

Privater Masterstudiengang Spezifische Telekommunikationstechnologie

» Modalität: online

» Dauer: 12 Monate

» Qualifizierung: TECH Technologische Universität

» Aufwand: 16 Std./Woche

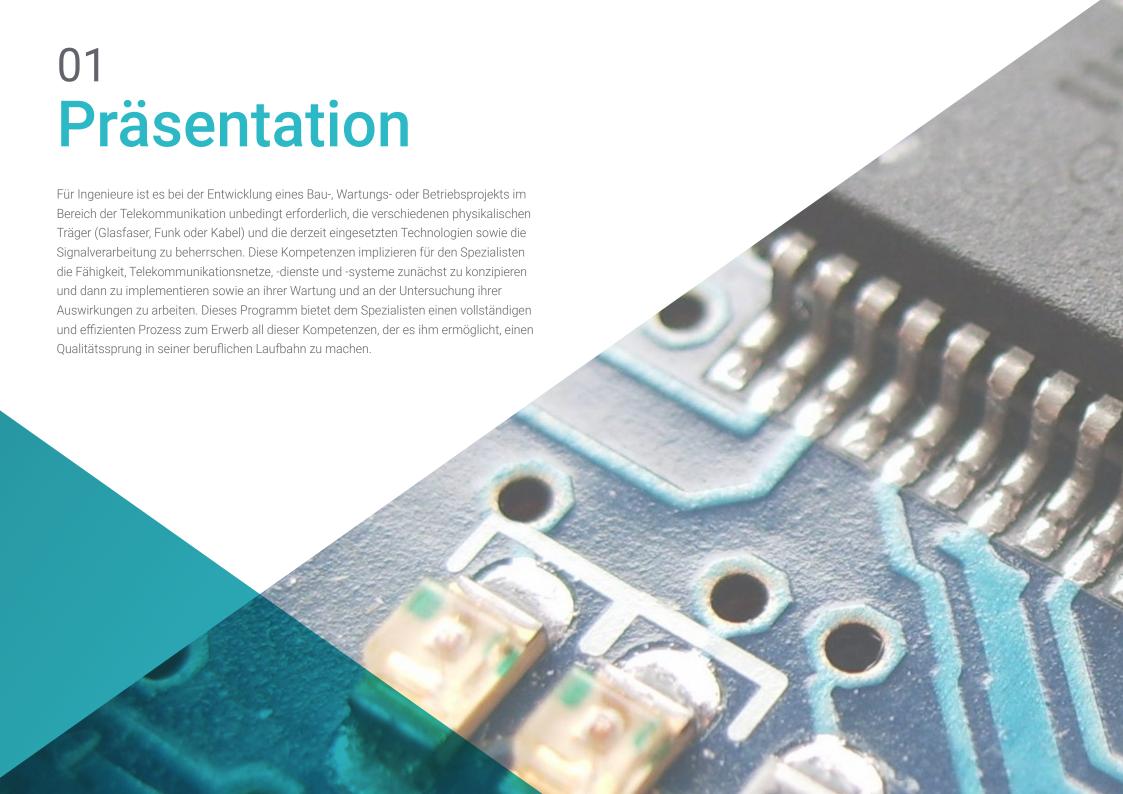
» Zeitplan: in Ihrem eigenen Tempo

» Prüfungen: online

Internet zugang: www.techtitute.com/de/informatik/masterstudiengang/masterstudiengang-spezifische-telekommunikationstechnologie

Index

O1
Präsentation
Ziele
Seite 4
Seite 8


03 04 05
Kompetenzen Struktur und Inhalt Methodik

Seite 14 Seite 18

Seite 34

06 Qualifizierung

Seite 42

tech 06 | Präsentation

Die Fortschritte im Bereich der Telekommunikation erfolgen ständig, da es sich hierbei um einen der sich am schnellsten entwickelnden Bereiche im Ingenieurwesen handelt. Es ist daher notwendig, über IT-Experten zu verfügen, die sich an diese Veränderungen anpassen können und die neuen Instrumente und Techniken, die in diesem Bereich entstehen, aus erster Hand kennen.

Der Private Masterstudiengang in Spezifische Telekommunikationstechnologie deckt alle Bereiche dieses Fachgebiets ab. Das Studium hat einen klaren Vorteil gegenüber anderen Masterstudiengängen, die sich auf spezifische Blöcke konzentrieren, was den Studenten daran hindert, die Wechselbeziehungen mit anderen Bereichen des multidisziplinären Feldes der Telekommunikation kennenzulernen, und bietet eine breitere Sichtweise, die die komplementären Kompetenzen anderer Interessensgebiete mit einbezieht. Darüber hinaus hat das Dozententeam dieses Bildungsprogramms eine sorgfältige Auswahl der einzelnen Themen getroffen, um dem Studenten ein möglichst umfassendes Studium zu ermöglichen, das stets mit dem aktuellen Zeitgeschehen verbunden ist.

