.4. Complexity Analysis
Backtracking

3.10.1. Backtracking
3.10.2. Alternative Techniques

4.2.

4.3.

44,

Structure and Content | 23 tech

Module 4. Databases

4.1.

Applications and Purposes of Database Systems

4.1.1.
4.1.2.
4.1.3.

Applications of the Different Database Systems
Purpose of the Different Database Systems
View of the Data

Database and Architecture

4.2.1.
422
4.2.3.
4.2.4.
4.2.5.
4.2.6.
4.2.7.

Relational Database

Database Design

Object-Based and Semi-Structured Databases
Data Storage and Queries

Transaction Management

Data Mining and Analysis

Database Architecture

The Relational Model: Structure, Operations and Extended Relational Algebra

4.3.1.
4.3.2.
4.3.3.
4.3.4.
435,
4.3.6.
SQL (1)
447,
4.472.
443,
4.4.4.
445,
446,

The Structure of Relational Databases
Fundamental Operations in the Relational Algebra
Other Relational Algebra Operations

Extended Relational Algebra Operations

Null Values

Database Modification

What is SQL?

The Definition of Data

Basic Structure of SQL Queries
Operations on Sets
Aggregation Functions

Null Values

tecn 24| Structure and Content

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

SQL (1N

4.51. Nested Subqueries

4572, Complex Queries

453, Views

4.54. Cursors

455 Complex Queries

4.5.6. Triggers

Database Design and the E-R Model

4.6.1. Overview of the Design Process

4.6.2. The Entity-Relationship Model

4.6.3. Restrictions

Entity-Relationship Diagrams

471, Entity-Relationship Diagrams

4.7.2. Aspects of Entity-Relationship Design

473, Weak Entity Sets

The Extended Entity-Relationship Model

4.8.1. Characteristics of the Extended E-R Model
4.8.2. Design of a Database

4.8.3. Reduction to Relational Schemas

Designing from Relational Databases

49.1. Characteristics of Good Relational Designs
492, Atomic Domains and the First Normal Form (1FN)
4.9.3. Decomposition by Functional Dependencies
4.9.4. Theory of Functional Dependencies

495 Decomposition Algorithms

49.6. Decomposition by Means of Multivalued Dependencies
49.7. More Normal Forms

49.8. Database Design Process

NoSQL Databases

4.10.1. What are NoSQL Databases?

4.10.2. Analysis of the Different NoSQL Options and their Characteristics.

4.10.3. MongoDB

Module 5. Advanced Databases

5.1.

5.2.

5.3.

5.4.

5.5.

Introduction to the Different Database Systems
51.1.
51.2.
513.
5.1.4.
51.5.

Historical Recap
Hierarchical Databases
Network Databases
Relational Databases
Non-Relational Databases

XML and Databases for the Web

5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.

Validation of XML Documents
XML Document Transformations
XML Data Storage

XML Relational Databases
SQL/XML

Native XML Databases

Parallel Databases

53.1.
532
5.3.4.
5.3.5.
5.3.6.
5.3.7.

Parallel Systems

Parallel Database Architectures
Parallelism in Queries

Query Parallelism

Design of Parallel Systems
Parallel Processing in SQL

Distributed Databases

5.4.1.
5.4.2.
5.43.
5.4.4.
5.4.5.

Distributed Systems
Distributed Storage

Availability

Distributed Query Processing
Distributed Database Providers

Indexing and Association

5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.
5.5.6.

Ordered Indexes

Dense and Sparse Indexes
Multilevel Indices

Index Updating

Static Association

How to Use Indexes in Databases

5.6.

5.7.

5.8.

59.

5.10.

