
Advanced Master's Degree
Software Engineering and Quality

Advanced Master's Degree
Software Engineering and Quality

 » Modality: online
 » Duration: 2 years
 » Certificate: TECH Global University
 » Accreditation: 120 ECTS
 » Schedule: at your own pace
 » Exams: online

Website: www.techtitute.com/us/information-technology/advanced-master-degree/advanced-master-degree-software-engineering-quality

http://www.techtitute.com/us/information-technology/advanced-master-degree/advanced-master-degree-software-engineering-quality

Index

p. 4 p. 8 p. 12

p. 40 p. 44p. 34

Why Study at TECH? Syllabus

02 03

Teaching Staff

07

Career Opportunities

05

Introduction

01

Study Methodology

06

Certificate

08

Teaching Objectives

04

p. 54 p. 60

Software Engineering has become the cornerstone of digital transformation. Today,
all industries depend on technological solutions to optimize processes, improve the
customer experience and stay competitive. Software quality, meanwhile, ensures that
these solutions are reliable, scalable and secure. This discipline is a branch of engineering
that combines technical and management knowledge to guarantee that the products
and systems developed are functional and sustainable. For this reason, this program
goes beyond simple programming, focusing on the entire software life cycle, from initial
conception to maintenance and system evolution. The main objective is to offer students
a unique academic opportunity that provides them with information at the cutting edge
of technology. TECH develops this multidisciplinary and 100% online degree that covers
everything from the fundamentals of software engineering to the latest trends in agile
methodologies.

Introduction
01

Join now and start transforming
complex ideas into tangible
technological solutions that will
impact the world”

Introduction | 05

Software quality guarantees that systems not only meet functional requirements, but are
also intuitive, secure and sustainable in the long term. This is particularly relevant in critical
sectors such as finance, healthcare and transportation, where failures can have serious
consequences. Furthermore, prioritizing quality ensures that companies can adapt quickly
to constant technological advances and respond effectively to growing market demands.

Through the use of methodologies such as agile development, DevOps and the
implementation of international quality standards, software engineering guarantees the
delivery of products in shorter times. Furthermore, controlled costs and a level of quality
that minimizes critical errors have been expanded with the integration of emerging
technologies, such as artificial intelligence, cloud computing and cybersecurity. In this
context, the program designed by TECH is aimed at training professionals to be highly
skilled in the design, development, management and quality assurance of software. In
order to acquire the necessary skills, the Advanced Master's Degree syllabus includes the
most up-to-date concepts in technology project management and strategic management.
This approach represents added value both for engineers who already hold positions of
responsibility and wish to update their knowledge, and for those who aspire to lead teams
and projects in this field for the first time.

One of the main benefits of this program is that it will be 100% online, eliminating the
need for travel and specific schedules. One of the main benefits of this program is that it
will be 100% online, so there is no need to travel or adapt to fixed schedules. This flexible
approach is very useful, as it allows students to organize their daily obligations, whether
professional or family, efficiently, thereby achieving comprehensive development.

This Advanced Master's Degree in Software Engineering and Quality contains the
most complete and up-to-date program on the market. The most important features
include:

 � Practical cases presented by experts in IT

 � The graphic, schematic, and practical contents with which they are created,
provide scientific and practical information on the disciplines that are essential for
professional practice

 � Practical exercises where self-assessment can be used to improve learning

 � Special emphasis on innovative methodologies in Software Engineering and Quality

 � Theoretical lessons, questions to the expert, debate forums on controversial topics,
and individual reflection assignments

 � Content that is accessible from any fixed or portable device with an Internet
connection

With TECH, you will not only learn to
develop software, but also to create
systems that make a difference in the
lives of people and companies”

06 | Introduction

Its teaching staff includes professionals from the field of information technology, who
bring to this program the experience of their work, as well as recognized specialists
from leading companies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide
the professional with situated and contextual learning, i.e., a simulated environment that
will provide an immersive learning experience designed to prepare for real-life situations.

This program is designed around Problem-Based Learning, whereby the student must
try to solve the different professional practice situations that arise throughout the
program. For this purpose, the professional will be assisted by an innovative interactive
video system created by renowned and experienced experts.

Master the most advanced engineering
skills and tools with the most innovative
teaching methodology on the current
educational market"

Raise your professional ambitions
by learning 100% online, without
compromising your personal and
family responsibilities.

Become a professional engineering leader,
ready to learn from anywhere in the world.

Introduction | 07

Why Study at TECH?
02

TECH is the world’s largest online university. With an impressive catalog of more than
14,000 university programs available in 11 languages, it is positioned as a leader in
employability, with a 99% job placement rate. In addition, it relies on an enormous
faculty of more than 6,000 professors of the highest international renown.

Study at the world's largest online
university and guarantee your professional
success. The future starts at TECH”

Why Study at TECH? | 09

10 | Why Study at TECH?

A world-class teaching staff

TECH's teaching staff is made up of more than 6,000 professors
with the highest international recognition. Professors,
researchers and top executives of multinational companies,
including Isaiah Covington, performance coach of the Boston
Celtics; Magda Romanska, principal investigator at Harvard
MetaLAB; Ignacio Wistumba, chairman of the department of
translational molecular pathology at MD Anderson Cancer
Center; and D.W. Pine, creative director of TIME magazine,
among others.

The world's largest online university

TECH is the world’s largest online university. We are the
largest educational institution, with the best and widest
online educational catalog, one hundred percent online
and covering the vast majority of areas of knowledge.
We offer a large selection of our own degrees and
accredited online undergraduate and postgraduate
degrees. In total, more than 14,000 university degrees, in
ten different languages, make us the largest educational
institution in the world.

The most complete study plans on the university
scene

TECH offers the most complete study plans on
the university scene, with syllabuses that cover
fundamental concepts and, at the same time, the
main scientific advances in their specific scientific
areas. In addition, these programs are continuously
being updated to guarantee students the academic
vanguard and the most in-demand professional skills.
In this way, the university's qualifications provide its
graduates with a significant advantage to propel their
careers to success.

A unique learning method

TECH is the first university to use ReLearning in all its
programs. It is the best online learning methodology,
accredited with international teaching quality certifications,
provided by prestigious educational agencies. In addition,
this disruptive educational model is complemented with
the “Case Method”, thereby setting up a unique online
teaching strategy. Innovative teaching resources are also
implemented, including detailed videos, infographics and
interactive summaries.

The world’s best online university according to FORBES

The prestigious Forbes magazine, specialized in business
and finance, has highlighted TECH as “the world's best
online university” This is what they have recently stated
in an article in their digital edition in which they echo the
success story of this institution, “thanks to the academic
offer it provides, the selection of its teaching staff, and
an innovative learning method aimed at educating the
professionals of the future”

Why Study at TECH? | 11

The official online university of the NBA

TECH is the official online university of the NBA. Thanks
to our agreement with the biggest league in basketball,
we offer our students exclusive university programs, as
well as a wide variety of educational resources focused
on the business of the league and other areas of the
sports industry. Each program is made up of a uniquely
designed syllabus and features exceptional guest hosts:
professionals with a distinguished sports background who
will offer their expertise on the most relevant topics.

Leaders in employability

TECH has managed to become the leading university
in employability. 99% of its students obtain jobs in the
academic field they have studied, within one year of
completing any of the university's programs. A similar
number achieve immediate career enhancement. All this
thanks to a study methodology that bases its effectiveness
on the acquisition of practical skills, which are absolutely
necessary for professional development.

Google Premier Partner

The American technology giant has awarded TECH
the Google Google Premier Partner badge. This award,
which is only available to 3% of the world's companies,
highlights the efficient, flexible and tailored experience that
this university provides to students. The recognition as a
Google Premier Partner not only accredits the maximum
rigor, performance and investment in TECH's digital
infrastructures, but also places this university as one of
the world's leading technology companies.

The top-rated university by its students

Students have positioned TECH as the world's top-
rated university on the main review websites, with a
highest rating of 4.9 out of 5, obtained from more than
1,000 reviews. These results consolidate TECH as the
benchmark university institution at an international
level, reflecting the excellence and positive impact of its
educational model.” Unas cifras que sitúan a TECH como
la referencia universitaria absoluta a nivel internacional.

Syllabus
03

The syllabus for the Advanced Master's Degree in Software Engineering and Quality
is designed to provide comprehensive and advanced specialization in all key areas
of software engineering. The first modules focus on the fundamentals, ranging
from software design and requirements management to technology architectures
and agile methodologies. As the program progresses, students delve into more
specialized areas such as test automation, continuous integration and quality
assurance. In addition, subjects on technology project management are incorporated,
where participants learn to lead multidisciplinary teams.

