

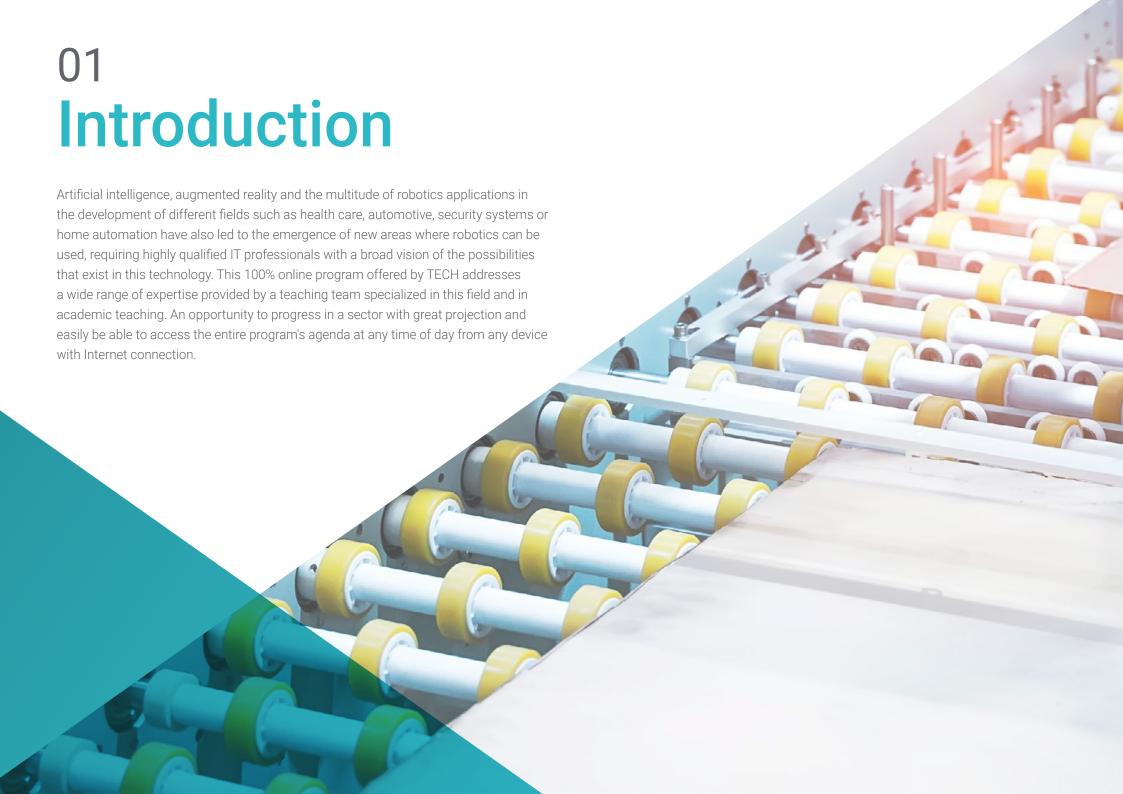
Master's Degree Robotics

» Modality: online

» Duration: 12 months

» Certificate: TECH Global University

» Credits: 60 ECTS


» Schedule: at your own pace

» Exams: online

Website: www.techtitute.com/us/information-technology/master-degree/master-robotics

Index

01		02			
Introduction		Objectives			
	p. 4		p. 8		
03		04		05	
Skills		Course Management		Structure and Content	
	p. 14		p. 18		p. 26
		06		07	
		Methodology		Certificate	
			p. 38		p. 46

tech 06 | Introduction

Robotics is part of our daily lives. Machines are not only present in the industrial sector, which has grown enormously thanks to technical and scientific advances, but robotics has also been brought closer to the public. It is no longer rare to see how any person with any kind of qualifications can drive a drone, have virtual glasses to immerse themselves in the latest video game or see houses equipped with this technology that solves all kinds of problems.

Robotics is a common term, current and with a broad future for IT professionals who wish to specialize in an area with great growth possibilities. This Master's Degree provides extensive knowledge that will allow students to acquire learning in Augmented Reality, Artificial Intelligence, aerospace or industrial technology fields. All this will allow students to access companies in different sectors or create their own robotics projects.

In this 100% online program, in order for students to achieve their goal, TECH has brought together a team of specialized professionals with extensive experience in prestigious international projects in the Robotics field. This teaching staff provides IT professionals with a theoretical-practical approach, where they will not only learn about the latest developments in Robotics, but will also be able to learn about its application in real environments.

An excellent opportunity to progress with a qualification that, from the very beginning, provides a complete syllabus composed of video summaries, essential readings, detailed videos and self-command exercises. This way, students will acquire a global vision of Robotics in a convenient way, as they will be able to access all the content whenever they wish and distribute the teaching load according to their personal needs. This will allow students to balance academic learning at the forefront of their field of study with their personal responsibilities.

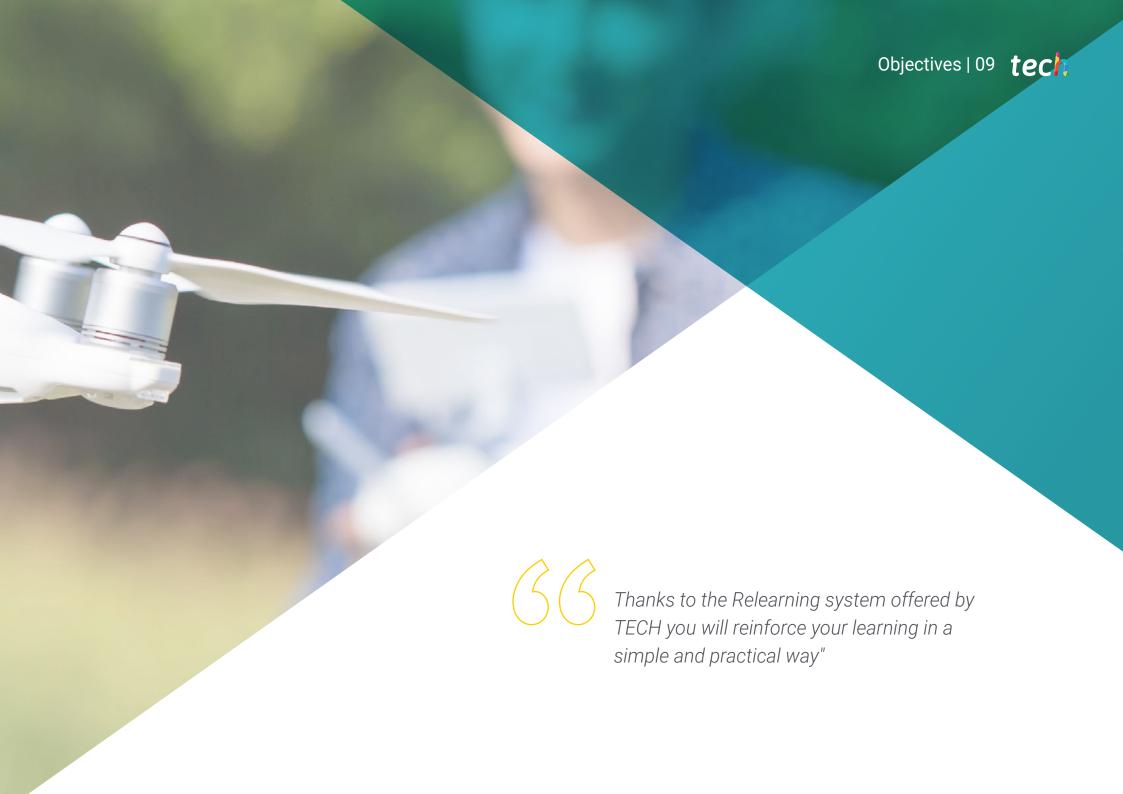
This **Master's Degree in Robotics** contains the most complete and up-to-date program on the market. The most important features include:

- Development of case studies presented by experts in robotic engineering
- The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice
- Practical exercises where self-assessment can be used to improve learning
- Its special emphasis on innovative methodologies
- Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
- Content that is accessible from any fixed or portable device with an Internet connection

Connect whenever you want, at any time to all the content of this university program. TECH adapts to you"

The program's teaching staff includes professionals from the sector who contribute their work experience to this educational program, as well as renowned specialists from leading societies and prestigious universities.