Dieses Programm richtet sich an Personen, die ein höheres Niveau an Kenntnissen in der spezifischen Telekommunikationstechnologie erreichen wollen. Das Hauptziel besteht darin, den Studenten in die Lage zu versetzen, die in diesem privaten Masterstudiengang erworbenen Kenntnisse in der realen Welt anzuwenden, in einem Arbeitsumfeld, das die Bedingungen, denen er in seiner Zukunft begegnen kann, präzise und realistisch wiedergibt.

Da es sich um einen privaten Masterstudiengang handelt, der zu 100% online absolviert wird, ist der Student nicht an einen festen Zeitplan oder die Notwendigkeit, sich an einen anderen Ort zu begeben, gebunden, sondern kann zu jeder Tageszeit auf die Inhalte zugreifen und so sein Arbeits- oder Privatleben mit dem akademischen Leben in Einklang bringen.

Dieser **Privater Masterstudiengang in Spezifische Telekommunikationstechnologie** enthält das vollständigste und aktuellste Programm auf dem Markt. Die hervorstechendsten Merkmale sind:

- Die Entwicklung von Fallstudien, die von Experten für spezifische Telekommunikationstechnologien vorgestellt werden
- Der anschauliche, schematische und äußerst praxisnahe Inhalt vermittelt alle für die berufliche Praxis unverzichtbaren wissenschaftlichen und praktischen Informationen
- Praktische Übungen, bei denen der Selbstbewertungsprozess zur Verbesserung des Lernens genutzt werden kann
- Sein besonderer Schwerpunkt liegt auf innovativen Methoden in der spezifischen Telekommunikationstechnologie
- Theoretische Vorträge, Fragen an den Experten, Diskussionsforen zu kontroversen Themen und individuelle Reflexionsarbeit
- Die Verfügbarkeit des Zugangs zu Inhalten von jedem festen oder tragbaren Gerät mit Internetanschluss

Verpassen Sie nicht die Gelegenheit, diesen Privaten Masterstudiengang in Spezifische Telekommunikationstechnik bei uns zu absolvieren. Es ist die perfekte Gelegenheit, um Ihre Karriere voranzutreiben"

Mit einem System, das ein ausreichend breites Wissen und eine effiziente praktische Erfahrung ermöglicht, ist dieses Programm ein äußerst wertvolles Instrument für die berufliche Entwicklung"

Das Dozententeam besteht aus Fachleuten aus dem Bereich der Informatik, die ihre Berufserfahrung in diese Fortbildung einbringen, sowie aus anerkannten Spezialisten aus führenden Unternehmen und renommierten Universitäten.

Die multimedialen Inhalte, die mit der neuesten Bildungstechnologie entwickelt wurden, werden der Fachkraft ein situiertes und kontextbezogenes Lernen ermöglichen, d. h. eine simulierte Umgebung, die eine immersive Fortbildung bietet, die auf die Ausführung von realen Situationen ausgerichtet ist.

Das Konzept dieses Programms konzentriert sich auf problemorientiertes Lernen, bei dem die Fachkraft versuchen muss, die verschiedenen Situationen aus der beruflichen Praxis zu lösen, die während des akademischen Kurses auftreten. Dabei wird die Fachkraft durch ein innovatives System interaktiver Videos unterstützt, die von anerkannten Experten auf dem Gebiet der spezifischen Telekommunikationstechnologie mit umfassender Erfahrung erstellt wurden.

Das Studiensystem wurde entwickelt, um dem Studenten ein perfektes Gleichgewicht zwischen Studium und anderen Aktivitäten zu bieten, ohne die Effizienz des Lernens zu beeinträchtigen.

Dieser private Masterstudiengang ist auf echtes Lernen ausgerichtet und bietet Ihnen die Unterstützung durch hochwertige audiovisuelle Systeme, die Ihnen ein direktes Eintauchen in die Praxis ermöglichen.