Introduction to Transactional Processing
5.6.1. States of a Transaction

5.6.2. Implementation of atomicity and durability.
5.6.3. Sequentiality

5.6.4. Recoverability

5.6.5. Isolation Implementation

Recovery Systems

5.7.1. Failure Classification

5.7.2. Storage Structures

5.7.3. Recovery and Atomicity

5.7.4. Retrieval Based on Historical Record
5.7.5. Concurrent Transactions and Retrieval
5.7.6. High Availability in Databases
Execution and Processing of Queries

58.1. Costof a Query

5.8.2. Selection Operation

5.8.3. Sorting

5.8.4. Introduction to Query Optimization
5.8.5. Performance Monitoring
Non-Relational Databases

5.9.1. Document-Oriented Databases
59.2. Graph Oriented Databases

593. Key-Value Databases

Data Warehouse, OLAP and Data Mining
510.1. Components of Data Warehouses
5.10.2. Architecture of a Data Warehouse
510.3. OLAP

5.10.4. Data Mining Functionality

5.10.5. Other Types of Mining

Structure and Content | 25 tech

Module 6. Advanced Algorithm Design

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Analysis of Recursive and Divide and Conquer Algorithms
6.1.1. Posing and Solving Homogeneous and Non-Homogeneous Recurrence Equations
6.1.2. General Description of the Divide and Conquer Strategy
Amortized Analysis

6.2.1. Aggregate Analysis

6.2.2. The Accounting Method

6.2.3. The Potential Method

Dynamic Programming and Algorithms for NP Problems
6.3.1. Characteristics of Dynamic Programming

6.3.2. Backtracking

6.3.3. Branching and Pruning

Combinatorial Optimization

6.4.1. Representation

6.4.2. 1D Optimization

Randomization Algorithms

6.5.1. Examples of Randomization Algorithms

6.5.2. The Buffon Theorem

6.5.3. Monte Carlo Algorithm

6.5.4. Las Vegas Algorithm

Local and Candidate Search

6.6.1. Gradient Ascent

6.6.2. Hill Climbing

6.6.3. Simulated Annealing

6.6.4. Tabu Search

6.6.5. Candidate Search

tecn 26| Structure and Content

6.7.

6.8.

6.9.

6.10.

Module 7. Human-Computer Interaction

7.1,

7.2.

Formal Verification of Programs

6.7.1. Specification of Functional Abstractions
6.7.2. The Language of First-Order Logic
6.7.3. Hoare's Formal System

Verification of Iterative Programs

6.8.1. Rules of Hoare's Formal System
6.8.2. Concept of Invariant Iterations
Numeric Methods

6.9.1. The Bisection Method

6.9.2. Newton Raphson's Method

6.9.3. The Secant Method

Parallel Algorithms

6.10.1. Parallel Binary Operations

6.10.2. Parallel Operations with Networks
6.10.3. Parallelism in Divide and Conquer
6.10.4. Parallelism in Dynamic Programming

Introduction to Human-Computer Interaction

7.1.1. What is Human-Computer Interaction

7.1.2. Relationship of Human-Computer Interaction with Other Disciplines
7.1.3. The User Interface

7.1.4. Usability and Accessibility

7.1.5. User Experience and User-Centered Design

The Computer and Interaction: User Interface and Interaction Paradigms
7.2.1. Interaction

7.2.2. Paradigms and Styles of Interaction

7.2.3. Evolution of User Interfaces

7.2.4. Classic User Interfaces: WIMP/GUI, Commands, Voice, Virtual Reality
7.2.5. Innovative User Interfaces: Mobile, Wearable, Collaborative, BCI

7.3.

7.4.

7.5.

7.6.

7.7.

The Human Factor: Psychological and Cognitive Aspects

7.3.1.
7.3.2.
7.3.3.
7.3.4.
7.3.5.

The Importance of the Human Factor in Interaction

Human Information Processing

The Input and Output of Information: Visual, Auditory, and Tactile

Perception and Attention

Knowledge and Mental Models: Representation, Organization, and Acquisition

The Human Factor: Sensory and Physical Limitations

7.4.1.
7.4.2.
7.4.3.
7.4.4.
7.4.5.
7.4.6.

Functional Diversity, Disability and Impairment
Visual Diversity

Hearing Diversity

Cognitive Diversity

Motor Diversity

The Case of Digital Immigrants

The Design Process (I): Requirements Analysis for User Interface Design

7.5.1.
7.5.2.
7.5.3.
7.54.
7.5.5.