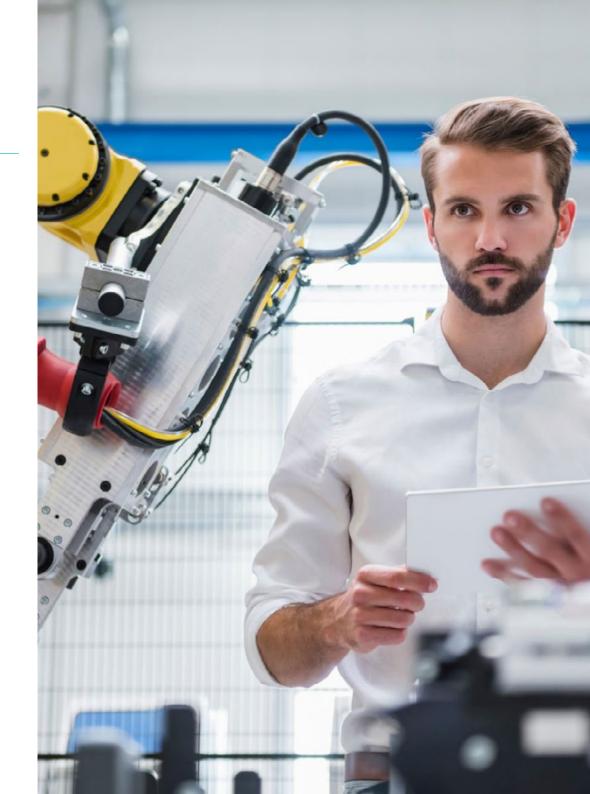
The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to learn in real situations.


This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the academic year This will be done with the help of an innovative system of interactive videos made by renowned experts.

Develop clean and efficient PLC programming techniques with this university qualification.

Master the most advanced robotics thanks to this program's approach on hardware and software agents.

tech 10 | Objectives



General Objectives

- Understand the mathematical foundations for kinematic and dynamic modeling of robots
- Delve into the use of specific technologies for the creation of robot architectures, robot modeling and simulation
- Generate specialized knowledge on Artificial Intelligence
- Develop the technologies and devices most commonly used in industrial automation
- Identify the limits of current techniques to identify bottlenecks in robotic applications

You will have the necessary tools to start your own robotics project. Enroll now"

Module 1. Robotics Robot Design and Modeling

- Delve into the use of Gazebo Simulation Technology
- Master the use of the URDF Robot Modeling language
- Develop specialized knowledge in the use of Robot Operating System technology
- Model and simulate manipulator robots, land mobile robots, air mobile robots and model and simulate aquatic mobile robots

Module 2. Intelligent Agents Applying Artificial Intelligence to Robots and Softbots

- Analyze the biological inspiration of Artificial Intelligence and intelligent agents
- Assess the need for intelligent algorithms in today's society
- Determine the applications of advanced Artificial Intelligence techniques on Intelligent Agents
- Demonstrate the strong connection between Robotics and Artificial Intelligence
- Establish the needs and challenges presented by Robotics that can be solved with Intelligent Algorithms
- Develop concrete implementations of Artificial Intelligence Algorithms
- Identify Artificial Intelligence algorithms that are established in today's society and their impact on daily life

Module 3. Robotics in the Automation of Industrial Processes

- Analyze the use, applications and limitations of industrial communication networks
- Establish machine safety standards for correct design
- Develop clean and efficient programming techniques in PLCs
- Propose new ways of organizing operations using state machines
- Demonstrate the implementation of control paradigms in real PLC applications
- Fundamentalize the design of pneumatic and hydraulic installations in automation
- Identify the main sensors and actuators in robotics and automation

Module 4. Automatic Control Systems in Robotics

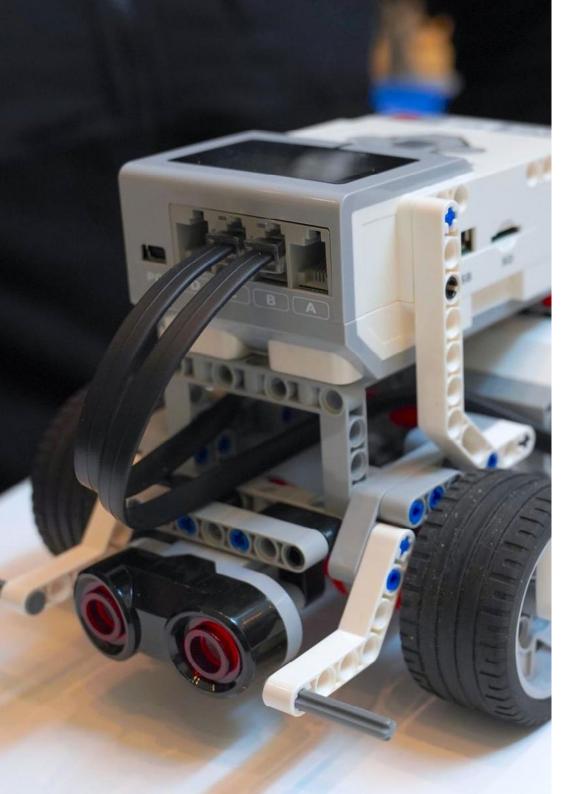
- Generate specialized knowledge for the design of nonlinear controllers
- Analyze and study control problems
- Master control models
- Design nonlinear controllers for robotic systems
- Implement controllers and assess them in a simulator
- Determine the different existing control architectures
- Examine the fundamentals of vision control
- Develop state-of-the-art control techniques such as predictive control or machine learning based control

tech 12 | Objectives

Module 5. Robot Planning Algorithms

- Establish the different types of planning algorithms
- Analyze the complexity of motion planning in robotics
- Develop techniques for environment modeling
- Examine the pros and cons of different planning techniques
- Analyze centralized and distributed algorithms for robot coordination
- Identify the different elements in decision theory
- Propose learning algorithms for solving decision problems

Module 6. Artificial Vision Techniques in Robotics: Image Processing and Analysis


- Analyze and understand the importance of vision systems in robotics
- Establish the characteristics of the different perception sensors in order to choose the most appropriate ones according to the application
- Determine the techniques for extracting information from sensor data
- Apply visual information processing tools
- Design digital image processing algorithms
- Analyze and predict the effect of parameter changes on algorithm performance
- Assess and validate the developed algorithms in terms of results

Module 7. Robot Visual Perception Systems with Automatic Learning

- Master the machine learning techniques most widely used today in academia and industry
- Delve into the architectures of neural networks to apply them effectively in real problems
- Reuse existing neural networks in new applications using transfer learning
- Identify new fields of application of generative neural networks
- Analyze the use of learning techniques in other fields of robotics such as localization and mapping
- Develop current technologies in the cloud to develop neural network-based technologies
- Examine the deployment of vision learning systems in real and embedded systems