This Advanced Master's Degree prepares you
to be the expert who makes a difference in
the Software Engineering and Quality sector”

Syllabus | 13

Module 1. Software Quality. TRL Development Levels
1.1. Elements that Influence Software Quality (I). The Technical Debt

1.1.1. The Technical Debt. Causes and Consequences
1.1.2. Software Quality. General Principles
1.1.3. Unprincipled and Principled Quality Software

1.1.3.1. Consequences
1.1.3.2. Necessity of Applying Quality Principles in Software

1.1.4. Software Quality Typology
1.1.5. Quality Software. Specific features

1.2. Elements that Influence Software Quality (II). Associated Costs
1.2.1. Software Quality. Influencing Elements
1.2.2. Software Quality. Misconceptions
1.2.3. Software Quality. Associated Costs

1.3. Software Quality Models (I). Knowledge Management
1.3.1. General Quality Models

1.3.1.1. Total Quality Management
1.3.1.2. European Business Excellence Model (EFQM)
1.3.1.3. Six-Sigma Model

1.3.2. Knowledge Management Models
1.3.2.1. Dyba Model
1.3.2.2. Seks Model

1.3.3. Experience Factory and QIP Paradigm
1.3.4. Quality in Use Models (25010)

1.4. Software Quality Models (III). Quality in Data, Processes and SEI Models
1.4.1. Data Quality Data Model
1.4.2. Software Process Modeling
1.4.3. Software & Systems Process Engineering Metamodel Specification

(SPEM)
1.4.4. SEI Models

1.4.4.1. CMMI
1.4.4.2. SCAMPI
1.4.4.3. IDEAL

1.5. ISO Software Quality Standards (I). Analysis of the Standards
1.5.1. ISO 9000 Standards

1.5.1.1. ISO 9000 Standards
1.5.1.2. ISO Family of Quality Standards (9000)

1.5.2. Other ISO Standards Related to Quality
1.5.3. Quality Modeling Standards (ISO 2501)
1.5.4. Quality Measurement Standards (ISO 2502n)

1.6. ISO Software Quality Standards (II). Requirements and Assessment
1.6.1. Standards on Quality Requirements (2503n)
1.6.2. Standards on Quality Assessment (2504n)
1.6.3. ISO/IEC 24744:2007

1.7. TRL Development Levels (I). Levels 1 to 4
1.7.1. TRL Levels
1.7.2. Level 1: Basic Principles
1.7.3. Level 2: Concept and/or Application
1.7.4. Level 3: Critical Analytical Function
1.7.5. Level 4: Component Validation in Laboratory Environment

1.8. TRL Development Levels (II). Levels 5 to 9
1.8.1. Level 5: Component Validation in Relevant Environment
1.8.2. Level 6: System/Subsystem Model
1.8.3. Level 7: Demonstration in Real Environment
1.8.4. Level 8: Complete and Certified System
1.8.5. Level 9: Success in Real Environment

1.9. TRL Development Levels. Uses
1.9.1. Example of Company with Laboratory Environment
1.9.2. Example of an R&D&I Company
1.9.3. Example of an Industrial R&D&I Company
1.9.4. Example of a Laboratory-Engineering Joint Venture Company

1.10. Software Quality. Key Details
1.10.1. Methodological Details
1.10.2. Technical Details
1.10.3. Software Project Management Details

1.10.3.1. Computer System Quality
1.10.3.2. Software Product Quality
1.10.3.3. Software Process Quality

14 | Syllabus

Module 2. Software Project Development. Functional and Technical
Documentation
2.1. Project Management

2.1.1. Project Management in Software Quality
2.1.2. Project Management. Advantages
2.1.3. Project Management Typology

2.2. Methodology in Project Management
2.2.1. Methodology in Project Management
2.2.2. Project Methodologies. Typology
2.2.3. Methodologies in Project Management. Application

2.3. Requirements Identification Phase
2.3.1. Identification of Project Requirements
2.3.2. Management of Project Meetings
2.3.3. Documentation to Be Provided

2.4. Models
2.4.1. Initial Phase
2.4.2. Analysis Phase
2.4.3. Construction Phase
2.4.4. Testing Phase
2.4.5. Delivery

2.5. Data Model to Be Used
2.5.1. Determination of the New Data Model
2.5.2. Identification of the Data Migration Plan
2.5.3. Data Set

2.6. Impact on Other Projects
2.6.1. Impact of a Project. Examples

2.7. MUST of the Project
2.7.1. MUST of the Project
2.7.2. Identification of the MUST of the Project
2.7.3. Identification of the Execution Points for Project Delivery

2.8. The Project Construction Team
2.8.1. Roles to be Involved According to the Project
2.8.2. Contact with HR for Recruitment
2.8.3. Project Deliverables and Schedule

2.9. Technical Aspects of a Software Project
2.9.1. Project Architect. Technical Aspects
2.9.2. Technical Leaders
2.9.3. Construction of the Project Software
2.9.4. Code Quality Assessment Sonar

2.10. Project Deliverables
2.10.1. Functional Analysis
2.10.2. Data Model
2.10.3. State Diagram
2.10.4. Technical Documentation

Module 3. SoftwareTesting. Test Automation
3.1. Software Quality Models

3.1.1. Product Quality
3.1.2. Process Quality
3.1.3. Quality of Use

3.2. Process Quality
3.2.1. Process Quality
3.2.2. Maturity Models
3.2.3. ISO 15504 Standards

3.2.3.1. Purposes
3.2.3.2. Context
3.2.3.3. Stages

3.3. ISO/IEC 15504 Standard
3.3.1. Process Categories
3.3.2. Development Process. Example
3.3.3. Profile Fragment
3.3.4. Stages

Syllabus | 15

3.4. CMMI (Capability Maturity Model Integration)
3.4.1. CMMI Capability Maturity Model Integration
3.4.2. Models and Areas. Typology
3.4.3. Process Areas
3.4.4. Capacity Levels
3.4.5. Process Management
3.4.6. Project Management

3.5. Change and Repository Management
3.5.1. Software Change Management

3.5.1.1. Configuration Item. Continuous Integration
3.5.1.2. Lines
3.5.1.3. Flowcharts
3.5.1.4. Branches

3.5.2. Repository
3.5.2.1. Version Control
3.5.2.2. Work Team and Use of the Repository
3.5.2.3. Continuous Integration in the Repository

3.6. Team Foundation Server (TFS)
3.6.1. Installation and Configuration
3.6.2. Creation of a Team Project.
3.6.3. Adding Content to Source Code Control
3.6.4. TFS on Cloud

3.7. Testing
3.7.1. Motivation for Testing
3.7.2. Verification Testing
3.7.3. Beta Testing
3.7.4. Implementation and Maintenance

3.8. Load Testing
3.8.1. Load Testing
3.8.2. LoadView Testing
3.8.3. K6 Cloud Testing
3.8.4. Loader Testing

3.9. Unit Stress and Endurance Tests
3.9.1. Motivation of Unit Tests
3.9.2. Unit Testing Tools
3.9.3. Motivation for Stress Testing
3.9.4. Testing UsingStressTesting
3.9.5. Motivation for stress Resistance
3.9.6. Tests Using LoadRunner

3.10. Scalability. Scalable Software Design
3.10.1. Scalability and Software Architecture
3.10.2. Independence Between Layers
3.10.3. Coupling Between Layers. Architecture Patterns

Module 4. Software Project Management Methodologies. Waterfall
Methodology vs Agile Methodology
4.1. Waterfall Methodology

4.1.1. Waterfall Methodology
4.1.2. Waterfall Methodology. Influence on Software Quality
4.1.3. Waterfall Methodology Examples

4.2. Agile Methodology
4.2.1. Agile Methodology
4.2.2. Agile Methodology. Influence on Software Quality
4.2.3. Agile Methodology. Examples

4.3. SCRUM Methodology
4.3.1. SCRUM Methodology
4.3.2. SCRUM Manifesto
4.3.3. SCRUM Application

4.4. Panel Kanban
4.4.1. Kanban Method
4.4.2. Panel Kanban
4.4.3. Panel Kanban. Application Examples

4.5. Waterfall Project Management
4.5.1. Project Phases
4.5.2. Vision in a Waterfall Project
4.5.3. Deliverables to Consider

16 | Syllabus

4.6. Project Management in SCRUM
4.6.1. Phases in a SCRUM Project
4.6.2. Vision in a SCRUM Project
4.6.3. Deliverables to Consider

4.7. Waterfall vs. Scrum Comparison
4.7.1. Pilot Project Approach
4.7.2. Project Applying Waterfall. Example
4.7.3. Project Applying Waterfall. Example

4.8. Customer Vision
4.8.1. Documents in a Waterfall
4.8.2. Documents in a SCRUM
4.8.3. Comparison

4.9. Kanban Structure
4.9.1. User Stories
4.9.2. Backlog
4.9.3. Kanban Analysis

4.10. Hybrid Projects
4.10.1. Project Construction
4.10.2. Project Management
4.10.3. Deliverables to Consider

Module 5 (Test-Driven Development). Test-Driven Software Design
5.1. TDD. Test Driven Development

5.1.1. TDD. Test Driven Development
5.1.2. TDD. Influence of TDD on Quality
5.1.3. Test-Driven Design and Development. Examples

5.2. TDD Cycle
5.2.1. Choice of a Requirement
5.2.2. Performing Tests. Typology

5.2.2.1. Unit Tests
5.2.2.2. Integration Tests
5.2.2.3. End To EndTests

5.2.3. Test Verification. Errors
5.2.4. Creation of the Implementation
5.2.5. Automated Test Execution
5.2.6. Elimination of Duplication
5.2.7. Requirements Lists Update
5.2.8. Repeating the TDD Cycle
5.2.9. TDD Cycle. Theoretical and Practical Example

5.3. TDD Implementation Strategies
5.3.1. Mock Implementation
5.3.2. Triangular Implementation
5.3.3. Obvious Implementation