Der Private Masterstudiengang in Spezifische Telekommunikationstechnologie zielt darauf ab, IT-Spezialisten in den spezifischen Aspekten fortzubilden, die mit der Konzeption, Implementierung und Wartung spezifischer Telekommunikationstechnologien verbunden sind. Ein qualitativ hochwertiges Programm, das die Anstrengungen der Spezialisten optimiert und sie schnell in Ergebnisse umsetzt.

tech 10 | Ziele

Allgemeines Ziel

 Vermitteln der Fähigkeit, die Vor- und Nachteile der verschiedenen technologischen Alternativen, die im Bereich der Telekommunikation eingesetzt werden können, zu bewerten

Erreichen Sie den gewünschten Wissensstand und meistern Sie den Privaten Masterstudiengang in Spezifische Telekommunikationstechnologie mit dieser hochkarätigen Fortbildung"

Modul 1. Schaltungsanalyse

- Kennen der Beschaffenheit und des Verhaltens von elektrischen Schaltkreisen
- Beherrschen der grundlegenden Konzepte
- Identifizieren der Schaltkreiskomponenten
- Verstehen und Anwenden der verschiedenen Analysemethoden
- Beherrschen der grundlegenden Theoreme der Schaltungstheorie
- Entwickeln von Rechenfertigkeiten

Modul 2. Elektromagnetismus, Halbleitern und Wellen

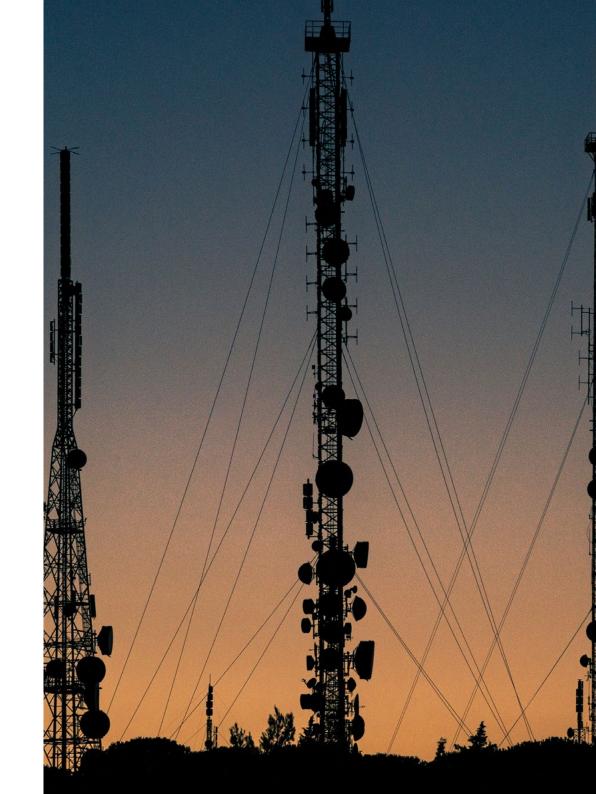
- Anwenden mathematischer Prinzipien in der Feldphysik
- Beherrschen der grundlegenden Konzepte und Gesetze der elektrostatischen, magnetostatischen und elektromagnetischen Felder
- Verstehen der grundlegenden Prinzipien von Halbleiternn
- Kennen der Transistortheorie und Unterscheiden zwischen den beiden Hauptfamilien von Transistoren
- Verstehen der Gleichungen für stationäre elektrische Ströme
- In der Lage sein, technische Probleme im Zusammenhang mit den Gesetzen des Elektromagnetismus zu lösen

Modul 3. Zufällige Signale und lineare Systeme

- Verstehen der Grundlagen der Wahrscheinlichkeitsrechnung
- Kennen der grundlegenden Theorie der Variablen und Vektoren
- Beherrschen von Zufallsprozessen und deren zeitlichen und spektralen Eigenschaften
- Anwenden der Konzepte der deterministischen und zufälligen Signale auf die Charakterisierung von Störungen und Lärm
- Kennen der grundlegenden Eigenschaften von Systemen
- Beherrschen linearer Systeme und damit verbundener Funktionen und Transformationen
- Anwenden von Konzepten linearer zeitinvarianter Systeme (LTI-Systeme) zur Modellierung, Analyse, und Vorhersage von Prozessen