Module 8. Visual SLAM Robot Localization and Simultaneous Mapping by Computer Vision Techniques

- Specify the basic structure of a Simultaneous Localization and Mapping (SLAM) system
- Identify the basic sensors used in Simultaneous Localization and Mapping (visual SLAM)
- Establish the boundaries and capabilities of visual SLAM
- Compile the basic notions of projective and epipolar geometry to understand imaging projection processes
- Identify the main visual SLAM technologies: Gaussian Filters, Optimization and Loop Closure Detection
- Describe in detail the operation of the main visual SLAM algorithms
- Analyze how to carry out the tuning and parameterization of SLAM algorithms

Module 9. Application of Virtual and Augmented Reality Technologies to Robotics

- Determine the difference among the different types of realities
- Analyze the current standards for modeling virtual elements
- Examine the most commonly used peripherals in immersive environments
- Define geometric models of robots
- Assess physics engines for dynamic and kinematic modeling of robots
- Develop Virtual Reality and Augmented Reality projects

Module 10. Robot Communication and Interaction Systems

- Analyze current natural language processing strategies: heuristic, stochastic, neural network-based, reinforcement-based learning
- Assess the benefits and weaknesses of developing cross-cutting, or situationfocused, interaction systems
- Identify the environmental problems to be solved in order to achieve effective communication with the robot
- Establish the tools needed to manage the interaction and discern the type of dialogue initiative to be pursued
- Combine pattern recognition strategies to infer the intentions of the interlocutor and respond in the best way to them
- Determine the optimal expressiveness of the robot according to its functionality and environment, and apply emotional analysis techniques to adapt its response
- Propose hybrid strategies for interaction with the robot: vocal, tactile and visual

tech 16 | Skills

General Skills

- Master today's most widely used virtualization tools in use today
- Design virtual robotic environments
- Examine the techniques and algorithms underlying any Al algorithm
- Design, develop, implement and validate perceptual systems for robotics

Specific Skills

- Identify multimodal interaction systems and their integration with the rest of the robot components
- Implement own virtual and augmented reality projects
- Propose applications in real systems
- Examine, analyze and develop existing methods for path planning by a mobile robot and a manipulator
- Analyze and define strategies for the implementation and maintenance of perception systems
- Determine strategies for integration of a dialog system as part of basic robot behavior
- Analyze programming and device configuration skills
- Examine control strategies used in different robotic systems

International Guest Director

Seshu Motamarri is an expert in automation and robotics with more than 20 years of experience in various industries such as e-commerce, automotive, oil and gas, food and pharmaceutical. Throughout his career, he has specialized in engineering management and innovation and in the implementation of new technologies, always looking for scalable and efficient solutions. He has also made important contributions in the introduction of products and solutions that optimize both safety and productivity in complex industrial environments.

He has also held key positions, including Senior Director of Automation and Robotics at 3M, where he leads cross-functional teams to develop and implement advanced automation solutions. At Amazon, his role as Technical Lead led him to manage projects that significantly improved the global supply chain, such as the "SmartPac" semi-automated bagging system and the robotic smart picking and stowage solution. His skills in project management, operational planning and product development have enabled him to generate great results in large-scale projects.

Internationally, he is recognized for his achievements in IT. He has been awarded the prestigious Amazon Door Desk Award by Jeff Bezos, and has received the Excellence in Manufacturing Safety Award, reflecting his hands-on engineering approach. In addition, he has been a "Bar Raiser" at Amazon, participating in over 100 interviews as an objective evaluator in the hiring process.

In addition, he has several patents and publications in electrical engineering and functional safety, reinforcing his impact on the development of advanced technologies. His projects have been implemented globally, with highlights in regions such as North America, Europe, Japan and India, where he has driven the adoption of sustainable solutions in the industrial and e-commerce sectors.

Mr. Motamarri, Seshu

- Senior Director of Global Manufacturing Technology at 3M, Arkansas, United States
- Director of Automation and Robotics at Tyson Foods
- Hardware Development Manager III at Amazon
- Automation Leader at Corning Incorporated
- Founder and member of Quest Automation LLC
- Master of Science (MS), Electrical and Electronics Engineering at University of Houston
- Bachelor of Engineering (B.E.), Electrical and Electronics Engineering, University of Andhra
- Certification in Machinery, TÜV Rheinland Group

Management

Dr. Ramón Fabresse, Felipe

- Senior Software Engineer at Acurable
- NLP Software Engineer at Intel Corporation
- Software Engineer in CATEC, Indisys
- Researcher in Aerial Robotics at the University of Seville
- PhD Cum Laude in Robotics, Autonomous Systems and Telerobotics at the University of Seville
- Degree in Computer Engineering at the University of Seville
- Master's Degree in Robotics, Automation and Telematics at the University of Seville

Professors

Mr. Campos Ortiz, Roberto

- Software Engineer, Quasar Scence Resources
- Software Engineer at the European Space Agency (ESA-ESAC) for the Solar Orbiter mission
- Content creator and Artificial Intelligence expert in the course: "Artificial Intelligence: The technology of the present-future" for the Andalusian Regional Government.
 Euroformac Group
- Scientist in Quantum Computing, Zapata Computing Inc
- Graduated in Computer Engineering at Carlos III University
- Master's Degree in Computer Science and Technology at Carlos III University

Dr. Íñigo Blasco, Pablo

- Software Engineer at PlainConcepts
- Founder of Intelligent Behavior Robots
- Robotics Engineer at CATEC Advanced Center for Aerospace Technologies
- Developer and consultant at Syderis
- PhD in Industrial Informatics Engineering at the University of Seville
- Degree in Computer Engineering at the University of Seville
- Master in Software Engineering and Technology

Dr. Alejo Teissière, David

- Telecommunications Engineer.with Specialization in Robotics
- Postdoctoral researcher in the European projects SIAR and NIx ATEX at Pablo de Olavide University
- Systems developer at Aertec
- PhD in Automation, Robotics and Telematics at the University of Seville
- Graduated in Telecommunication Engineering at the University of Seville
- Master's Degree in Automation, Robotics and Telematics from the University of Seville

Dr. Pérez Grau, Francisco Javier

- Head of the Perception and Software Unit at CATEC
- R&D Project Manager at CATEC
- R&D Project Engineer at CATEC
- Associate Professor at the University of Cadiz
- Associate Professor at the University International of Andalucia
- Researcher in the Robotics and Perception group at the University of Zurich
- Researcher at the Australian Centre for Field Robotics at the University of Sydney
- PhD in Robotics and Autonomous Systems from the University of Seville
- Graduate in Telecommunications Engineering and Computer and Network Engineering from the University of Seville

Mr. Rosado Junquera, Pablo J.