5.4. TDD. Use. Advantages and Inconveniences
5.4.1. Advantages of Use
5.4.2. Limitations of Use
5.4.3. Quality Balance in the Implementation

5.5. TDD. Good Practices
5.5.1. TDD Rules
5.5.2. Rule 1: Have a Previous Test that Fails Before Coding in Production
5.5.3. Rule 2: Not to Write More than One Unit Test
5.5.4. Rule 3: Not to Write More Code than Necessary
5.5.5. Errors and Anti-Patterns to Avoid in TDD

5.6. Simulation of a Real Project to use TDD (I)
5.6.1. Project Overview (Company A)
5.6.2. Application of TDD
5.6.3. Proposed Exercises
5.6.4. Exercises. Feedback

5.7. Simulation of a Real Project to use TDD (II)
5.7.1. Project Overview (Company B)
5.7.2. Application of TDD
5.7.3. Proposed Exercises
5.7.4. Exercises. Feedback

Syllabus | 17

5.8. Simulation of a Real Project to use TDD (III)
5.8.1. General Description of the Project (Company C)
5.8.2. Application of TDD
5.8.3. Proposed Exercises
5.8.4. Exercises. Feedback

5.9. Alternatives to TDD. Test Driven Development
5.9.1. TCR (Test Commit Revert)
5.9.2. BDD (Behavior Driven Development)
5.9.3. ATDD (Acceptance Test Driven Development)
5.9.4. TDD. Theoretical Comparison

5.10. TDD TCR, BDD and ATDD. Practical Comparison
5.10.1. Defining the Problem
5.10.2. Resolution with TCR
5.10.3. Resolution with BDD
5.10.4. Resolution with ATDD

Module 6. DevOps. Software Quality Management
6.1. DevOps. Software Quality Management

6.1.1. DevOps.
6.1.2. DevOps and Software Quality
6.1.3. DevOps. Benefits of DevOps Culture

6.2. DevOps. Relation to Agile
6.2.1. Accelerated Delivery
6.2.2. Quality
6.2.3. Cost Reduction

6.3. DevOps Implementation
6.3.1. Problem Identification
6.3.2. Implementation in a Company
6.3.3. Implementation Metrics

6.4. Software Delivery Cycle
6.4.1. Design Methods
6.4.2. Agreements
6.4.3. Roadmap

6.5. Error-Free Code Development
6.5.1. Maintainable Code
6.5.2. Development Patterns
6.5.3. Code Testing
6.5.4. Software Development at Code Level. Good Practices

6.6. Automation
6.6.1. Automation. Types of Tests
6.6.2. Cost of Automation and Maintenance
6.6.3. Automation. Mitigating Errors

6.7. Deployment
6.7.1. Target Assessment
6.7.2. Design of an Automatic and Adapted Process
6.7.3. Feedback and Responsiveness

6.8. Information Security
6.8.1. Incident Management
6.8.2. Incident Analysis and Resolution
6.8.3. How to Avoid Future Mistakes

6.9. Deployment Automation
6.9.1. Preparing for Automated Deployments
6.9.2. Assessment of the Health of the Automated Process
6.9.3. Metrics and Rollback Capability

6.10. Good Practices. Evolution of DevOps
6.10.1. Guide of Good Practices applying DevOps
6.10.2. DevOps. Methodology for the Team
6.10.3. Avoiding Niches

Module 7. DevOps and Continuous Integration. Advanced Practical
Solutions in Software Development
7.1. Software Delivery Flow

7.1.1. Identification of Actors and Artifacts
7.1.2. Software Delivery Flow Design
7.1.3. Software Delivery Flow. Inter-Stage Requirements

18 | Syllabus

7.2. Process Automation
7.2.1. Continuous Integration
7.2.2. Continuous Deployment
7.2.3. Environment Configuration and Secret Management

7.3. Declarative Pipelines
7.3.1. Differences Between Traditional, Code-Like and Declarative Pipelines
7.3.2. Declarative Pipelines
7.3.3. Declarative Pipelines in Jenkins
7.3.4. Comparison of Continuous Integration Providers

7.4. Quality Gates and Enriched Feedback
7.4.1. Quality Gates
7.4.2. Quality Standards with Quality Gates. Maintenance
7.4.3. Business Requirements in Integration Requests

7.5. Artifact Management
7.5.1. Artifacts and Life Cycle
7.5.2. Artifact Storage and Management Systems
7.5.3. Security in Artifact Management

7.6. Continuous Deployment
7.6.1. Continuous Deployment as Containers
7.6.2. Continuous Deployment with PaaS

7.7. Improving Pipeline Runtime: Static Analysis and Git Hooks
7.7.1. Static Analysis
7.7.2. Code Style Rules
7.7.3. Git Hooks and Unit Tests
7.7.4. The Impact of Infrastructure

7.8. Vulnerabilities in Containers
7.8.1. Vulnerabilities in Containers
7.8.2. Image Scanning
7.8.3. Periodic Reports and Alerts

Module 8. Database (DB) Design. Standardization and performance.
Software Quality
8.1. Database Design

8.1.1. Databases. Typology
8.1.2. Databases Currently Used

8.1.2.1. Relational
8.1.2.2. Key-Value
8.1.2.3. Based on Graphs

8.1.3. Data Quality
8.2. Entity-Relationship Model Design (I)

8.2.1. Entity-Relationship Model. Quality and Documentation
8.2.2. Entities

8.2.2.1. Strong Entity
8.2.2.2. Weak Entity

8.2.3. Attributes
8.2.4. Set of Relations

8.2.4.1. 1 to 1
8.2.4.2. 1 to Many
8.2.4.3. Many to 1
8.2.4.4. Many to Many

8.2.5. Keys
8.2.5.1. Primary Key
8.2.5.2. Foreign Key
8.2.5.3. Weak Entity Primary Key

8.2.6. Restrictions
8.2.7. Cardinality
8.2.8. Heritage
8.2.9. Aggregation

8.3. Entity-Relationship Model (II). Tools
8.3.1. Entity-Relationship Model. Tools
8.3.2. Entity-Relationship Model. Practical Example
8.3.3. Entity-Relationship Model feasible

8.3.3.1. Visual Sample
8.3.3.2. Sample in Table Representation

Syllabus | 19

8.4. Database (DB) Standardization (I). Software Quality Considerations
8.4.1. DB Standardization and Quality
8.4.2. Dependency

8.4.2.1. Functional Dependence
8.4.2.2. Properties of Functional Dependence
8.4.2.3. Deduced Properties

8.4.3. Keys
8.5. Database (DB) Normalization (II). Normal Forms and Codd’s Rules

8.5.1. Normal Forms
8.5.1.1. First Normal Form (1FN)
8.5.1.2. Second Normal Form (2FN)
8.5.1.3. Third Normal Form (3FN)
8.5.1.4. Boyce-Codd Normal Form (BCNF)
8.5.1.5. Fourth Normal Form (4FN)
8.5.1.6. Fifth Normal Form (5FN)

8.5.2. Codd's Rules
8.5.2.1. Rule 1: Information
8.5.2.2. Rule 2: Guaranteed Access
8.5.2.3. Rule 3: Systematic Treatment of Null Values
8.5.2.4. Rule 4: Description of the Database
8.5.2.5. Rule 5: Integral Sub-Language
8.5.2.6. Rule 6: View Update
8.5.2.7. Rule 7: Insert and Update
8.5.2.8. Rule 8: Physical Independence
8.5.2.9. Rule 9: Logical Independence
8.5.2.10. Rule 10: Integrity Independence
 8.5.2.10.1. Integrity Rules
8.5.2.11. Rule 11: Distribution
8.5.2.12. Rule 12: Non-Subversion

8.5.3. Practical Example
8.6. Data Warehouse/OLAP System

8.6.1. Data Warehouse
8.6.2. Fact Table
8.6.3. Dimension Table
8.6.4. Creation of the OLAP System. Tools

8.7. Database (DB) Performance
8.7.1. Index Optimization
8.7.2. Query Optimization
8.7.3. Table Partitioning

8.8. Simulation of Real Project for DB Design (I)
8.8.1. Project Overview (Company A)
8.8.2. Application of Database Design
8.8.3. Proposed Exercises
8.8.4. Proposed Exercises Feedback

8.9. Simulation of Real Project for BD Design (II)
8.9.1. Project Overview (Company B)
8.9.2. Application of Database Design
8.9.3. Proposed Exercises
8.9.4. Proposed Exercises Feedback

8.10. Relevance of DB Optimization to Software Quality
8.10.1. Design Optimization
8.10.2. Query Code Optimization
8.10.3. Stored Procedure Code Optimization
8.10.4. Influence of Triggers on Software Quality. Recommendations for Use.