Modul 4. Felder und Wellen

- In der Lage sein, die grundlegenden Mechanismen der Ausbreitung elektromagnetischer Wellen und ihrer Wechselwirkung mit Hindernissen sowohl im freien Raum als auch in Leitsystemen qualitativ und quantitativ zu analysieren
- Verstehen der grundlegenden Parameter der Übertragungsmedien eines Kommunikationssystems
- Verstehen des Konzepts des Wellenleiters und des elektromagnetischen Modells von Übertragungsleitungen sowie der wichtigsten Arten von Leitern und Leitlinien
- Lösen von Problemen mit Übertragungsleitungen mithilfe des Smith-Diagramms
- Ordnungsgemäßes Anwenden von Impedanzanpassungstechniken
- Kennen der Grundlagen des Antennenbetriebs


tech 12 | Ziele

Modul 5. Kommunikationstheorie

- Kennen der grundlegenden Eigenschaften der verschiedenen Signaltypen
- Analysieren der verschiedenen Störungen, die bei der Übertragung von Signalen auftreten können
- Beherrschen der Techniken der Modulation und Demodulation von Signalen
- Verstehen der Theorie der analogen Kommunikation und der Modulationen
- Verstehen der Theorie der digitalen Kommunikation und der Übertragungsmodelle
- In der Lage sein, dieses Wissen bei der Spezifikation, Bereitstellung und Wartung von Kommunikationssystemen und -diensten anzuwenden

Modul 6. Übertragungssysteme. Optische Kommunikation

- Kennen der Merkmale der Elemente eines Übertragungssystems
- Erwerben der Fähigkeit, die grundlegenden Parameter der Übertragungsmedien eines Kommunikationssystems zu analysieren und zu spezifizieren
- Kennen der wichtigsten Störungen, die die Signalübertragung beeinträchtigen
- Verstehen der grundlegenden Prinzipien der optischen Kommunikation
- Entwickeln der Fähigkeit zur Analyse von optischen Komponenten, die Licht aussenden und empfangen
- Beherrschen der Architektur und des Betriebs von WDM- (Wavelength Division Multiplexing) und PON-Netzen (Passive Optical Networks)

Modul 7. Vermittlungsnetze und Telekommunikationsinfrastruktur

- Unterscheiden der Konzepte von Zugangs- und Transportnetzen, leitungsvermittelten und paketvermittelten Netzen, Fest- und Mobilfunknetzen sowie verteilten Netzsystemen und Anwendungen, Sprach-, Daten-, Audio- und Videodiensten
- Kennen der Methoden der Netzzusammenschaltung und des Routings sowie der Grundlagen der Netzplanung und -dimensionierung anhand von Verkehrsparametern
- Beherrschen der grundlegenden Prinzipien der Dienstqualität
- Analysieren der Leistung (Verzögerung, Verlustwahrscheinlichkeit, Blockierungswahrscheinlichkeit usw.) eines Telekommunikationsnetzes
- Verstehen und Anwenden der Normen und Vorschriften von Protokollen und Netzen der internationalen Normungsorganisationen
- Kennen der Planung von gemeinsamen Telekommunikationsinfrastrukturen in Wohngebieten

Modul 8. Grundlagen der Mobilkommunikation und mobiler Netzwerke

- Kennen der Grundlagen der mobilen Kommunikation
- Beschreiben der wichtigsten Dienste, die die mobile Kommunikation bietet
- Kennen der Architektur und Organisation der neuen mobilen Zugangskommunikationsnetze
- Darstellen der verschiedenen Generationen der Mobiltelefonie
- Verstehen der verschiedenen Aspekte digitaler Mobilkommunikationssysteme
- Aneignen von Sicherheitsprotokollen und -techniken für das reibungslose Funktionieren der mobilen Kommunikation
- Analysieren der Entwicklungsaspekte der Mobilfunktechnologien und ihrer Integration in die derzeitigen Netze