- Engineer Specialist in Robotics and Automatization
- R&D Automation and Control Engineer at Becton Dickinson & Company
- Amazon Logistic Control Systems Engineer at Dematic
- Automation and Control Engineer at Aries Ingeniería y Sistemas
- Graduate in Energy and Materials Engineering at Rey Juan Carlos University
- Master's Degree in Robotics and Automation at the Polytechnic University of Madrid
- Master's Degree in Industrial Engineering at the University of Alcalá

Dr. Jiménez Cano, Antonio Enrique

- Engineer at Aeronautical Data Fusion Engineer
- Researcher in European projects (ARCAS, AEROARMS and AEROBI) at the University of Seville
- Researcher in Navigation Systems at CNRS-LAAS
- LAAS MBZIRC2020 System Developer
- Group of Robotics, Vision and Control (GRVC) of the University of Seville
- PhD in Automatics, Electronics and Telecommunications at the University of Seville
- Graduated in Automatic Engineering and Industrial Electronics at the University of Seville
- Degree in Technical Engineering in Computer Systems at the University of Seville

tech 24 | Course Management

Dr. Ramon Soria, Pablo

- Computational Vision Engineer at Meta
- Applied Science Team Leader and Senior Software Engineer at Vertical Engineering Solutions
- CEO and founder of Domocracy
- ACFR Researcher (Australia)
- Researcher in the GRIFFIN and HYFLIERS projects at the University of Seville
- PhD in Computational Vision for Robotics at the University of Seville
- Graduated in Industrial Engineer, Robotics and Automatization from University of Seville

Dr. Caballero Benítez, Fernando

- Researcher in the European projects COMETS, AWARE, ARCAS and SIAR
- Degree in Telecommunications Engineering from the University of Seville
- PhD in Telecommunications Engineering at the University of Seville
- Full Professor of Systems Engineering and Automatics at the University of Seville
- Associate editor of the journal Robotics and Automation Letters

Course Management | 25 tech

Dr. Lucas Cuesta, Juan Manuel

- Senior Software Engineer and Analyst at Indizen Believe in Talent
- Senior Software Engineer and Analyst at Krell Consulting and IMAGiNA Artificial Intelligence
- Software Engineer at Intel Corporation
- Software Engineer at Intelligent Dialogue Systems
- PhD's Degree in Electronic Systems Engineering for Intelligent Environments at the Polytechnic University of Madrid
- Graduate in Telecommunications Engineering at the Polytechnic University of Madrid
- Master's Degree in Electronic Systems Engineering for Intelligent Environments at the Polytechnic University of Madrid

Enroll now and don't miss the opportunity to delve into the application of robotics to virtual and augmented reality technologies, with virtual sensors and mixed mobile applications"

tech 28 | Structure and Content

Module 1. Robotics. Robot Design and Modeling

- 1.1. Robotics and Industry 4.0
 - 1.1.1. Robotics and Industry 4.0
 - 1.1.2. Application Fields and Use Cases
 - 1.1.3. Sub-Areas of Specialization in Robotics
- 1.2. Robot Hardware and Software Architectures
 - 1.2.1. Hardware Architectures and Real-Time
 - 1.2.2. Robot Software Architectures
 - 1.2.3. Communication Models and Middleware Technologies
 - 1.2.4. Robot Operating System (ROS) Software Integration
- 1.3. Mathematical Modeling of Robots
 - 1.3.1. Mathematical Representation of Rigid Solids
 - 1.3.2. Rotations and Translations
 - 1.3.3. Hierarchical State Representation
 - 1.3.4. Distributed Representation of the State in ROS (TF Library)
- 1.4. Robot Kinematics and Dynamics
 - 1.4.1. Kinematics
 - 1.4.2. Dynamics
 - 1.4.3. Underactuated Robots
 - 1.4.4. Redundant Robots
- 1.5. Robot Modeling and Simulation
 - 1.5.1. Robot Modeling Technologies
 - 1.5.2. Robot Modeling with URDF
 - 153 Robot Simulation
 - 1.5.4. Modeling with Gazebo Simulator
- 1.6. Robot Manipulators
 - 1.6.1. Types of Manipulator Robots
 - 1.6.2. Kinematics
 - 1.6.3. Dynamics
 - 1.6.4. Simulation

- 1.7. Terrestrial Mobile Robots
 - 1.7.1. Types of Terrestrial Mobile Robots
 - 1.7.2. Kinematics
 - 1.7.3. Dynamics
 - 1.7.4. Simulation
- 1.8. Aerial Mobile Robots
 - 1.8.1. Types of Aerial Mobile Robots
 - 1.8.2. Kinematics
 - 1.8.3. Dynamics
 - 1.8.4. Simulation
- 1.9. Aquatic Mobile Robots
 - 1.9.1. Types of Aquatic Mobile Robots
 - 1.9.2. Kinematics
 - 1.9.3. Dynamics
 - 1.9.4. Simulation
- 1.10. Bioinspired Robots
 - 1.10.1. Humanoids
 - 1.10.2. Robots with Four or More Legs
 - 1.10.3. Modular Robots
 - 1.10.4. Robots with Flexible Parts (Soft-Robotics)

Module 2. Intelligent Agents. Application of Artificial Intelligence to Robots and Softbots

- 2.1. Intelligent Agents and Artificial Intelligence
 - 2.1.1. Intelligent Robots. Artificial Intelligence
 - 2.1.2. Intelligent Agents
 - 2.1.2.1. Hardware Agents. Robots
 - 2.1.2.2. Software Agents. Softbots
 - 2.1.3. Robotics Applications

Structure and Content | 29 tech

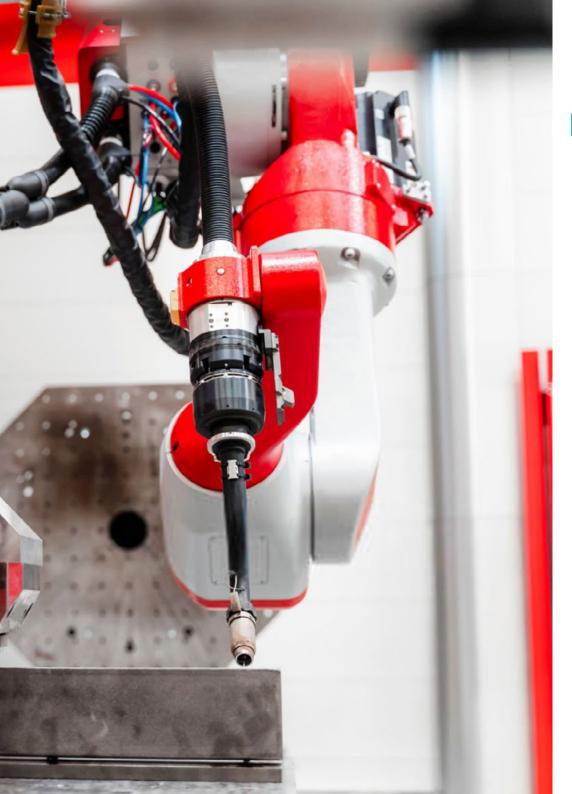
\circ	Drain /	\ laorithm	Cann	ootion
2.2.	Brain-A	Alaorithm	Com	ecuon

- 2.2.1. Biological Inspiration of Artificial Intelligence
- 2.2.2. Reasoning Implemented in Algorithms. Typology
- 2.2.3. Demonstrability of Results in Artificial Intelligence Algorithms
- 2.2.4. Evolution of Algorithms up to Deep Learning
- 2.3. Search Algorithms in the Solution Space
 - 2.3.1. Elements in Solution Space Searches
 - 2.3.2. Solution Search Algorithms in Artificial Intelligence Problems
 - 2.3.3. Applications of Search and Optimization Algorithms
 - 2.3.4. Search Algorithms Applied to Machine Learning
- 2.4. Machine Learning
 - 2.4.1. Machine Learning
 - 2.4.2. Supervised Learning Algorithms
 - 2.4.3. Unsupervised Learning Algorithms
 - 2.4.4. Reinforcement Learning Algorithms
- 2.5. Supervised Learning
 - 2.5.1. Supervised Learning Methods
 - 2.5.2. Decision Trees for Classification
 - 2.5.3. Support Vector Machines
 - 2.5.4. Artificial Neural Networks
 - 2.5.5. Applications of Supervised Learning
- 2.6. Unsupervised Learning
 - 2.6.1. Unsupervised Learning
 - 2.6.2. Kohonen Networks
 - 2.6.3. Self-Organizing Maps
 - 2.6.4. K-Means Algorithm
- 2.7. Reinforcement Learning
 - 2.7.1. Reinforcement Learning
 - 2.7.2. Agents Based on Markov Processes
 - 2.7.3. Reinforcement Learning Algorithms
 - 2.6.4. Reinforcement Learning Applied to Robotics