Module 9. Design of Scalable Architectures. The Architecture in the
Software Life Cycle
9.1. Design of Scalable Architectures (I)

9.1.1. Scalable Architectures
9.1.2. Principles of a Scalable Architecture

9.1.2.1. Reliable
9.1.2.2. Scalable
9.1.2.3. Maintainable

9.1.3. Types of Scalability
9.1.3.1. Vertical
9.1.3.2. Horizontal
9.1.3.3. Combined

20 | Syllabus

9.2. Architecture DDD (Domain-Driven Design)
9.2.1. The DDD Model. Domain Orientation
9.2.2. Layers, Distribution of Responsibility and Design Patterns
9.2.3. Decoupling as a Basis for Quality

9.3. Design of Scalable Architectures (II). Benefits, Limitations and Design Strategies
9.3.1. Scalable Architecture. Benefits
9.3.2. Scalable Architecture. Limitations
9.3.3. Strategies for the Development of Scalable Architectures (Descriptive Table)

9.4. Software Life Cycle (I). Stages
9.4.1. Software Life Cycle

9.4.1.1. Planning Stage
9.4.1.2. Analysis Stage
9.4.1.3. Design Stage
9.4.1.4. Implementation Stage
9.4.1.5. Testing Stage
9.4.1.6. Installation/Deployment Stage
9.4.1.7. Use and Maintenance Stage

9.5. Software Life Cycle Models
9.5.1. Waterfall Model
9.5.2. Repetitive Model
9.5.3. Spiral Model
9.5.4. Big Bang Model

9.6. Software Life Cycle (II). Automation
9.6.1. Software Development Life Cycle. Solutions

9.6.1.1. Continuous Integration and Development (CI/CD)
9.6.1.2. Agile Methodologies
9.6.1.3. DevOps / Production Operations

9.6.2. Future Trends
9.6.3. Practical Examples

9.7. Software Architecture in the Software Life Cycle
9.7.1. Benefits
9.7.2. Limitations
9.7.3. Tools

9.8. Real Project Simulation for Software Architecture Design (I)
9.8.1. General Description of the Project (Company A)
9.8.2. Software Architecture Design Application
9.8.3. Proposed Exercises
9.8.4. Proposed Exercises Feedback

9.9. Simulation of a Real Project for Software Architecture Design (II)
9.9.1. Project Overview (Company B)
9.9.2. Software Architecture Design Application
9.9.3. Proposed Exercises
9.9.4. Proposed Exercises. Feedback

9.10. Simulation of a Real Project for Software Architecture Design (III)
9.10.1. General Description of the Project (Company C)
9.10.2. Software Architecture Design Application
9.10.3. Proposed Exercises
9.10.4. Proposed Exercises. Feedback

Module 10. ISO, IEC 9126 Quality Criteria. Software Quality Metrics
10.1. Quality Criteria. ISO, IEC 9126 Standard

10.1.1. Quality Criteria.
10.1.2. Software Quality Justification. ISO, IEC 9126 Standard
10.1.3. Software Quality Measurement as a Key Indicator

10.2. Software Quality Criteria. Features
10.2.1. Reliability
10.2.2. Functionality
10.2.3. Efficiency
10.2.4. Usability
10.2.5. Maintainability
10.2.6. Portability

10.3. ISO Standard, IEC 9126 (I). Introduction
10.3.1. Description of ISO, IEC 9126 Standard
10.3.2. Functionality
10.3.3. Reliability
10.3.4. Usability
10.3.5. Maintainability

Syllabus | 21

10.3.6. Portability
10.3.7. Quality in Use
10.3.8. Software Quality Metrics
10.3.9. ISO 9126 Quality Metrics

10.4. ISO Standard, IEC 9126 (II). McCall and Boehm Models
10.4.1. McCall Model: Quality Factors
10.4.2. Boehm Model
10.4.3. Intermediate Level. Features

10.5. Software Quality Metrics (I). Components
10.5.1. Measurement
10.5.2. Metrics
10.5.3. Indicator

10.5.3.1. Types of Indicators
10.5.4. Measurements and Models
10.5.5. Scope of Software Metrics
10.5.6. Classification of Software Metrics

10.6. Software Quality Measurement (II). Measurement Practice
10.6.1. Metric Data Collection
10.6.2. Measurement of Internal Product Attributes
10.6.3. Measurement of External Product Attributes
10.6.4. Measurement of Resources
10.6.5. Metrics for Object-Oriented Systems

10.7. Design of a Single Software Quality Indicator
10.7.1. Single Indicator as a Global Qualifier
10.7.2. Indicator Development, Justification and Application
10.7.3. Example of Application. Need to Know the Detail

10.8. Simulation of Real Project for Quality Measurement (I)
10.8.1. General Description of the Project (Company A)
10.8.2. Application of Quality Measurement
10.8.3. Proposed Exercises
10.8.4. Proposed Exercises. Feedback

22 | Syllabus

10.9. Real Project Simulation for Quality Measurement (II)
10.9.1. General Description of the Project (Company B)
10.9.2. Application of Quality Measurement
10.9.3. Proposed Exercises
10.9.4. Proposed Exercises Feedback

10.10. Real Project Simulation for Quality Measurement (III)
10.10.1. General Description of the Project (Company C)
10.10.2. Application of Quality Measurement
10.10.3. Proposed Exercises
10.10.4. Proposed Exercises. Feedback

Module 11. Methodologies, Development and Quality in Software
Engineering
11.1. Model-Based Software Development

11.1.1. The Need for
11.1.3. Object Modeling
11.1.4. UML
11.1.5. CASE Tools

11.2. Application Modeling and Design Patterns with UML
11.2.1. Advanced Requirements Modeling
11.2.2. Advanced Static Modeling
11.2.3. Advanced Dynamic Modeling
11.2.4. Component Modeling
11.2.5. Introduction to Design Patterns with UML
11.2.6. Adapter
11.2.7. Factory
11.2.8. Singleton
11.2.9. Strategy
11.2.10. Composite
11.2.11. Facade
11.2.12. Observer

Syllabus | 23

11.3. Model-Driven Engineering
11.3.1. Introduction
11.3.2. Metamodeling of Systems
11.3.3. MDA
11.3.4. DSL
11.3.5. Model Refinements with OCL
11.3.6. Model Transformations

11.4. Ontologies in Software Engineering
11.4.1. Introduction
11.4.2. Ontology Engineering
11.4.3. Application of Ontologies in Software Engineering

Module 12. Software Project Management
12.1. Stakeholders and Outreach Management

12.1.1. Identify Stakeholders
12.1.2. Develop Plan for Stakeholder Management
12.1.3. Manage Stakeholder Engagement
12.1.4. Control Stakeholder Engagement
12.1.5. The Objective of the Project
12.1.6. Scope Management and its Plan
12.1.7. Gathering Requirements
12.1.8. Define the Scope Statement
12.1.9. Create the WBS
12.1.10. Verify and Control the Scope

12.2. The Development of the Time-Schedule
12.2.1. Time Management and its Plan
12.2.2. Defining Activities
12.2.3. Establishment of the Sequence of Activities
12.2.4. Estimated Resources for Activities
12.2.5. Estimated Duration of Activities
12.2.6. Development of the Time-Schedule and Calculation of the Critical Path
12.2.7. Schedule Control

12.3. Budget Development and Risk Response
12.3.1. Estimate Costs
12.3.2. Develop Budget and S-Curve
12.3.3. Cost Control and Earned Value Method
12.3.4. Risk Concepts
12.3.5. How to Perform a Risk Analysis
12.3.6. The Development of the Response Plan

12.4. Communication and Human Resources
12.4.1. Planning Communications Management
12.4.2. Communications Requirements Analysis
12.4.3. Communication Technology
12.4.4. Communication Models
12.4.5. Communication Methods
12.4.6. Communications Management Plan
12.4.7. Communications Management
12.4.8. Management of Human Resources
12.4.9. Main Stakeholders and their Roles in the Projects
12.4.10. Types of Organization
12.4.11. Project Organization
12.4.12. The Work Equipment

12.5. Procurement
12.5.1. The Procurement Process
12.5.2. Planning
12.5.3. Search for Suppliers and Request for Quotations
12.5.4. Contract Allocation
12.5.5. Contract Administration
12.5.6. Contracts
12.5.7. Types of Contracts
12.5.8. Contract Negotiation

12.6. Execution, Monitoring and Control and Closure
12.6.1. Process Groups
12.6.2. Project Execution
12.6.3. Project Monitoring and Control
12.6.4. Project Closure

24 | Syllabus

12.7. Professional Responsibility
12.7.1. Professional Responsibility
12.7.2. Characteristics of Social and Professional Responsibility
12.7.3. Project Leader Code of Ethics
12.7.4. Liability vs. PMP®
12.7.5. Examples of Liability
12.7.6. Benefits of Professionalization

Module 13. Software Development Platforms
13.1. Introduction to Application Development

13.1.1. Desktop Applications
13.1.2. Programming Language
13.1.3. Integrated Development Environments
13.1.4. Web Applications
13.1.5. Mobile Applications
13.1.6. Cloud Applications

13.2. Application Development and Graphical User Interface in Java
13.2.1. Integrated Development Environments for Java
13.2.2. Main IDE for Java
13.2.3. Introduction to the Eclipse Development Platform
13.2.4. Introduction to the NetBeans Development Platform
13.2.5. Controller View Model for Graphical User Interfaces
13.2.6. Design a Graphical Interface in Eclipse
13.2.7. Design a Graphical Interface in NetBeans

13.3. Debugging and Testing in Java
13.3.1. Testing and Debugging of Java programs
13.3.2. Debugging in Eclipse
13.3.3. Debugging in NetBeans

13.4. Application Development and Graphical User Interface in. NET
13.4.1. Net Framework
13.4.2. Components of the .NET Development Platform
13.4.3. Visual Studio .NET
13.4.4. .NET tools for GUI
13.4.5. The GUI with Windows Presentation Foundation
13.4.6. Debugging and Compiling a WPF Application