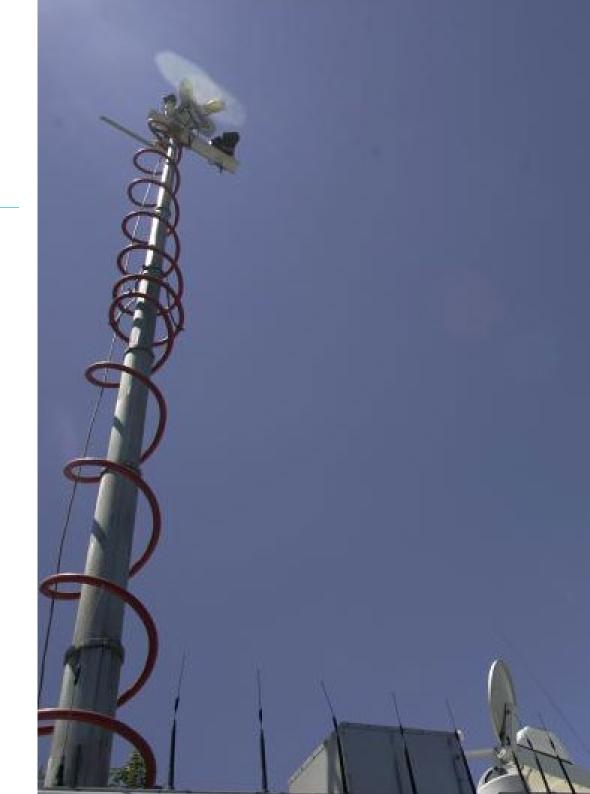
Modul 9. Mobilkommunikationsnetze

- Analysieren der grundlegenden Konzepte von Mobilkommunikationsnetzen
- Kennen der Grundsätze der mobilen Kommunikation
- Beherrschen der Architektur und der Protokolle von Mobilkommunikationsnetzen.
- Kennen der grundlegenden Technologien, die in GSM-, UMTS- und LTE-Netzen verwendet werden
- Verstehen der Signalisierungssysteme und der verschiedenen Netzprotokolle von GSM-, UMTS- und LTE-Netzen
- Verstehen der Funktionseinheiten von GSM, UMTS und LTE und deren Zusammenschaltung mit anderen Netzen

Modul 10. Funknetze und -dienste

- Kennen der Zugangs-, Verbindungskontroll- und Kontrollmechanismen für Funkressourcen eines LTE-Systems
- Verstehen der grundlegenden Konzepte des Funkspektrums
- Kennen der spezifischen Dienste für Funknetze
- Kennen der IP-Multicast-Techniken, die sich am besten für die Konnektivität von Funknetzen eignen
- Verstehen der Auswirkungen von Funknetzwerken auf die Ende-zu-Ende-QoS und Kenntnis der bestehenden Mechanismen zur Abschwächung dieser Auswirkungen
- Beherrschen der WLAN-, WPAN- und WMAN-Funknetze
- Analysieren der verschiedenen Architekturen von Satellitennetzen und Kennen der verschiedenen Dienste, die von einem Satellitennetz unterstützt werden

tech 16 | Kompetenzen



Allgemeine Kompetenz


 Anwenden der notwendigsten Technologien in jedem der im Bereich der Telekommunikation durchgeführten Prozesse

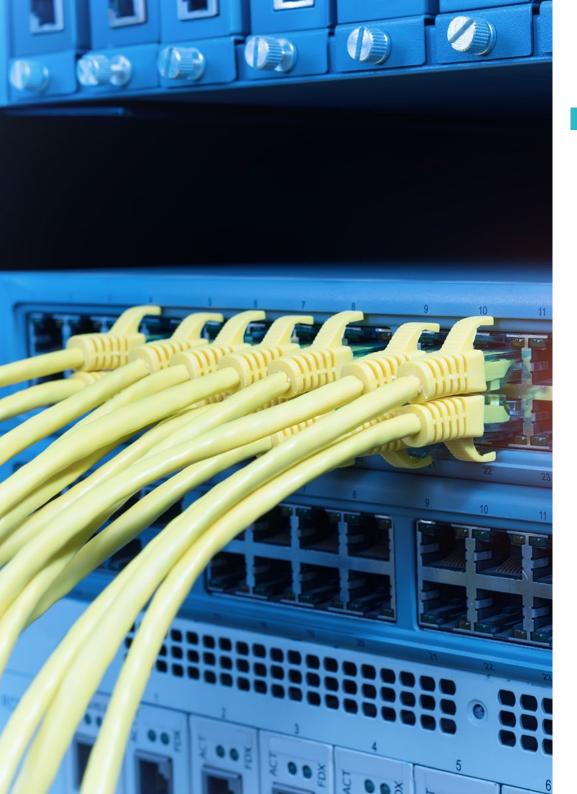
Lassen Sie sich an der weltweit führenden privaten Online-Universität fortbilden"

Spezifische Kompetenzen

- Kennen aller Vorgänge und Mechanismen elektrischer Schaltungen und in der Lage sein, sie zu analysieren
- Lösen von technischen Problemen im Zusammenhang mit Elektromagnetismus, Halbleitern und Wellen
- Vertieftes Kennen von Zufallssignalen und linearen Systemen
- Kennen der Wellenausbreitung und der Funktionsweise von Antennen
- Kennen der Geschichte und Entwicklung der Kommunikationstheorie
- Erkennen der Hauptprobleme, die die Signalübertragung beeinträchtigen
- Analysieren von Telekommunikationsnetzen und Erkennen möglicher Probleme
- Vertieftes Kennen der Mobilkommunikation und der mobilen Netze
- Kennen aller Mechanismen der Funkdienste