User-Centered Design

What is Requirements Analysis?

Information Gathering

Analysis and Interpretation of the Information
Usability and Accessibility Analysis

The Design Process (I1): Prototyping and Task Analysis

7.6.1.
7.6.2.
7.6.3.

Conceptual Design
Prototyping
Hierarchical Task Analysis

The Design Process (IIl): Evaluation

7.7.1.
7.7.2.
7.7.3.
7.7.4.

Evaluation in the Design Process: Objectives and Methods
Evaluation Methods Without Users

Evaluation Methods with Users

Evaluation Standards and Norms

7.8.

7.9.

7.10.

Accessibility: Definition and Guidelines

7.8.1. Accessibility and Universal Design
7.8.2. The WAl Initiative and the WCAG Guidelines
7.8.3. WCAG 2.0 and 2.1 Guidelines

Accessibility: Evaluation and Functional Diversity

7.9.1. Web Accessibility Evaluation Tools

7.9.2. Accessibility and Functional Diversity

The Computer and Interaction: Peripherals and Devices
7.10.1.
7.10.2.
7.10.3.
7.10.4.

Traditional Devices and Peripherals

Alternative Devices and Peripherals

Cell Phones and Tablets

Functional Diversity, Interaction and Peripherals

Module 8. Advanced Programming

8.1.

8.2.

8.3.

Introduction to Object-Oriented Programming

8.1.1. Introduction to Object-Oriented Programming
8.1.2. Class Design
8.1.3. Introduction to UML for Problem Modeling

Relationships Between Classes

8.2.1. Abstraction and Inheritance
8.2.2. Advanced Inheritance Concepts
8.2.3. Polymorphism

8.2.4. Composition and Aggregation

Introduction to Design Patterns for Object-Oriented Problems

8.3.1. What are Design Patterns?
8.3.2. Factory Pattern

8.3.4. Singleton Pattern

8.3.5. Observer Pattern

8.3.6. Composite Pattern

8.4.

8.5.

8.6.

8.7.

8.8.

Structure and Content | 27

Exceptions

8.4.1. What are Exceptions?

8.4.2. Exception Catching and Handling
8.4.3. Throwing Exceptions

8.4.4. Exception Creation

User Interfaces

8.5.1. Introduction to Qt

8.5.2. Positioning

8.53. What Are Events?

8.5.4. Events: Definition and Catching
8.5.5. User Interface Development

Introduction to Concurrent Programming

8.6.1. Introduction to Concurrent Programming

8.6.2. The Concept of Process and Thread

8.6.3. Interaction Between Processes or Threads

8.6.4. Threads in C++

8.6.6. Advantages and Disadvantages of Concurrent Programming

Thread Management and Synchronization

8.7.1. Life Cycle of a Thread

8.7.2. Thread Class

8.7.3. Thread Planning

8.7.4. Thread Groups

8.7.5. Daemon Threads

8.7.6. Synchronization

8.7.7. Locking Mechanisms

8.7.8. Communication Mechanisms

8.7.9. Monitors

Common Problems in Concurrent Programming
8.8.1. The Problem of Consuming Producers
8.8.2. The Problem of Readers and Writers
8.8.3. The Problem of the Philosophers' Dinner Party

tecn

tecn 28| Structure and Content

8.9. Software Documentation and Testing 9.4, Concept of Component-Oriented Programming

8.10.