13.5. Programming for .NET Networks
13.5.1. Introduction to .NET Network Programming
13.5.2. Requests and Responses in .NET
13.5.3. Use of Application Protocols in .NET
13.5.4. Security in .NET Network Programming

13.6. Mobile Application Development Environments
13.6.1. Mobile Applications
13.6.2. Android Mobile Applications
13.6.3. Steps for Development in Android
13.6.4. The IDE Android Studio

13.7. Development of Applications in the Environment Android Studio
13.7.1. Install and Start Android Studio
13.7.2. Running an Android Application
13.7.3. Development of the Graphic Interface in Android Studio
13.7.4. Starting Activities in Android Studio

13.8. Debugging and Publishing of Android Applications
13.8.1. Debugging an Application in Android Studio
13.8.2. Memorizing Applications in Android Studio
13.8.3. Publishing an Application on Google Play

13.9. Cloud Application Development
13.9.1. Cloud Computing
13.9.2. Cloud Levels: SaaS, PaaS, IaaS
13.9.3. Main Development Platforms in the Cloud
13.9.4. Bibliographical References

13.10. Introduction to Google Cloud Platform
13.10.1. Basic Concepts of Google Cloud Platform
13.10.2. Google Cloud Platform Services
13.10.3. Tools in Google Cloud Platform

Syllabus | 25

Module 14. Web-Client Computing
14.1. Introduction to HTML

14.1.1. Structure of the Document
14.1.2. Color
14.1.3. Text
14.1.4. Hypertext Links
14.1.5. Images
14.1.6. Lists
14.1.7. Tables
14.1.8. Frames
14.1.9. Forms
14.1.10. Specific Elements for Mobile Technologies
14.1.11. Obsolete Elements

14.2. Cascading Style Sheets (CSS)
14.2.1. Elements and Structure of a Cascading Style Sheet

14.2.1.1. Creation of Style Sheets
14.2.1.2. Application of Styles Selectors
14.2.1.3. Style Inheritance and Cascading
14.2.1.4. Page Formatting Using Styles
14.2.1.5. Page Structuring Using Styles. The Box Model

14.2.2. Style Design for different Devices
14.2.3. Types of Style Sheets: Static and Dynamic. Pseudo-Classes
14.2.4. Best Practices in the Use of Style Sheets

14.3. Introduction and History of JavaScript
14.3.1. Introduction
14.3.2. History of JavaScript
14.3.3. Development Environment to be Used

14.4. Basic Notions of Web Programming
14.4.1. Basic JavaScript Syntax
14.4.2. Primitive Data Types and Operators
14.4.3. Variables and Areas
14.4.4. Text Strings and Template Literals
14.4.5. Numbers and Booleans
14.4.6. Comparisons

14.5. Complex JavaScript Structures
14.5.1. Vectors or Arrays and Objects
14.5.2. Sets
14.5.3. Maps
14.5.4. Disjunctive
14.5.5. Loops

14.6. Functions and Objects
14.6.1. Function Definition and Invocation
14.6.2. Arguments
14.6.3. Arrow Functions
14.6.4. Callback Functions
14.6.5. Higher Order Functions
14.6.6. Literal Objects
14.6.7. The This Object
14.6.8. Objects as Namespaces: theMaths and Date Objects

14.7. The Document Object Model (DOM)
14.7.1. What is the DOM?
14.7.2. A Bit of History
14.7.3. Navigation and Element Retrieval
14.7.4. A Virtual DOM with JSDOM
14.7.5. Query Selectors
14.7.6. Navigation using Properties
14.7.7. Assigning Attributes to Elements
14.7.8. Creation and Modification of Nodes
14.7.9. Updated Styling of the DOM Elements

14.8. Modern Web Development
14.8.1. Event-Driven Flow and Listeners
14.8.2. Modern Web Toolkits and Alignment Systems
14.8.3. Strict JavaScript Mode
14.8.4. More about Functions
14.8.5. Asynchronous Promises and Functions
14.8.6. Closures
14.8.7. Functional Programming
14.8.8. POO in JavaScript

26 | Syllabus

14.9. Web Usability
14.9.1. Introduction to Usability
14.9.2. Definition of Usability
14.9.3. Importance of User-Centered Web Design
14.9.4. Differences Between Accessibility and Usability
14.9.5. Advantages and Problems in Combining Accessibility and Usability
14.9.6. Advantages and Difficulties in the Implementation of Usable Websites
14.9.7. Usability Methods
14.9.8. User Requirements Analysis
14.9.9. Conceptual Design Principles. User-Oriented Prototyping
14.9.10. Guidelines for the Creation of Usable Web Sites

14.9.10.1. Usability Guidelines of Jakob Nielsen
14.9.10.2. Usability Guidelines of Bruce Tognazzini

14.9.11. Usability Evaluation
14.10. Web Accessibility

14.10.1. Introduction
14.10.2. Definition of Web-Accessibility
14.10.3. Types of Disabilities

14.10.3.1. Temporary or Permanent Disabilities
14.10.3.2. Visual Impairment
14.10.3.3. Hearing Impairment
14.10.3.4. Motor Impairment
14.10.3.5. Neurological or Cognitive Disabilities
14.10.3.6. Difficulties Arising from Aging
14.10.3.7. Limitations Arising from the Environment
14.10.3.8. Barriers Preventing Access to the Web

14.10.4. Technical Aids and Support Products to Overcome Barriers
14.10.4.1. Aids for the Blind
14.10.4.2. Aids for Persons with Low Vision
14.10.4.3. Aids for People with Color Blindness
14.10.4.4. Aids for the Hearing Impaired
14.10.4.5. Aids for the Motor Impaired
14.10.4.6. Aids for the and Neurological Impaired

14.10.5. Advantages and Difficulties in the Implementation of Web Accessibility
14.10.6. Web Accessibility Regulations and Standards
14.10.7. Web Accessibility Regulatory Bodies
14.10.8. Comparison of Standards and Regulations
14.10.9. Guidelines for Compliance with Regulations and Standards

14.10.9.1. Description of the Main Guidelines (Images, links, videos, etc.)
14.10.9.2. Guidelines for Accessible Navigation
 14.10.9.2.1. Perceptibility
 14.10.9.2.2. Operability
 14.10.9.2.3. Comprehensibility
 14.10.9.2.4. Robustness

14.10.10. Description of the Web Accessibility Compliance Process
14.10.11. Compliance Levels
14.10.12. Compliance Criteria
14.10.13. Compliance Requirements
14.10.13. Web Site Accessibility Evaluation Methodology

Module 15. Web Server Computing
15.1. Introduction to Server-Side Programming: PHP

15.1.1. Server-Side Programming Basics
15.1.2. Basic PHP Syntax
15.1.3. HTML Content Generation with PHP
15.1.4. Development and Testing Environments: XAMPP

15.2. Advanced PHP
15.2.1. Control Structures with PHP
15.2.2. PHP Functions
15.2.3. Array Handling in PHP
15.2.4. String Handling with PHP
15.2.5. Object Orientation in PHP

15.3. Data Models
15.3.1. Concept of Data. Life Cycle of Data
15.3.2. Types of Data

15.3.2.1. Basic
15.3.2.2. Records
15.3.2.3. Dynamics

Syllabus | 27

15.4. Relational Model
15.4.1. Description
15.4.2. Entities and Types of Entities
15.4.3. Data Elements. Attributes
15.4.4. Relationships: Types, Subtypes, Cardinality
15.4.5. Keys Types of Keys
15.4.6. Normalization. Normal Forms

15.5. Construction of the Logical Data Model
15.5.1. Specification of Tables
15.5.2. Definition of Columns
15.5.3. Key Specification
15.5.4. Conversion to Normal Forms. Dependency

15.6. The Physical Data Model. Data Files
15.6.1. Description of Data Files
15.6.2. Types of Files
15.6.3. Access Modes
15.6.4. File Organization

15.7. Database Access from PHP
15.7.1. Introduction to MariaDB
15.7.2. Working with a MariaDB Database: the SQL Language
15.7.3. Accessing the MariaDB Database from PHP
15.7.4. Introduction to MySql
15.7.5. Working with a MySql Database: The SQL language
15.7.6. Accessing MySql Database from PHP

15.8. Client Interaction from PHP
15.8.1. PHP Forms
15.8.2. Cookies
15.8.3. Session Management

15.9. Web Application Architecture
15.9.1. The Controller View Model Pattern
15.9.2. Controller
15.9.3. Models
15.9.4. View

15.10. Introduction to Web Services
15.10.1. Introduction to XML
15.10.2. Service-Oriented Architecture (SOA): Web services
15.10.3. Creation of SOAP and REST Web Services
15.10.4. The SOAP Protocol
15.10.5. The REST Protocol

Module 16. Safety Management
16.1. Information Security

16.1.1. Introduction
16.1.2. Information Security Involves Confidentiality, Integrity and Availability
16.1.3. Safety is an Economic Issue
16.1.4. Safety is a Process
16.1.5. Classification of Information
16.1.6. Information Security Involves Risk Management
16.1.7. Security is Articulated with Security Controls
16.1.8. Security is both Physical and Logical
16.1.9. Safety Involves People