04 Struktur und Inhalt

Der Lehrplan wurde auf der Grundlage der pädagogischen Effizienz entwickelt, wobei die Inhalte sorgfältig ausgewählt wurden, um einen vollständigen Kurs anzubieten, der alle für die Erlangung echter Kenntnisse des Themas wesentlichen Bereiche umfasst. Mit den neuesten Updates und Aspekten des Sektors.



tech 20 | Struktur und Inhalt

Modul 1. Schaltungsanalyse

- 1.1. Grundlegende Konzepte der Schaltkreise
 - 1.1.1. Grundlegende Komponenten eines Stromkreises
 - 1.1.2. Knoten, Äste und Maschen
 - 1.1.3. Widerstand
 - 1.1.4. Kondensatoren
 - 1.1.5. Spulen
- 1.2. Methoden der Schaltungsanalyse
 - 1.2.1. Kirchhoffsche Regeln Geltendes Recht: Knotenpunktanalyse
 - 1.2.2. Kirchhoffsche Regeln. Spannungsgesetz: Netzanalyse
 - 1.2.3. Superpositionsprinzip
 - 1.2.4. Andere Theoreme von Interesse
- 1.3. Sinusfunktionen und Phasoren
 - 1.3.1. Überblick über Sinusfunktionen und ihre Eigenschaften
 - 1.3.2. Sinusfunktionen als Schaltungsanregung
 - 1.3.3. Definition von Phasoren
 - 1.3.4. Grundlegende Operationen mit Phasoren
- 1.4. Analyse von sinusförmigen stationären Schaltungen. Auswirkungen von passiven Komponenten, die durch Sinusfunktionen angeregt werden
 - 1.4.1. Impedanz und Admittanz von passiven Komponenten
 - 1.4.2. Sinusförmiger Strom und Spannung in einem Widerstand
 - 1.4.3. Sinusförmiger Strom und Spannung in einem Kondensator
 - 1.4.4. Sinusförmiger Strom und Spannung in einer Spule
- 1.5. Sinusförmige stationäre Leistung
 - 1.5.1. Definitionen
 - 1.5.2. Effektive Werte
 - 1.5.3. Beispiel 1 für die Berechnung der Leistung
 - 1.5.4. Beispiel 2 für die Berechnung der Leistung
- 1.6. Generatoren
 - 1.6.1. Ideale Generatoren
 - 1.6.2. Echte Generatoren
 - 1.6.3. Assoziationen von Generatoren in Reihenschaltung
 - 1.6.4. Assoziationen von Generatoren in gemischter Baugruppe

- 1.7. Topologische Analyse von Schaltkreisen
 - 1.7.1. Äguivalente Schaltungen
 - 1.7.2. Das Äguivalent von Thévenin
 - 1.7.3. Théveninsches Äquivalent im stationären Zustand
 - 1.7.4. Norton-Äquivalent
- 1.8. Grundlegende Schaltkreistheoreme
 - 1.8.1. Superpositionsprinzip
 - 1.8.2. Theorem der maximalen Leistungsübertragung
 - 1.8.3. Substitutionstheorie
 - 1.8.4. Millmans Theorem
 - 1.8.5. Reziprozitäts-Theorem
- 1.9. Transformatoren und gekoppelte Schaltungen
 - 1.9.1. Einführung
 - 1.9.2. Eisenkerntransformatoren: das ideale Modell
 - 1.9.3. Reflektierte Impedanz
 - 1.9.4. Spezifikationen des Leistungstransformators
 - 1.9.5. Anwendungen für Transformatoren
 - 1.9.6. Praktische Eisenkerntransformatoren
 - 1.9.7. Prüfung von Transformatoren
 - 1.9.8. Spannungs- und Frequenzeffekte
 - 1.9.9. Schwach gekoppelte Schaltungen
 - 1.9.10. Magnetisch gekoppelte Schaltungen mit sinusförmiger Erregung
 - 1.9.11. Impedanz gekoppelt
- 1.10. Analyse transienter Phänomene in Schaltkreisen
 - 1.10.1. Berechnung des Momentanstroms und der Momentanspannung in passiven Komponenten
 - 1.10.2. Stromkreise in der Reihenfolge eines Übergangszustands
 - 1.10.3. Transiente Schaltungen zweiter Ordnung
 - 1.10.4. Resonanz und Auswirkungen auf die Frequenz: Filterung