9.5, Component Architecture

8.10.1. Introduction to Software Testing 951 Current Architectures

8.10.2. Types of Tests 9.5.2. Component Integration and Deployment

8.103. Unit Test 9.6. Frontend Framework: Bootstrap

8.10.4. Integration Test 9.6.1. Grid Design

8.10.5. Validation Test 962 Forms

8.10.6. System Test 9.6.3. Components

9.7.1. Web Development Methods

9.1. HTML5 Markup Lar?guages 972 Design Pattern: MVC

9.11. HTML Basics 9.8. Information Grid Technologies

9.1.2. New HTML 5 Elements 9.8.1. Increased Computing Resources

9.1.3. Forms: New Controls 9.8.2. Concept of Grid Technology
9.2. Introduction to CSS Style Sheets 99 Service-Oriented Architecture

9.21. First Steps with CSS 9.9.1. SOA and Web Services

9.22. Introduction to CSS3 9.9.2. Topology of a Web Service
9.3. Browser Scripting Language: JavaScript 093 Platforms for Web Services

9.3.1. JavaScript Basics 910. HTTP Protocol

932 DOM 9.10.1. Messages

933 FEvents 9.10.2. Persistent Sessions

9.34. JQuery 9.10.3. Cryptographic System

9.3.5. Ajax

8.9.1. Why s it Important to Document Software?

8.9.2.
8.9.3.

Design Documentation
Documentation Tool Use

Software Testing

9.4.1. Context
9.42. Components and Interfaces
9.43. States of a Component

9.10.4. HTTPS Protocol Operation

Module 10. Software Engineering

10.1.

10.2.

10.3.

Introduction to Software Engineering and Modeling
10.1.1. The Nature of Software

10.1.2. The Unique Nature of WebApps
10.1.3. Software Engineering

10.1.4. The Software Process

10.1.5. Software Engineering Practice
10.1.6. Software Myths

10.1.7. How It All Begins

10.1.8. Object-Oriented Concepts

10.1.9. Introduction to UML

The Software Process

10.2.1. A General Process Model

10.2.2. Prescriptive Process Models

10.2.3. Specialized Process Models

10.2.4. The Unified Process

10.2.5. Personal and Team Process Models
10.2.6. What is Agility?

10.2.7. Whatis an Agile Process?

10.2.8. Scrum

10.2.9. Agile Process Toolkit

Principles Guiding Software Engineering Practice
10.3.1. Principles Guiding the Process
10.3.2. Principles Guiding the Practice
10.3.3. Principles of Communication
10.3.4. Planning Principles

10.3.5. Modeling Principles

10.3.6. Construction Principles

10.3.7. Deployment Principles

Structure and Content | 29

10.4. Understanding the Requirements

10.5.

10.6.

10.7.

10.4.1.
10.4.2.
10.4.3.
10.4.4.
10.4.5.
10.4.6.
10.4.7.

Requirements Engineering

Establish the Basis

Inquiry of Requirements

Development of Cases Studies
Elaboration of the Requirements Model
Negotiation of Requirements
Validation of Requirements

Requirements Modeling: Scenarios, Information and Analysis Classes

10.5.1.
10.5.2.
10.5.3.
10.5.4.
10.5.5.
10.5.6.

Analysis of Requirements
Scenario-Based Modeling

UML Models that provide the Case Study
Data Modeling Concepts

Class-Based Modeling

Class Diagrams

Requirements Modeling: Flow, Behavior and Patterns

10.6.1.
10.6.2.
10.6.3.
10.6.4.
10.6.5.
10.6.6.
10.6.7.

Requirements that Shape Strategies
Flow-Oriented Modeling

Status Diagrams

Creation of a Behavioral Model
Sequence Diagrams
Communication Diagrams

Patterns for Requirements Modeling

Design Concepts

10.7.1.
10.7.2.
10.7.3.
10.7.4.
10.7.5.

Design in the Software Engineering Context
The Design Process

Design Concepts

Object-Oriented Design Concepts

Model of the Design

tecn

tecn 30| Structure and Content

10.8. Designing the Architecture:

10.9.

10.8.1.
10.8.2.
10.8.3.
10.8.4.
10.8.5.
10.8.6.

Software Architecture

Architectural Genres

Architectural Styles

Architectural Design

Evolution of Alternative Designs for Architecture
Mapping the Architecture Using the Data Flow

Component-Level and Pattern-Based Design

10.9.1.
10.9.2.
10.9.3.
10.9.4.
10.9.5.
10.9.6.
10.9.7.
10.9.8.
10.9.9.