16.2. The Information Security Professional
16.2.1. Introduction
16.2.2. Information Security as a Profession
16.2.3. Certifications (ISC)2
16.2.4. The ISO 27001 Standard
16.2.5. Best Security Practices in IT Service Management
16.2.6. Information Security Maturity Models
16.2.7. Other Certifications, Standards and Professional Resources

16.3. Access Control
16.3.1. Introduction
16.3.2. Access Control Requirements
16.3.3. Authentication Mechanisms
16.3.4. Authorization Methods
16.3.5. Access Accounting and Auditing
16.3.6. Triple A Technologies

28 | Syllabus

16.4. Information Security Programs, Processes and Policies
16.4.1. Introduction
16.4.2. Security Management Programs
16.4.3. Risk Management
16.4.4. Design of Security Policies

16.5. Business Continuity Plans
16.5.1. Introduction to BCPs
16.5.2. Phase I and II
16.5.3. Phase III and IV
16.5.4. Maintenance of the BCP

16.6. Procedures for the Correct Protection of the Company
16.6.1. DMZ Networks
16.6.2. Intrusion Detection Systems
16.6.3. Access Control Lists
16.6.4. Learning from the Attacker: Honeypot

16.7. Security Architecture. Prevention
16.7.1. Overview. Activities and Layer Model
16.7.2. Perimeter Defence (Firewalls, WAFs, WAFs, IPS, etc.)
16.7.3. Endpoint Defence (Equipment, Servers and Services)

16.8. Security Architecture Detection
16.8.1. Overview Detection and Monitoring
16.8.2. Logs, Encrypted Traffic Breaking, Recording and Siems
16.8.3. Alerts and Intelligence

16.9. Security Architecture Reaction
16.9.1. Reaction Products, Services and Resources
16.9.2. Information Security
16.9.3. CERTS and CSIRTs

16.10. Security Architecture Recovery
16.10.1. Resilience, Concepts, Business Requirements and Regulations
16.10.2. IT Resilience Solutions
16.10.3. Crisis Management and Governance

Module 17. Software Security
17.1. Software Security Problems

17.1.1. Introduction to the Problem of Software Security
17.1.2. Vulnerabilities and their Classification
17.1.3. Secure Software Properties
17.1.4. References

17.2. Software Safety Design Principles
17.2.1. Introduction
17.2.2. Software Safety Design Principles
17.2.3. Types of S-SDLC
17.2.4. Software Safety in S-SDLC Phases
17.2.5. Methodologies and Standards
17.2.6. References

17.3. Software Lifecycle Safety in the Requirements and Design Phases
17.3.1. Introduction
17.3.2. Attack Modeling
17.3.3. Cases of Abuse
17.3.4. Safety Requirements Engineering
17.3.5. Risk Analysis Architectural
17.3.6. Design Patterns
17.3.7. References

17.4. Software Lifecycle Safety in the Coding, Testing and Operation Phases
17.4.1. Introduction
17.4.2. Risk-Based Safety Testing
17.4.3. Code Review
17.4.4. Penetration Test
17.4.5. Security Operations
17.4.6. External Review
17.4.7. References

Syllabus | 29

17.5. Secure Coding Applications I
17.5.1. Introduction
17.5.2. Secure Coding Practices
17.5.3. Manipulation and Validation of Inputs
17.5.4. Memory Overflow
17.5.5. References

17.6. Secure Coding Applications II
17.6.1. Introduction
17.6.2. Integers Overflows, Truncation Errors and Problems with Type

Conversions between Integers
17.6.3. Errors and Exceptions
17.6.4. Privacy and Confidentiality
17.6.5. Privileged Programs
17.6.6. References

17.7. Development and Cloud Security
17.7.1. Safety in Development; Methodology and Practice
17.7.2. PaaS, IaaS, CaaS and SaaS Models
17.7.3. Security in the Cloud and for Cloud Services

17.8. Encryption
17.8.1. Fundamentals of Cryptology
17.8.2. Symmetric and Asymmetric Encryption
17.8.3. Encryption at Rest and in Transit

17.9. Security Automation and Orchestration (SOAR)
17.9.1. Complexity of Manual Processing; Need to Automate Tasks
17.9.2. Products and Services
17.9.3. SOAR Architecture

17.10. Telework Safety
17.10.1. Need and Scenarios
17.10.2. Products and Services
17.10.3. Telework Safety

Module 18. Web Server Administration
18.1. Introduction to Web Servers

18.1.1. What is a Web Server?
18.1.2. Architecture and Operation of a Web Server
18.1.3. Resources and Contents on a Web Server
18.1.4. Application Servers
18.1.5. Proxy Servers
18.1.6. Main Web Servers on the Market
18.1.7. Web Server Usage Statistics
18.1.8. Web Server Security
18.1.9. Load Balancing on Web Servers
18.1.10. References

18.2. HTTP Protocol Handling
18.2.1. Operation and Structure
18.2.2. Request Methods
18.2.3. Status Codes
18.2.4. Headers
18.2.5. Content Coding. Code Pages
18.2.6. Performing HTTP Requests on the Internet using a Proxy,

Livehttpheadersor Similar Method, Analyzing the Protocol Used
18.3. Description of Distributed Multi-Server Architectures

18.3.1. 3-Layer Model
18.3.2. Fault Tolerance
18.3.3. Load Sharing
18.3.4. Session State Stores
18.3.5. Cache Stores

18.4. Internet Information Services (IIS)
18.4.1. What is IIS?
18.4.2. History and Evolution of IIS
18.4.3. Main Advantages and Features of IIS7 and Later Versions
18.4.4. IIS7 Architecture and Later Versions

30 | Syllabus

18.5. IIS Installation, Administration and Configuration
18.5.1. Preamble
18.5.2. Internet Information Services (IIS) Installation
18.5.3. IIS Administration Tools
18.5.4. Web Site Creation, Configuration and Administration
18.5.5. Installation and Management of IIS Extensions

18.6. Advanced Security in IIS
18.6.1. Preamble
18.6.2. Authentication, Authorization, and Access Control in IIS
18.6.3. Configuring a Secure Website on IIS with SSL
18.6.4. Security Policies Implemented in IIS 8.x

18.7. Introduction to Apache
18.7.1. What is Apache?
18.7.2. Main Advantages of Apache
18.7.3. Main Features of Apache
18.7.4. Architecture

18.8. Apache Installation and Configuration
18.8.1. Initial Installation of Apache
18.8.2. Apache Configuration

18.9. Installation and Configuration of the Different Apache Modules
18.9.1. Apache Module Installation
18.9.2. Types of Modules
18.9.3. Secure Apache Configuration

18.10. Advanced Security
18.10.1. Authentication, Authorization and Access Control
18.10.2. Authentication Methods
18.10.3. Secure Apache Configuration with SSL

Module 19. Security Audit
19.1. Introduction to Information Systems in the Company

19.1.1. Introduction to Information Systems in the Company and the Role of IT Auditing
19.1.2. Definitions of "IT Audit" and "IT Internal Control"
19.1.3. Functions and Objectives of IT Auditing
19.1.4. Differences between Internal Control and IT Auditing

19.2. Internal Controls of Information Systems
19.2.1. Functional Flowchart of a Data Processing Center
19.2.2. Classification of Information Systems Controls
19.2.3. The Golden Rule

19.3. The Process and Phases of the Information Systems Audit
19.3.1. Risk Assessment and Other IT Auditing Methodologies
19.3.2. Execution of an Information Systems Audit. Phases of the Audit
19.3.3. Fundamental Skills of the Auditor of an IT System

19.4. Technical Audit of Security in Systems and Networks
19.4.1. Technical Security Audits. Intrusion Test. Previous Concepts
19.4.2. Security Audits in Systems. Support Tools
19.4.3. Security Audits in Networks. Support Tools

19.5. Technical Audit of Security on the Internet and in Mobile Devices
19.5.1. Internet Security Audit. Support Tools
19.5.2. Mobile Devices Security Audit. Support Tools
19.5.3. Annex 1. Structure of an Executive Report and Technical Report
19.5.4. Annex 2. Tools Inventory
19.5.5. Annex 3. Methods

19.6. Information Security Management System
19.6.1. Security of IS: Properties and Influential Factors
19.6.2. Business Risks and Risk Management: Implementing Controls
19.6.3. Information Security Management System (ISMS): Concept and Critical

Success Factors
19.6.4. ISMS-PDCA Model
19.6.5. ISMS ISO-IEC 27001: Organizational Context
19.6.6. Context of the Organization
19.6.7. Leadership
19.6.8. Planning
19.6.9. Support
19.6.10. Operation
19.6.11. Performance Evaluation
19.6.12. Improvement
19.6.13. Annex to ISO 27001/ISO-IEC 27002: Objectives and Controls
19.6.14. ISMS Audit

Syllabus | 31

19.7. Carrying Out the Audit
19.7.1. Procedures
19.7.2. Techniques

19.8. Traceability
19.8.1. Methods
19.8.2. Analysis

19.9. Copyright
19.9.1. Techniques
19.9.2. Results

19.10. Reports and Presenting Proof
19.10.1. Types of Reports
19.10.2. Analysis of Data
19.10.3. Presenting Proof

Module 20. Online Applications Security
20.1. Vulnerabilities and Security Issues in Online Applications

20.1.1. Introduction to Online Application Security
20.1.2. Security Vulnerabilities in the Design of Web Applications
20.1.3. Security Vulnerabilities in the Implementation of Web Applications
20.1.4. Security Vulnerabilities in the Deployment of Web Applications
20.1.5. Official Lists of Security Vulnerabilities