Struktur und Inhalt | 21 tech

Modul 2. Elektromagnetismus, Halbleitern und Wellen

- 2.1. Mathematik für die Feldphysik
 - 2.1.1. Vektoren und orthogonale Koordinatensysteme
 - 2.1.2. Gradient eines Skalarfeldes
 - 2.1.3. Divergenz eines Vektorfeldes und Divergenztheorem
 - 2.1.4. Drehung eines Vektorfeldes und Stokes' Theorem
 - 2.1.5. Klassifizierung von Feldern: Helmholtz-Theorem
- 2.2. Das elektrostatische Feld I
 - 2.2.1. Grundlegende Postulate
 - 2.2.2. Coulombsches Gesetz und durch Ladungsverteilungen erzeugte Felder
 - 2.2.3. Gaußsches Gesetz
 - 2.2.4. Elektrostatisches Potenzial
- 2.3. Elektrostatisches Feld II
 - 2.3.1. Materielle Medien: Metalle und Dielektrika
 - 2.3.2. Randbedingungen
 - 2.3.3. Kondensatoren
 - 2.3.4. Elektrostatische Energie und Kräfte
 - 2.3.5. Lösen von Problemen mit Randwerten
- 2.4. Stationäre elektrische Ströme
 - 2.4.1. Stromdichte und Ohmsches Gesetz
 - 2.4.2. Kontinuität von Last und Strom
 - 2.4.3. Aktuelle Gleichungen
 - 2.4.4. Berechnungen des Widerstands
- 2.5. Das magnetostatische Feld I
 - 2.5.1. Grundlegende Postulate
 - 2.5.2. Potenzieller Vektor
 - 2.5.3. Biot-Savart-Gesetz
 - 2.5.4. Der magnetische Dipol
- 2.6. Das magnetostatische Feld II
 - 2.6.1. Das magnetische Feld in materiellen Medien
 - 2.6.2. Randbedingungen
 - 2.6.3. Induktivität
 - 2.6.4. Energie und Kräfte
 - 2.6.5. Elektromagnetische Felder

tech 22 | Struktur und Inhalt

2.7. E	inleitung	
	2.7.1.	Elektromagnetische Felder
	2.7.2.	Die Maxwellschen Gesetze des Elektromagnetismus
	2.7.3.	Elektromagnetische Wellen
2.8.	Halbleit	er-Materialien
	2.8.1.	Einführung
	2.8.2.	Unterschied zwischen Metallen, Isolatoren und Halbleitern
	2.8.3.	Stromträger
	2.8.4.	Berechnung der Trägerdichten
2.9.	Die Hall	bleiter-Diode
	2.9.1.	Der PN-Übergang
	2.9.2.	Herleitung der Diodengleichung
	2.9.3.	Die Großsignaldiode: Schaltungen
	2.9.4.	Die Kleinsignal-Diode: Schaltungen
2.10.	Transis	toren
	2.10.1.	Definition
	2.10.2.	Kennlinien von Transistoren
	2.10.3.	Der bipolare Sperrschichttransistor
	2.10.4.	Feldeffekttransistoren
Mod	ul 3. Zւ	ıfällige Signale und lineare Systeme
3.1.	Wahrsc	heinlichkeitstheorie
	3.1.1.	Konzept der Wahrscheinlichkeit. Wahrscheinlichkeitsraum
	3.1.2.	Bedingte Wahrscheinlichkeiten und unabhängige Ereignisse
	3.1.3.	Theorem der Gesamtwahrscheinlichkeit. Bayes-Theorem
	3.1.4.	Zusammengesetzte Experimente. Bernoulli-Tests
3.2.	Zufallsv	variablen
	3.2.1.	Definition der Zufallsvariablen
	3.2.2.	Wahrscheinlichkeitsverteilungen
	3.2.3.	Wichtige Distributionen
	3.2.4.	Funktionen von Zufallsvariablen
	3.2.5.	Momente einer Zufallsvariablen
	3.2.6.	Generator-Funktionen