2.8. Artificial Neural Networks and Deep Learning

- 2.8.1. Artificial Neural Networks. Typology
- 2.8.2. Applications of Neural Networks
- 2.8.3. Transformation from Machine Learning to Deep Learning
- 2.8.4. Deep Learning Applications
- 2.9. Probabilistic Inference
 - 2.9.1. Probabilistic Inference
 - 2.9.2. Types of Inference and Method Definition
 - 2.9.3. Bayesian Inference as a Case Study
 - 2.9.4. Nonparametric Inference Techniques
 - 2.9.5. Gaussian Filters
- 2.10. From Theory to Practice: Developing an Intelligent Robotic Agent
 - 2.10.1. Inclusion of Supervised Learning Modules in a Robotic Agent
 - 2.10.2. Inclusion of Reinforcement Learning Modules in a Robotic Agent
 - 2.10.3. Architecture of a Robotic Agent Controlled by Artificial Intelligence
 - 2.10.4. Professional Tools for the Implementation of the Intelligent Agent
 - 2.10.5. Phases of the Implementation of AI Algorithms in Robotic Agents

Module 3. Robotics in the Automation of Industrial Processes


- 3.1. Design of Automated Systems
 - 3.1.1. Hardware Architectures
 - 3.1.2. Programmable Logic Controllers
 - 3.1.3. Industrial Communication Networks
- 3.2. Advanced Electrical Design I: Automation
 - 3.2.1. Design of Electrical Panels and Symbology
 - 3.2.2. Power and Control Circuits. Harmonics
 - 3.2.3. Protection and Grounding Elements
- 3.3. Advanced Electrical Design II: Determinism and Safety
 - 3.3.1. Machine Safety and Redundancy
 - 3.3.2. Safety Relays and Triggers
 - 3.3.3. Safety PLCs
 - 3.3.4. Safe Networks

tech 30 | Structure and Content

0 4	-		Λ .	
3 4	\vdash	ectrical	Acti	Jation

- 3.4.1. Motors and Servomotors
- 3.4.2. Frequency Inverters and Controllers
- 3.4.3. Electrically Actuated Industrial Robotics
- 3.5. Hydraulic and Pneumatic Actuation
 - 3.5.1. Hydraulic Design and Symbology
 - 3.5.2. Pneumatic Design and Symbology
 - 3.5.3. ATEX Environments in Automation
- 3.6. Transducers in Robotics and Automation
 - 3.6.1. Position and Velocity Measurement
 - 3.6.2. Force and Temperature Measurement
 - 3.6.3. Presence Measurement
 - 3.6.4. Vision Sensors
- 3.7. Programming and Configuration of Programmable Logic Controllers PLCs
 - 3.7.1. PLC Programming: LD
 - 3.7.2. PLC Programming: ST
 - 3.7.3. PLC Programming: FBD and CFC
 - 3.7.4. PLC Programming: SFC
- 3.8. Programming and Configuration of Equipment in Industrial Plants
 - 3.8.1. Programming of Drives and Controllers
 - 3.8.2. HMI Programming
 - 3.8.3. Programming of Manipulator Robots
- 3.9. Programming and Configuration of Industrial Computer Equipment
 - 3.9.1. Programming of Vision Systems
 - 3.9.2. SCADA/Software Programming
 - 3.9.3. Network Configuration
- 3.10. Automation Implementation
 - 3.10.1. State Machine Design
 - 3.10.2. Implementation of State Machines in PLCs
 - 3.10.3. Implementation of Analog PID Control Systems in PLCs
 - 3.10.4. Automation Maintenance and Code Hygiene
 - 3.10.5. Automation and Plant Simulation

Structure and Content | 31 tech

Module 4. Automatic Control Systems in Robotics

- 4.1. Analysis and Design of Nonlinear Systems
 - 4.1.1. Analysis and Modeling of Nonlinear Systems
 - 4.1.2. Feedback Control
 - 4.1.3. Linearization by Feedback
- 4.2. Design of Control Techniques for Advanced Non-linear Systems
 - 4.2.1. Sliding Mode control
 - 4.2.2. Lyapunov and Backstepping Control
 - 4.2.3. Control Based on Passivity
- 4.3. Control Architectures
 - 4.3.1. The Robotics Paradigm
 - 4.3.2. Control Architectures
 - 4.3.3. Applications and Examples of Control Architectures
- 4.4. Motion Control for Robotic Arms
 - 4.4.1. Kinematic and Dynamic Modeling
 - 4.4.2. Control in Joint Space
 - 4.4.3. Control in Operational Space
- 4.5. Actuator Force Control
 - 4.5.1. Force Control
 - 4.5.2. Impedance Control
 - 4.5.3. Hybrid Control
- 4.6. Terrestrial Mobile Robots
 - 4.6.1. Equations of Motion
 - 4.6.2. Control Techniques for Terrestrial Robots
 - 4.6.3. Mobile Manipulators
- 4.7. Aerial Mobile Robots
 - 4.7.1. Equations of Motion
 - 4.7.2. Control Techniques in Aerial Robots
 - 4.7.3. Aerial Manipulation
- 4.8. Control Based on Machine Learning Techniques
 - 4.8.1. Control Using Supervised Learning
 - 4.8.2. Control Using Reinforced Learning
 - 4.8.3. Control Using Non-Supervised Learning

tech 32 | Structure and Content

- 4.9. Vision-Based Control
 - 4.9.1. Position-Based Visual Servoing
 - 4.9.2. Image-Based Visual Servoing
 - 4.9.3. Hybrid Visual Servoing
- 4.10. Predictive Control
 - 4.10.1. Models and State Estimation
 - 4.10.2. MPC Applied to Mobile Robots
 - 4.10.3. MPC Applied to UAVs

Module 5. Planning Algorithms in Robots

- 5.1. Classical Planning Algorithms
 - 5.1.1. Discrete Planning: State Space
 - 5.1.2. Planning Problems in Robotics. Robotic Systems Models
 - 5.1.3. Classification of Planners
- 5.2. The Trajectory Planning Problem in Mobile Robots
 - 5.2.1. Forms of Environment Representation: Graphs
 - 5.2.2. Search Algorithms in Graphs
 - 5.2.3. Introduction of Costs in Networks
 - 5.2.4. Search Algorithms in Heavy Networks
 - 5.2.5. Algorithms with any Angle Approach
- 5.3. Planning in High Dimensional Robotic Systems
 - 5.3.1. High Dimensionality Robotics Problems: Manipulators
 - 5.3.2. Direct/Inverse Kinematic Model
 - 5.3.3. Sampling Planning Algorithms PRM and RRT
 - 5.3.4. Planning Under Dynamic Constraints
- 5.4. Optimal Sampling Planning
 - 5.4.1. Problem of Sampling-Based Planners
 - 5.4.2. RRT* Probabilistic Optimality Concept
 - 5.4.3. Reconnection Step: Dynamic Constraints
 - 5.4.4. CForest. Parallelizing Planning