What is a Component?

Class-Based Component Design

Realization of the Design at the Component Level
Design of Traditional Components
Component-Based Development

Design Patterns

Pattern-Based Software Design

Architectural Patterns

Design Patterns at the Component Level

10.9.10. User Interface Design Patterns

31 tecn

10.10. Software Quality and Project Management
10.10.7. Quality
10.10.2. Software Quality
10.10.3. The Software Quality Dilemma
10.10.4. Achieving Software Quality
10.10.5. Software Quality Assurance
10.10.6. The Administrative Spectrum
10.10.7. The Staff
10.10.8. The product
10.10.9. The Process
10.10.10. The Project
10.10.11. Principles and Practices

A unique, key, and decisive
educational experience to boost
your professional development”

05
Methodology

This academic program offers students a different way of learning. Our methodology

uses a cyclical learning approach: Relearning.

This teaching system is used, for example, in the most prestigious medical schools in
the world, and major publications such as the New England Journal of Medicine have
considered it to be one of the most effective.

Methodology | 33 tec’.

Discover Relearning, a system that abandons
conventional linear learning, to take you through
cyclical teaching systems: a way of learning that
has proven to be extremely effective, especially in
subjects that require memorization”

tecn 34| Methodology

Case Study to contextualize all content

Our program offers a revolutionary approach to developing skills and

knowledge. Our goal is to strengthen skills in a changing, competitive, and
highly demanding environment.

At TECH, you will experience a learning
methodology that is shaking the
foundations of traditional universities
around the world"

You will have access to a

learning system based on repetition,
with natural and progressive teaching
throughout the entire syllabus.

The student will learn to solve
complex situations in real business
environments through collaborative
activities and real cases.

Methodology |35 tecn

A learning method that is different and innovative

This TECH program is an intensive educational program, created from scratch,
which presents the most demanding challenges and decisions in this field,
both nationally and internationally. This methodology promotes personal and
professional growth, representing a significant step towards success. The case
method, a technique that lays the foundation for this content, ensures that the
most current economic, social and professional reality is taken into account.

Our program prepares you to face new
challenges in uncertain environments
and achieve success in your career”

The case method has been the most widely used learning system among the world's
leading Information Technology schools for as long as they have existed. The case
method was developed in 1912 so that law students would not only learn the law
based on theoretical content. It consisted of presenting students with real-life, complex
situations for them to make informed decisions and value judgments on how to resolve
them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you are
presented with in the case method, an action-oriented learning method. Throughout the
course, students will be presented with multiple real cases. They will have to combine
all their knowledge and research, and argue and defend their ideas and decisions.

tecn 36| Methodology

Relearning Methodology

TECH effectively combines the Case Study methodology with a 100%
online learning system based on repetition, which combines different
teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching
method: Relearning.

In 2079, we obtained the best learning

results of all online universities in the world.

At TECH, you will learn using a cutting-edge methodology designed
to train the executives of the future. This method, at the forefront of
international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this
successful method. In 2019, we managed to improve our students'
overall satisfaction levels (teaching quality, quality of materials, course
structure, objectives...) based on the best online university indicators.

learning
from an
expert

37 tecn

In our program, learning is not a linear process, but rather a spiral (learn, unlearn,
forget, and re-learn). Therefore, we combine each of these elements concentrically.
This methodology has trained more than 650,000 university graduates with
unprecedented success in fields as diverse as biochemistry, genetics, surgery,
international law, management skills, sports science, philosophy, law, engineering,
journalism, history, and financial markets and instruments. All this in a highly
demanding environment, where the students have a strong socio-economic profile
and an average age of 43.5 years.

Relearning will allow you to learn with less effort and
better performance, involving you more in your training,
developing a critical mindset, defending arguments, and
contrasting opinions: a direct equation for success.