20.2. Policies and Standards for Online Application Security
20.2.1. Pillars for the Security of Online Applications
20.2.2. Security Policy
20.2.3. Information Security Management System
20.2.4. Secure Software Development Life Cycle
20.2.5. Standards for Application Security

20.3. Security in the Design of Web Applications
20.3.1. Introduction to Web Application Security
20.3.2. Security in the Design of Web Applications

20.4. Testing the Online Safety and Security of Web Applications
20.4.1. Web Application Security Testing and Analysis
20.4.2. Web Application Deployment and Production Security

32 | Syllabus

20.5. Web Services Security
20.5.1. Introduction to Web Services Security
20.5.2. Web Services Security Functions and Technologies

20.6. Testing the Online Safety and Security of Web Services
20.6.1. Evaluation of Web Services Security
20.6.2. Online Protection. Firewalls and XML Gateways

20.7. Ethical Hacking, Malware and Forensics
20.7.1. Ethical Hacking
20.7.2. Malware Analysis
20.7.3. Forensic Analysis

20.8. Best Practices to ensure Application Security
20.8.1. Handbook of Best Practices in the Development of Online Applications
20.8.2. Handbook of Good Practices in the Implementation of Online Applications

20.9. Common Errors that Undermine Application Security
20.9.1. Common Errors in Development
20.9.2. Common Errors in Hosting
20.9.3. Common Production Errors

A comprehensive syllabus that will
enable you to master the field of Big
Data and become an architect of
successful business strategies”

Syllabus | 33

Teaching Objectives
04

The Advanced Master's Degree in Software Engineering and Quality aims to train
professionals to be highly skilled in the design, development and management of
high-quality software systems. With a particular focus on quality and the strategic
management of technological projects, the program also promotes the ability to adapt
to rapid advances in the industry. This ensures that students are not only prepared to
face the challenges of the future, but are also capable of leading innovation in the field
of software.

Turn ideas into effective technological solutions
with the art of software engineering”

Teaching Objectives | 35

General Objectives

 � Develop advanced skills in the design, development and maintenance of complex
and scalable software systems, applying best practices and software engineering
methodologies

 � Train students in software quality assurance, providing them with tools and techniques to
guarantee the reliability, security and performance of technological solutions

 � Foster leadership in the management of technological projects, developing skills in
the management of multidisciplinary teams, strategic planning and decision making in
dynamic environments

 � Promote the ability to adapt to rapid technological advances, through specialization in new
tools, techniques and trends that allow one to stay at the forefront of software engineering

 � Develop skills in quality management throughout the software life cycle, from initial
planning to maintenance and continuous improvement of systems

 � Strengthen communication and teamwork skills, essential for collaborating effectively with
different stakeholders, managing expectations and ensuring the success of technology
projects

Improve your skills and become a
leader in the creation of cutting-edge
technology solutions”

36 | Teaching Objectives

Module 1. Software Quality. TRL Development Levels
 � Understand the different levels of technological maturity and their
relationship with software quality

 � Evaluate software development at each stage of the TRL and how it
impacts on the final quality of the product

Module 2. Software Project Development. Functional and technical
documentation

 � Develop skills to create clear and detailed functional and technical documentation in
software projects

 � Analyze the importance of accurate documentation for project management and
software quality

Module 3. SoftwareTesting. Test automation
 � Develop skills to design and execute automated tests in software
applications

 � Implement efficient testing solutions using test automation tools

Module 4. Software Project Management Methodologies. Waterfall
Methodology vs Agile Methodology

 � Analyze the differences between Waterfall and Agile methodologies in the
management of software projects

 � Evaluate the benefits and limitations of each methodology according to the type of project

Module 7 (Test-Driven Development). Test-Driven Software Design
 � Develop skills for writing unit tests before writing the production code

 � Improve software quality by implementing TDD in the development process

Specific Objectives

Module 6. DevOps. Software Quality Management
 � Explore the concept of DevOps and its impact on the continuous improvement of
software quality

 � Learn to integrate development and operations practices to achieve a more agile
and efficient software life cycle

Module 7. DevOps and Continuous Integration. Advanced Practical
Solutions in Software Development

 � Delve into advanced continuous integration techniques within the DevOps
framework

 � Implement practical continuous integration solutions to automate the software
development and deployment process

Module 8. Database (DB) Design. Standardization and performance.
Software Quality

 � Analyze database design principles, including normalization and performance
optimization

 � Understand how proper database design contributes to software quality

Module 9. Design of Scalable Architectures. The Architecture in the
Software Life Cycle

 � Delve into the design principles of scalable architectures and their impact on
software quality and performance

 � Evaluate different architecture patterns for scalable software applications

Module 10. ISO, IEC 9126 Quality Criteria. Software Quality Metrics
 � Understand software quality criteria according to these standards and how to apply
them

 � Implement quality metrics to evaluate and continuously improve software
applications

Teaching Objectives | 37

Module 11. Methodologies, Development and Quality in Software
Engineering

 � Gaina deeper understanding of the most commonly used methodologies in
Software Engineering and their relationship with Quality

 � Develop a comprehensive approach that combines development, testing and quality
in Software projects

Module 12. Software Project Management
 � Develop skills in software project management, from planning to execution

 � Manage the resources, times and risks associated with software development
projects

Module 13. Software Development Platforms
 � Explore the different software development platforms and their characteristics

 � Evaluate development platforms based on their capabilities, flexibility and
compatibility with different projects

Module 14. Web-Client Computing
 � Analyze how client-side computing is used in the development of web applications

 � Develop applications that take advantage of client-side computing to improve
interaction and performance

Module 15. Web Server Computing
 � Explore the technologies and techniques used for computing on the web server

 � Understand data handling, business logic and user management on the server

Module 16. Safety Management
 � Evaluate the security risks in applications and apply preventive measures

 � Implement security controls in all stages of the software life cycle

38 | Teaching Objectives

Module 17. Software Security
 � Explore the best security practices in Software development

 � Analyze the most common software vulnerabilities and learn how to mitigate them

Module 18. Web Server Administration
 � Understand the role of web servers in the development and deployment of
applications

 � Develop skills in the administration and maintenance of web servers

Module 19. Security Audit
 � Evaluate the security of systems by means of audits and penetration tests

 � Implement continuous audit processes to improve software security

Module 20. Online Applications Security
 � Implement solutions to protect online applications against external and internal
threats

 � Establish security and auditing policies to guarantee the integrity of online
applications

Teaching Objectives | 39

Career Opportunities
05

Graduates will be highly qualified to take on leadership roles in the development,
implementation and management of high-quality software. Thanks to their advanced
specialization in key areas such as software architecture, online application security,
technology project management and agile methodologies, they will be able to
lead development teams. In addition, their preparation will enable them to occupy
management positions in software projects, while their ability to innovate and
lead multidisciplinary teams will enable them to face the challenges of the digital
environment and contribute significantly to the success of any organization.

TECH gives you the opportunity to fulfill your
dreams in the most exciting discipline, which
turns ideas into tangible products capable of
improving people's lives”

Career Opportunities | 41

Graduate Profile

The profile of the graduate of the Advanced Master's Degree in Software Engineering
and Quality is aimed at training highly qualified professionals, capable of leading and
managing high-impact technology projects. Ensuring quality, security and efficiency
in all phases of software development, they will master both agile and traditional
methodologies. In addition, they will be qualified to design and develop scalable,
efficient and secure software systems, applying international quality standards and
advanced methodologies such as DevOps and continuous integration.

 � Software and Systems Security: Competence in the implementation of advanced security
practices, including data protection and vulnerability management in online applications

 � Software Quality Assurance: Ability to apply international standards (ISO, IEC 9126) and
automated testing tools to ensure software reliability and performance

 � Development of Scalable Architectures: Ability to design and build software systems that
can grow and adapt to market demands without compromising quality or security

 � Continuous Integration and DevOps: Ability to implement and manage continuous
integration processes, ensuring efficient and uninterrupted delivery of new software
functionality.

Become an expert who guarantees the
success of companies, at the world's
largest online university.

42 | Career Opportunities

If you want to make a difference in
the digital world, choose this path that
will specialize you as an expert in the
creation of quality software”

After completing the Advanced Master's Degree, you will be able to apply your
knowledge and skills in the following roles:

1. Chief Technology Officer (CTO): Responsible for the strategic management of technology
in a company, leading development teams and overseeing the implementation of
innovative technological solutions.

2. Software Quality Manager: Responsible for overseeing and ensuring that software
processes and products meet established quality standards, leading continuous
improvement initiatives and software testing.

3. Software Architect: Principal designer of the structure and architecture of complex
software systems, ensuring that they are scalable, secure and efficient.

4. Software Project Leader: Responsible for the planning, execution and delivery of software
projects, managing multidisciplinary teams and ensuring that projects are completed on
time, on budget and to the appropriate quality standards.