- 5.5. Real Implementation of a Motion Planning System
 - 5.5.1. Global Planning Problem. Dynamic Environments
 - 5.5.2. Cycle of Action, Sensorization. Acquisition of Information from the Environment
 - 5.5.3. Local and Global Planning
- 5.6. Coordination in Multi-Robot Systems I: Centralized System
 - 5.6.1. Multirobot Coordination Problem
 - 5.6.2. Collision Detection and Resolution: Trajectory Modification with Genetic Algorithms
 - 5.6.3. Other Bio-Inspired Algorithms: Particle Swarm and Fireworks
 - 5.6.4. Collision Avoidance by Choice of Maneuver Algorithm
- 5.7. Coordination in Multi-Robot Systems II: Distributed Approaches I
 - 5.7.1. Use of Complex Objective Functions
 - 5.7.2. Pareto Front
 - 5.7.3. Multi-Objective Evolutionary Algorithms
- 5.8. Coordination in Multi-Robot Systems III: Distributed Approaches II
 - 5.8.1. Order 1 Planning Systems
 - 5.8.2. ORCA Algorithm
 - 5.8.3. Addition of Kinematic and Dynamic Constraints in ORCA
- 5.9. Decision Planning Theory
 - 5.9.1. Decision Theory
 - 5.9.2. Sequential Decision Systems
 - 5.9.3. Sensors and Information Spaces
 - 5.9.4. Planning for Uncertainty in Sensing and Actuation
- 5.10. Reinforcement Learning Planning Systems
 - 5.10.1. Obtaining the Expected Reward of a System
 - 5.10.2. Mean Reward Learning Techniques
 - 5.10.3. Inverse Reinforcement Learning

Module 6. Artificial Vision Techniques in Robotics: Image Processing and Analysis

- 6.1. Computer Vision
 - 6.1.1. Computer Vision
 - 6.1.2. Elements of a Computer Vision System
 - 6.1.3. Mathematical Tools
- 6.2. Optical Sensors for Robotics
 - 6.2.1. Passive Optical Sensors
 - 6.2.2. Active Optical Sensors
 - 6.2.3. Non-Optical Sensors
- 6.3. Image Acquisition
 - 6.3.1. Image Representation
 - 6.3.2. Color Space
 - 6.3.3. Digitizing Process
- 6.4. Image Geometry
 - 6.4.1. Lens Models
 - 6.4.2. Camera Models
 - 6.4.3. Camera Calibration
- 6.5. Mathematical Tools
 - 6.5.1. Histogram of an Image
 - 6.5.2. Convolution
 - 6.5.3. Fourier Transform
- 6.6. Image Preprocessing
 - 6.6.1. Noise Analysis
 - 6.6.2. Image Smoothing
 - 6.6.3. Image Enhancement
- 6.7. Image Segmentation
 - 6.7.1. Contour-Based Techniques
 - 6.7.3. Histogram-Based Techniques
 - 6.7.4. Morphological Operations
- 6.8. Image Feature Detection
 - 6.8.1. Point of Interest Detection
 - 6.8.2. Feature Descriptors
 - 6.8.3. Feature Matching

- 6.9. 3D Vision Systems
 - 6.9.1. 3D Perception
 - 6.9.2. Feature Matching between Images
 - 6.9.3. Multiple View Geometry
- 6.10. Computer Vision based Localization
 - 6.10.1. The Robot Localization Problem
 - 6.10.2. Visual Odometry
 - 6.10.3. Sensory Fusion

Module 7. Robot Visual Perception Systems with Automatic Learning

- 7.1. Unsupervised Learning Methods applied to Computer Vision
 - 7.1.1. Clustering
 - 7.1.2. PCA
 - 7.1.3. Nearest Neighbors
 - 7.1.4. Similarity and Matrix Decomposition
- 7.2. Supervised Learning Methods Applied to Computer Vision
 - 7.2.1. "Bag of words" Concept
 - 7.2.2. Support Vector Machine
 - 7.2.3. Latent Dirichlet Allocation
 - 7.2.4. Neural Networks
- 7.3. Deep Neural Networks:: Structures, Backbones and Transfer Learning
 - 7.3.1. Feature Generating Layers
 - 7.3.3.1. VGG
 - 7.3.3.2. Densenet
 - 7.3.3.3. ResNet
 - 7.3.3.4. Inception
 - 7.3.3.5. GoogleNet
 - 7.3.2. Transfer Learning
 - 7.3.3. The Data Preparation for Training

tech 34 | Structure and Content

- 7.4. Computer Vision with Deep Learning I: Detection and Segmentation
 - 7.4.1. YOLO and SSD Differences and Similarities
 - 7.4.2. Unet
 - 7.4.3. Other Structures
- 7.5. Computer Vision with Deep Learning II: Generative Adversarial Networks
 - 7.5.1. Image Super-Resolution Using GAN
 - 7.5.2. Creation of Realistic Images
 - 7.5.3. Scene Understanding
- 7.6. Learning Techniques for Localization and Mapping in Mobile Robotics
 - 7.6.1. Loop Closure Detection and Relocation
 - 7.6.2. Magic Leap. Super Point and Super Glue
 - 7.6.3. Depth from Monocular
- 7.7. Bayesian Inference and 3D Modeling
 - 7.7.1. Bayesian Models and "Classical" Learning
 - 7.7.2. Implicit Surfaces with Gaussian Processes (GPIS)
 - 7.7.3. 3D Segmentation Using GPIS
 - 7.7.4. Neural Networks for 3D Surface Modeling
- 7.8. End-to-End Applications of Deep Neural Networks
 - 7.8.1. End-to-End System. Example of Person Identification
 - 7.8.2. Object Manipulation with Visual Sensors
 - 7.8.3. Motion Generation and Planning with Visual Sensors
- 7.9. Cloud Technologies to Accelerate the Development of Deep Learning Algorithms
 - 7.9.1. Use of GPUs for Deep Learning
 - 7.9.2. Agile Development with Google IColab
 - 7.9.3. Remote GPUs, Google Cloud and AWS
- 7.10. Deployment of Neural Networks in Real Applications
 - 7.10.1. Embedded Systems
 - 7.10.2. Deployment of Neural Networks. Use
 - 7.10.3. Network Optimizations in Deployment, Example with TensorRT

Structure and Content | 35 tech

Module 8. Visual SLAM. Robot Localization and Simultaneous Mapping by Computer Vision Techniques