From the latest scientific evidence in the field of neuroscience, not only do we know
how to organize information, ideas, images and memories, but we know that the
place and context where we have learned something is fundamental for us to be able
to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the
different elements in our program are connected to the context where the individual
carries out their professional activity.

tecn 38| Methodology

This program offers the best educational material, prepared with professionals in mind:

Study Material

All teaching material is produced by the specialists who teach the course, specifically
for the course, so that the teaching content is highly specific and precise.

>

These contents are then adapted in audiovisual format, to create the TECH online
working method. All this, with the latest techniques that offer high-quality pieces in each
and every one of the materials that are made available to the student.

Classes

There is scientific evidence suggesting that observing third-party experts can be
useful.

Learning from an Expert strengthens knowledge and memory, and generates
confidence in future difficult decisions.

Practising Skills and Abilities

They will carry out activities to develop specific competencies and skills in each
thematic area. Exercises and activities to acquire and develop the skills and abilities
that a specialist needs to develop in the context of the globalization that we are
experiencing.

Additional Reading

Recent articles, consensus documents and international guidelines, among others. In
\l/ TECH's virtual library, students will have access to everything they need to complete their
course.

Methodology |39 techn

Case Studies

Students will complete a selection of the best case studies chosen specifically
for this program. Cases that are presented, analyzed, and supervised by the best
specialists in the world.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia
lessons that include audio, videos, images, diagrams, and concept maps in order to
reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded
by Microsoft as a "European Success Story".

Testing & Retesting

We periodically evaluate and re-evaluate students’ knowledge throughout the
program, through assessment and self-assessment activities and exercises, so that
they can see how they are achieving their goals.

06
Certificate

The Professional Master's Degree in Software Development guarantees students,
in addition to the most rigorous and up-to-date education, access to a Professional
Master's Degree issued by TECH Technological University.

Certificate | 41 tec’,

Successfully complete this program and
receive your university qualification without
having to travel or fill out laborious paperwork”

56

tECh 42 | Certificate

This Professional Master's Degree in Software Development contains the most
complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding
Professional Master’s Degree issued by TECH Technological University via tracked
delivery*.

[]
t e C technological
» university

Awards the following

CERTIFICATE

to

Mr/Ms. ____________________, withidentificationnumber ________ .
For having successfully passed and accredited the following program

PROFESSIONAL MASTER'S DEGREE
in
Software Development

This is a qualification awarded by this University, equivalent to 1,500 hours, with a start date of
dd/mm/yyyy and an end date of dd/mm/yyyy.

TECH is a Private Institution of Higher Education recognized by the Ministry of Public Education as
of June 28, 2018.

June 17,2020

Tere Guevara Navarro
Dean

Unique TECH Code: AFWORD23S _techitute.comycertficates

The certificate issued by TECH Technological University will reflect the qualification
obtained in the Professional Master's Degree, and meets the requirements commonly
demanded by labor exchanges, competitive examinations, and professional career
evaluation committees.

Title: Professional Master’s Degree in Software Development
Official N° of Hours: 1,500 h.

Professional Master's Degree in Software Development

General Structure of the Syllabus

Subject type Hours Year Subject Hours Type
Compulsory (CO) 1,500 1° Programming Fundamentals 150 co
Optional (OP) 0 10 Data Structure 150 co
External Work Placement (WP) 0 10 Algorithm and Complexity 150 co
Master’s Degree Thesis (MDT) 0 10 Databases 150 co
Total 1,500 1 Advanced Databases 150 co

1o Advanced Algorithm Design 150 co

1° Human-Computer Interaction 150 co

1 Advanced Programming 150 co

1 Development of Web Applications 150 co

1° Software Engineering 150 co

IR

.
te C technological
» university

Tere Guevara Navarro
Dean

*Apostille Convention. In the event that the student wishes to have their paper certificate issued, with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

Q
t e C technological
» university

Professional Master’s Degree
Software Development

» Modality: online

» Duration: 12 months

» Certificate: TECH Technological University
» Dedication: 16h/week

» Schedule: at your own pace

» Exams: online

Professional Master’'s Degree
Software Development

- e — -

. - ey .
_— t e C technological
S S A » university