5. Computer Security Specialist: Responsible for protecting applications, infrastructures and
data from cyber threats, implementing effective security strategies and policies

6. Software Security Auditor: Carries out exhaustive audits to identify vulnerabilities in
applications and systems, proposing improvements and solutions to guarantee software
security

Career Opportunities | 43

06

TECH will prepare you to face new
challenges in uncertain environments
and achieve success in your career”

Study Methodology | 45

46 | Study Methodology

At TECH you will NOT have live classes
(which you might not be able to attend)”

TECH's model is asynchronous, so it
allows you to study with your pc, tablet
or your smartphone wherever you
want, whenever you want and for as
long as you want”

Study Methodology | 47

48 | Study Methodology

Study Methodology | 49

50 | Study Methodology

The online study mode of this
program will allow you to organize
your time and learning pace,
adapting it to your schedule”

4. Students like to feel that the effort they put into their studies is worthwhile.
This then translates into a greater interest in learning and more time
dedicated to working on the course.

3. Ideas and concepts are understood more efficiently, given that the example
situations are based on real-life.

2. Learning is solidly translated into practical skills that allow the student to
better integrate into the real world.

1. Students who follow this method not only achieve the assimilation of
concepts, but also a development of their mental capacity, through
exercises that assess real situations and the application of knowledge.

The effectiveness of the method is justified by four fundamental achievements:

Study Methodology | 51

You will be able to learn with the
advantages that come with having access

to simulated learning environments and
the learning by observation approach,

that is, Learning from an expert.

Access the study contents from any device
with an Internet connection (computer, tablet,
smartphone) thanks to the fact that TECH is
at the forefront of technology and teaching.

Global Score review platform, obtaining a 4.9 out of 5.

52 | Study Methodology

Study Methodology | 53

Teaching Staff
07

The management and teaching of this Advanced Master's Degree in Software
Engineering and Quality is carried out by a team of engineering experts with many
years of experience in the management and development of technical and specialized
projects. Their professional background brings to this program a boost in quality that
will be reflected in a better contextualization of the content by the graduate, as well as
the implementation to the academic experience of real and simulated case studies, but
always aimed at offering a 100% online, dynamic and avant-garde program based on
the immediate reality of the sector.

Join the most in-demand field for software
engineering and quality experts and take
this opportunity to become one of them"

Teaching staff | 55

International Guest Director

Darren Pulsipher is a highly experienced software architect, an innovator with an outstanding

international track record in software and firmware development. In fact, he possesses highly

developed communication, project management and business skills, which have enabled him to

lead major global initiatives.

He has also held senior positions of great responsibility throughout his career, such as Chief

Solution Architect for the Public Sector at Intel Corporation, where he has promoted modern

business, processes and technologies for customers, partners and users in the public sector.

In addition, he founded Yoly Inc. where he has also served as CEO, working to develop a social

network aggregation and diagnostic tool based on Software as a Service (SaaS), using Big Data

and Web 2.0 technologies.

Additionally, he has served in other companies, as Senior Director of Engineering, at Dell

Technologies, where he led the Big Data in the Cloud Business Unit, leading teams in the United

States and China for the management of large projects and the restructuring of business divisions

for their successful integration. He has also worked as Chief Information Officer at XanGo, where

he managed projects such as Help Desk support, production support and solution development.

Among the many specialties in which he is an expert, Edge to Cloud technology, cybersecurity,

Generative Artificial Intelligence, software development, networking technology, cloud-native

development and the container ecosystem stand out. Knowledge he has shared through the

"Embracing Digital Transformation" podcast and weekly newsletter, which he produced and

hosted, helping organizations successfully navigate digital transformation by leveraging people,

processes and technology.

56 | Teaching staff

Thanks to TECH you will be
able to learn with the best
professionals in the world"

Mr. Pulsipher, Darren
 � Chief Solution Architect for Public Sector at Intel, California, United States
 � Host and Producer of "Embracing Digital Transformation", California
 � Founder and CEO at Yoly Inc., Arkansas
 � Senior Director of Engineering at Dell Technologies, Arkansas
 � Chief Information Technology Officer, XanGo, Utah
 � Senior Architect at Cadence Design Systems, California
 � Senior Project Process Manager at Lucent Technologies, California
 � Software Engineer at Cemax-Icon, California
 � Software Engineer at ISG Technologies, Canada
 � MBA in Technology Management from the University of Phoenix
 � B.S. in Computer Science and Electrical Engineering from Brigham Young
University

Teaching staff | 57

Management

Mr. Molina Molina, Jerónimo
 � Head of Artificial Intelligence at Helphone

 � AI Engineer & Software Architect at NASSAT, Internet Satellite in Motion

 � Senior Consultant at Hexa Engineer

 � Artificial Intelligence Introducer (ML and CV)

 � Expert in Artificial Intelligence Based Solutions in the fields of Computer Vision, ML/DL and NLP

 � University Expert in Business Creation and Development at Bancaixa and Fundeun

 � Computer Engineer by the University of Alicante

 � Master's Degree in Artificial Intelligence from the Catholic University of Avila

 � Executive MBA at the European Business Campus Forum

Ms. Rodríguez Míguez, Cándida
 � Junior Application Developer at Getronics

 � Co-founder and City Leader of the Galicia AI network

 � Junior Software Engineer at Indra

 � Web Developer at EDISA

 � Degree in Computer Engineering from the University of Vigo

 � Master's Degree in Computer Engineering from the University of Vigo

Professors
Mr. Pi Morell, Oriol

 � Functional Analyst at Fihoca

 � Hosting and Mail Product Owner at CDmon

 � Functional Analyst and Software Engineer at Atmira and Capgemini

 � Lecturer at Capgemini, Forms Capgemini and Atmira

 � Degree in Technical Engineering in Computer Management from the Autonomous
University of Barcelona

 � Master's Degree in Artificial Intelligence from the Catholic University of Avila

 � MBA in Business Management and Administration from IMF Smart Education

 � Master's Degree in Information Systems Management from IMF Smart Education

 � Postgraduate degree in Design Patterns from the Open University of Catalonia

58 | Teaching staff

Mr. Martínez Calvo, Francisco Javier
 � Industrial Technical Engineer specialized in Electricity and Electronics

 � Software Technician at HEXA Ingenieros

 � Senior .Net Developer / Net Solutions Architect at Everis

 � Software Analyst/Architect at LaLiga

 � Microsoft On-site Engineer at BBVA

 � Freelance Technical-Informatics Consultant

 � Trainer in Visual Studio, SqlServer, CCNA (Cisco Routers and Switch), PHP and .Net
Web Programming in several centers (Salesianos, Maforem, Dreamsoft)

 � Industrial Technical Engineer with Specialization in Electricity, Industrial Electronics

 � Cibernos Master's Degree in .NET, MCAD

 � Master's Degree Eidos in Advanced Programming, Expert Level

 � Master's Degree in Web with Dreamweaver, Fireworks, Flash and ActionScript
Certifications, MX Versions

Mr. Tenrero Morán, Marcos
 � DevOps Engineer at Allot Communications

 � Application Lifecycle Management Manager at Cegid Meta4

 � QA Automation Engineer at Cegid Meta4

 � Master's Degree in Android Application Development at Galileo University.
Guatemala.

 � Master's Degree in Cloud Services Development, Node.Js, JavaScript, HTML5 from
the Polytechnic University of Madrid

 � Web Development with Angular-CLI (4), Ionic and Node.Js, Meta4 from the Rey
Juan Carlos Univeristy

 � Degree in Computer Engineering from the Rey Juan Carlos Univeristy

Ms. Acebes Tamargo, Patricia
 � Consultant specialized in Big Data

 � Operations Department, working with Elasticsearch and Kivana at Sirt

 � Online Researcher in Human Factor and AI Aplications at CTIC Technology Center

 � Online Researcher in Business Unit at CTIC Technology Center

 � Digital Health and Active Aging Department at CTIC Technology Center

 � Data Science Department at CTIC Technology Center

 � PhD in Computer Science in Artificial Intelligence from the Polytechnic University of
Valencia

 � Degree in Economics from the University of Oviedo

 � Master's Degree in Data Analysis UCJC

 � Master's Degree in Artificial Intelligence Research UNED

 � Master's Degree in Blockchain, Smart Contracts and Cryptocurrencies from the
University of Alcalá

 � Postgraduate Degree in Blockchain Engineering by EADA

 � Master's Degree in Economics, Instruments, Economic Analysis from the University
of Oviedo

 � Master's Degree in Taxation from the Economists Association

Teaching staff | 59

Certificate
08

The Advanced Master's Degree in Software Engineering and Quality guarantees
students, in addition to the most rigorous and up-to-date education, access to an
Advanced Master's Degree diploma issued by TECH Global University.

Successfully complete this program
and receive your university qualification
without having to travel or fill out
laborious paperwork"

Certificate | 61

This private qualification will allow you to obtain an Advanced Master's Degree diploma in

Software Engineering and Quality endorsed by TECH Global University, he world's largest online

university.

This TECH Global University private qualification, is a European program of continuing education

and professional updating that guarantees the acquisition of competencies in its area of

knowledge, providing a high curricular value to the student who completes the program.

Title: Advanced Master's Degree in Software Engineering and Quality

Modality: online

Duration: 2 years

Accreditation: 120 ECTS

62 | Certificate

*Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

62 | Certificate

Advanced Master's
Degree
Software Engineering
and Quality

 » Modality: online
 » Duration: 2 years
 » Certificate: TECH Global University
 » Accreditation: 120 ECTS
 » Schedule: at your own pace
 » Exams: online

Advanced Master's Degree
Software Engineering and Quality