- 8.1. Simultaneous Localization and Mapping (SLAM)
 - 8.1.1. Simultaneous Localization and Mapping. SLAM
 - 8.1.2. SLAM Applications
 - 8.1.3. SLAM Operation
- 8.2. Projective Geometry
 - 8.2.1. Pin-Hole Model
 - 8.2.2. Estimation of Intrinsic Parameters of a Chamber
 - 8.2.3. Homography, Basic Principles and Estimation
 - 8.2.4. Fundamental Matrix, Principles and Estimation
- 8.3. Gaussian Filters
 - 8.3.1. Kalman Filter
 - 8.3.2. Information Filter
 - 8.3.3. Adjustment and Parameterization of Gaussian Filters
- 8.4. Stereo EKF-SLAM
 - 8.4.1. Stereo Camera Geometry
 - 8.4.2. Feature Extraction and Search
 - 8.4.3. Kalman Filter for Stereo SLAM
 - 8.4.4. Stereo EKF-SLAM Parameter Setting
- 8.5. Monocular EKF-SLAM
 - 8.5.1. EKF-SLAM Landmark Parameterization
 - 8.5.2. Kalman Filter for Monocular SLAM
 - 8.5.3. Monocular EKF-SLAM Parameter Tuning
- 8.6. Loop Closure Detection
 - 8.6.1. Brute Force Algorithm
 - 8.6.2. FABMAP
 - 8.6.3. Abstraction Using GIST and HOG
 - 8.6.4. Deep Learning Detection

tech 36 | Structure and Content

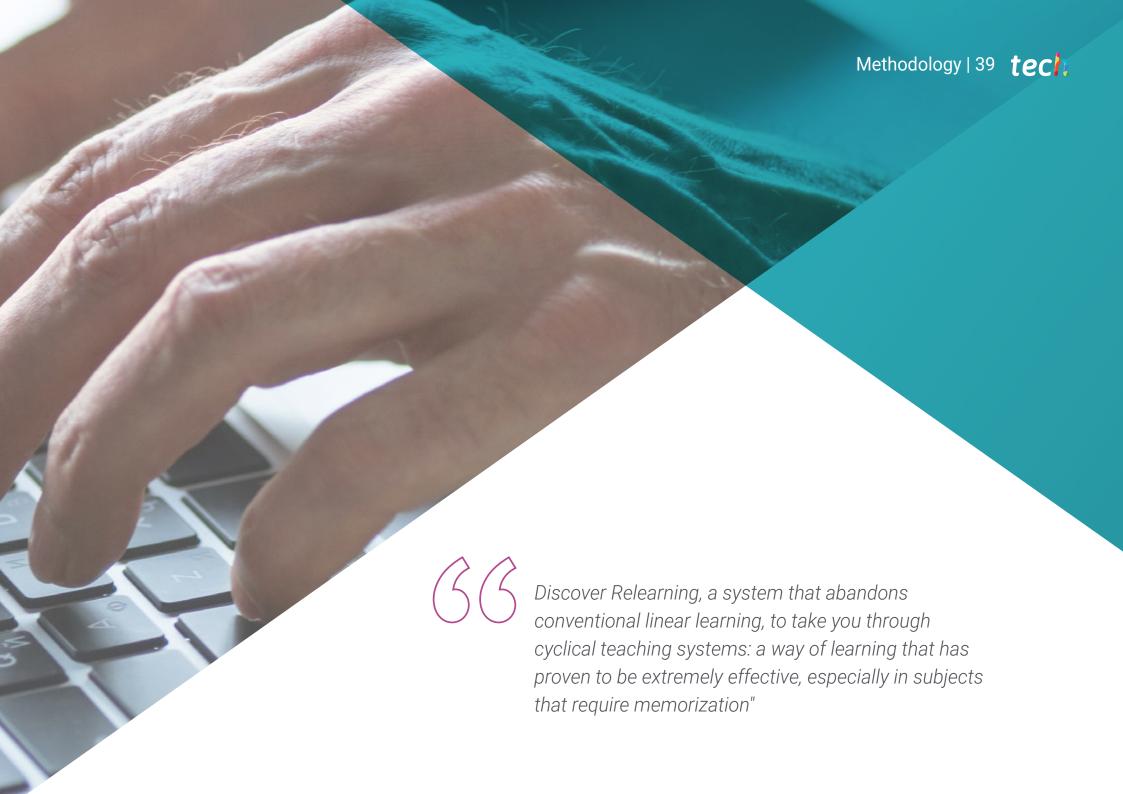
- 8.7. Graph-SLAM
 - 8.7.1. Graph-SLAM
 - 8.7.2. RGBD-SLAM
 - 8.7.3. ORB-SLAM
- 8.8. Direct Visual SLAM
 - 8.8.1. Analysis of the Direct Visual SLAM Algorithm
 - 8.8.2. LSD-SLAM
 - 8.8.3. SVO
- 8.9. Visual Inertial SLAM
 - 8.9.1. Integration of Inertial Measurements
 - 8.9.2. Low Coupling: SOFT-SLAM
 - 8.9.3. High Coupling: Vins-Mono
- 8.10. Other SLAM Technologies
 - 8.10.1. Applications Beyond Visual SLAM
 - 8.10.2. Lidar-SLAM
 - 8.10.2. Range-only SLAM

Module 9. Application of Virtual and Augmented Reality Technologies to Robotics

- 9.1. Immersive Technologies in Robotics
 - 9.1.1. Virtual Reality in Robotics
 - 9.1.2. Augmented Reality in Robotics
 - 9.1.3. Mixed Reality in Robotics
 - 9.1.4. Difference between Realities
- 9.2. Construction of Virtual Environments
 - 9.2.1. Materials and Textures
 - 9.2.2. Lighting
 - 9.2.3. Virtual Sound and Smell
- 9.3. Robot Modeling in Virtual Environments
 - 9.3.1. Geometric Modeling
 - 9.3.2. Physical Modeling
 - 9.3.3. Model Standardization

- 9.4. Modeling of Robot Dynamics and Kinematics Virtual Physical Engines
 - 9.4.1. Physical Motors. Typology
 - 9.4.2. Configuration of a Physical Engine
 - 9.4.3. Physical Motors in the Industry
- 9.5. Platforms, Peripherals and Tools Most Commonly Used in Virtual Reality
 - 9.5.1. Virtual Reality Viewers
 - 9.5.2. Interaction Peripherals
 - 9.5.3. Virtual Sensors
- 9.6. Augmented Reality Systems
 - 9.6.1. Insertion of Virtual Elements into Reality
 - 9.6.2. Types of Visual Markers
 - 9.6.3. Augmented Reality Technologies
- 9.7. Metaverse: Virtual Environments of Intelligent Agents and People
 - 9.7.1. Avatar Creation
 - 9.7.2. Intelligent Agents in Virtual Environments
 - 9.7.3. Construction of Multi-User Environments for VR/AR
- 9.8. Creation of Virtual Reality Projects for Robotics
 - 9.8.1. Phases of Development of a Virtual Reality Project
 - 9.8.2. Deployment of Virtual Reality Systems
 - 9.8.3. Virtual Reality Resources
- 9.9. Creating Augmented Reality Projects for Robotics
 - 9.9.1. Phases of Development of an Augmented Reality Project
 - 9.9.2. Deployment of Augmented Reality Projects
 - 9.9.3. Augmented Reality Resources
- 9.10. Robot Teleoperation with Mobile Devices
 - 9.10.1. Mixed Reality on Mobile Devices
 - 9.10.2. Immersive Systems using Mobile Device Sensors
 - 9.10.3. Examples of Mobile Projects

Module 10. Robot Communication and Interaction Systems


- 10.1. Speech Recognition: Stochastic Systems
 - 10.1.1. Acoustic Speech Modeling
 - 10.1.2. Hidden Markov Models
 - 10.1.3. Linguistic Speech Modeling: N-Grams, BNF Grammars
- 10.2. Speech Recognition Deep Learning
 - 10.2.1. Deep Neural Networks
 - 10.2.2. Recurrent Neural Networks
 - 10.2.3. LSTM Cells
- 10.3. Speech Recognition: Prosody and Environmental Effects
 - 10.3.1. Ambient Noise
 - 10.3.2. Multi-Speaker Recognition
 - 10.3.3. Speech Pathologies
- 10.4. Natural Language Understanding: Heuristic and Probabilistic Systems
 - 10.4.1. Syntactic-Semantic Analysis: Linguistic Rules
 - 10.4.2. Comprehension Based on Heuristic Rules
 - 10.4.3. Probabilistic Systems: Logistic Regression and SVM
 - 10.4.4. Understanding Based on Neural Networks
- 10.5. Dialog Management: Heuristic/Probabilistic Strategies
 - 10.5.1. Interlocutor's Intention
 - 10.5.2. Template-Based Dialog
 - 10.5.3. Stochastic Dialog Management: Bayesian Networks
- 10.6. Dialog Management: Advanced Strategies
 - 10.6.1. Reinforcement-Based Learning Systems
 - 10.6.2. Neural Network-Based Systems
 - 10.6.3. From Speech to Intention in a Single Network
- 10.7. Response Generation and Speech Synthesis
 - 10.7.1. Response Generation: From Idea to Coherent Text
 - 10.7.2. Speech Synthesis by Concatenation
 - 10.7.3. Stochastic Speech Synthesis

- 10.8. Dialog Adaptation and Contextualization
 - 10.8.1. Dialog Initiative
 - 10.8.2. Adaptation to the Speaker
 - 10.8.3. Adaptation to the Context of the Dialogue
- 10.9. Robots and Social Interactions: Emotion Recognition, Synthesis and Expression
 - 10.9.1. Artificial Voice Paradigms: Robotic Voice and Natural Voice
 - 10.9.2. Emotion Recognition and Sentiment Analysis
 - 10.9.3. Emotional Voice Synthesis
- 10.10. Robots and Social Interactions: Advanced Multimodal Interfaces
 - 10.10.1. Combination of Vocal and Tactile Interfaces
 - 10.10.2. Sign Language Recognition and Translation
 - 10.10.3. Visual Avatars: Voice to Sign Language Translation

View all the contents of this Master's Degree from the very first day and quickly advance in a technological area with a wide range of professional opportunities"

tech 40 | Methodology

Case Study to contextualize all content

Our program offers a revolutionary approach to developing skills and knowledge. Our goal is to strengthen skills in a changing, competitive, and highly demanding environment.

At TECH, you will experience a learning methodology that is shaking the foundations of traditional universities around the world"

You will have access to a learning system based on repetition, with natural and progressive teaching throughout the entire syllabus.

The student will learn to solve complex situations in real business environments through collaborative activities and real cases.

A learning method that is different and innovative

This TECH program is an intensive educational program, created from scratch, which presents the most demanding challenges and decisions in this field, both nationally and internationally. This methodology promotes personal and professional growth, representing a significant step towards success. The case method, a technique that lays the foundation for this content, ensures that the most current economic, social and professional reality is taken into account.

Our program prepares you to face new challenges in uncertain environments and achieve success in your career"

The case method has been the most widely used learning system among the world's leading Information Technology schools for as long as they have existed. The case method was developed in 1912 so that law students would not only learn the law based on theoretical content. It consisted of presenting students with real-life, complex situations for them to make informed decisions and value judgments on how to resolve them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you are presented with in the case method, an action-oriented learning method. Throughout the course, students will be presented with multiple real cases. They will have to combine all their knowledge and research, and argue and defend their ideas and decisions.

Relearning Methodology

TECH effectively combines the Case Study methodology with a 100% online learning system based on repetition, which combines different teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching method: Relearning.

In 2019, we obtained the best learning results of all online universities in the world.

At TECH you will learn using a cutting-edge methodology designed to train the executives of the future. This method, at the forefront of international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this successful method. In 2019, we managed to improve our students' overall satisfaction levels (teaching quality, quality of materials, course structure, objectives...) based on the best online university indicators.

Methodology | 43 tech

In our program, learning is not a linear process, but rather a spiral (learn, unlearn, forget, and re-learn). Therefore, we combine each of these elements concentrically.

This methodology has trained more than 650,000 university graduates with unprecedented success in fields as diverse as biochemistry, genetics, surgery, international law, management skills, sports science, philosophy, law, engineering, journalism, history, and financial markets and instruments. All this in a highly demanding environment, where the students have a strong socio-economic profile and an average age of 43.5 years.

Relearning will allow you to learn with less effort and better performance, involving you more in your training, developing a critical mindset, defending arguments, and contrasting opinions: a direct equation for success.

From the latest scientific evidence in the field of neuroscience, not only do we know how to organize information, ideas, images and memories, but we know that the place and context where we have learned something is fundamental for us to be able to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the different elements in our program are connected to the context where the individual carries out their professional activity.

tech 44 | Methodology

This program offers the best educational material, prepared with professionals in mind:

Study Material

All teaching material is produced by the specialists who teach the course, specifically for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online working method. All this, with the latest techniques that offer high quality pieces in each and every one of the materials that are made available to the student.

Classes

There is scientific evidence suggesting that observing third-party experts can be useful.

Learning from an Expert strengthens knowledge and memory, and generates confidence in future difficult decisions.

Practising Skills and Abilities

They will carry out activities to develop specific skills and abilities in each subject area. Exercises and activities to acquire and develop the skills and abilities that a specialist needs to develop in the context of the globalization that we are experiencing.

Additional Reading

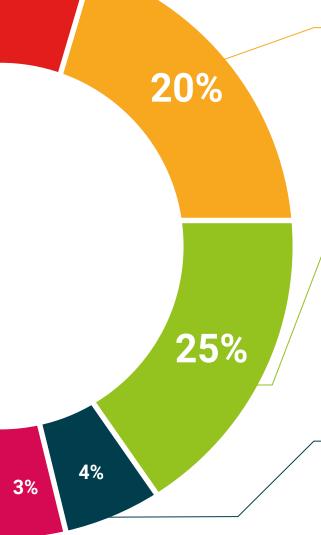
Recent articles, consensus documents and international guidelines, among others. In TECH's virtual library, students will have access to everything they need to complete their course.

Methodology | 45 tech

Students will complete a selection of the best case studies chosen specifically for this program. Cases that are presented, analyzed, and supervised by the best specialists in the world.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia lessons that include audio, videos, images, diagrams, and concept maps in order to reinforce knowledge.



This exclusive educational system for presenting multimedia content was awarded by Microsoft as a "European Success Story".

Testing & Retesting

 \bigcirc

We periodically evaluate and re-evaluate students' knowledge throughout the program, through assessment and self-assessment activities and exercises, so that they can see how they are achieving their goals.

tech 48 | Certificate

This program will allow you to obtain your **Master's Degree diploma in Robotics** endorsed by **TECH Global University**, the world's largest online university.

TECH Global University is an official European University publicly recognized by the Government of Andorra (*official bulletin*). Andorra is part of the European Higher Education Area (EHEA) since 2003. The EHEA is an initiative promoted by the European Union that aims to organize the international training framework and harmonize the higher education systems of the member countries of this space. The project promotes common values, the implementation of collaborative tools and strengthening its quality assurance mechanisms to enhance collaboration and mobility among students, researchers and academics.

This **TECH Global University** title is a European program of continuing education and professional updating that guarantees the acquisition of competencies in its area of knowledge, providing a high curricular value to the student who completes the program.

Title: Master's Degree in Robotics

Modality: online

Duration: 12 months

Accreditation: 60 ECTS

^{*}Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

health confidence people leducation information tutors guarantee accreditation teaching institutions technology learning

Master's Degree Robotics

- » Modality: online
- » Duration: 12 months
- » Certificate: TECH Global University
- » Credits: 60 ECTS
- » Schedule: at your own pace
- » Exams: online