3.3.	Zufällige Vektoren		
	3.3.1.	Definition des Zufallsvektors	
	3.3.2.	Gemeinsame Verteilung	
	3.3.3.	Marginale Verteilungen	
	3.3.4.	Bedingte Verteilungen	
	3.3.5.	Lineare Beziehung zwischen zwei Variablen	
	3.3.6.	Multivariate Normalverteilung	
3.4.	Zufällig	ge Prozesse	
	3.4.1.	Definition und Beschreibung von Zufallsprozessen	
	3.4.2.	Zufällige Prozesse in diskreter Zeit	
	3.4.3.	Zeitkontinuierliche Zufallsprozesse	
	3.4.4.	Stationäre Prozesse	
	3.4.5.	Gaußsche Prozesse	
	3.4.6.	Markovsche Prozesse	
3.5.	Wartes	schlangentheorie in der Telekommunikation	
	3.5.1.	Einführung	
	3.5.2.	Grundlegende Konzepte	
	3.5.3.	Beschreibung der Modelle	
	3.5.4.	Beispiel für die Anwendung der Warteschlangentheorie in der Telekommunikation	
3.6.	Zufällig	ge Prozesse. Zeitliche Merkmale	
	3.6.1.	Konzept des Zufallsprozesses	
	3.6.2.	Klassifizierung der Prozesse	
	3.6.3.	Wichtigste Statistiken	
	3.6.4.	Stationarität und Unabhängigkeit	
	3.6.5.	Zeitliche Durchschnittswerte	
	3.6.6.	Ergodizität	
3.7.	Zufällig	ge Prozesse. Spektrale Eigenschaften	
	3.7.1.	Einführung	
	3.7.2.	Spektrale Leistungsdichte	
	3.7.3.	Eigenschaften der spektralen Leistungsdichte	
	3.7.4.	Zusammenhang zwischen Leistungsspektrum und Autokorrelation	

Signale und Systeme. Eigenschaften 3.8.1. Einführung in die Signale 3.8.2. Einführung in die Systeme 3.8.3. Grundlegende Eigenschaften von Systemen 3.8.3.1. Linearität 3.8.3.2. Zeitinvarianz 3.8.3.3. Kausalität 3.8.3.4. Stabilität 3.8.3.5. Erinnerungsvermögen 3.8.3.6. Invertierbarkeit Lineare Systeme mit zufälligen Eingaben 3.9.1. Grundlagen der linearen Systeme 3.9.2. Reaktion von linearen Systemen auf Zufallssignale 3.9.3. Systeme mit zufälligem Lärm 3.9.4. Spektrale Eigenschaften der Systemantwort 3.9.5. Lärmäguivalente Bandbreite und Temperatur 3.9.6. Modellierung von Lärmquellen 3.10. LTI-Systeme 3.10.1. Einführung 3.10.2. Zeitdiskrete LTI-Systeme 3.10.3. Zeitkontinuierliche LTI-Systeme 3.10.4. Eigenschaften von LTI-Systemen 3.10.5. Durch Differentialgleichungen beschriebene Systeme

Struktur und Inhalt | 23 tech

Modul 4. Felder und Wellen

- 4.1. Mathematik für die Feldphysik
 - 4.1.1. Vektoren und orthogonale Koordinatensysteme
 - 4.1.2. Gradient eines Skalarfeldes
 - 4.1.3. Divergenz eines Vektorfeldes und Divergenztheorem
 - 4.1.4. Drehung eines Vektorfeldes und Stokes' Theorem
 - 4.1.5. Klassifizierung von Feldern: Helmholtz-Theorem
- 4.2. Einführung in Wellen
 - 4.2.1. Wellengleichung
 - 4.2.2. Allgemeine Lösungen der Wellengleichungen: D'Alemberts Lösung
 - 4.2.3. Harmonische Lösungen der Wellengleichungen
 - 4.2.4. Wellengleichung im transformierten Bereich
 - 4.2.5. Wellenausbreitung und stehende Wellen
- 4.3. Das elektromagnetische Feld und die Maxwellsche Gleichung
 - 4.3.1. Maxwellsche Gleichungen
 - 4.3.2. Kontinuität an der elektromagnetischen Grenze
 - 4.3.3. Die Wellengleichung
 - 4.3.4. Monochromatische oder harmonische Abhängigkeitsfelder
- 4.4. Gleichmäßige Ausbreitung ebener Wellen
 - 4.4.1. Wellengleichung
 - 4.4.2. Gleichmäßige ebene Wellen
 - 4.4.3. Ausbreitung in verlustfreien Medien
 - 4.4.4. Ausbreitung in verlustbehafteten Medien
- 4.5. Polarisation und Einfall von gleichförmigen, ebenen Wellen
 - 4.5.1. Elektrische Transversalpolarisation
 - 4.5.2. Magnetische Transversalpolarisation
 - 4.5.3. Lineare Polarisation
 - 4.5.4. Zirkulare Polarisation
 - 4.5.5. Elliptische Polarisation
 - 4.5.6. Normaler Einfall von gleichförmigen, ebenen Wellen
 - 4.5.7. Schräger Einfall von gleichförmigen ebenen Wellen

tech 24 | Struktur und Inhalt

4.6.	Grundl	egende Konzepte der Übertragungsleitungstheorie
	4.6.1.	Einführung
	4.6.2.	Modell eines Übertragungsnetzes
	4.6.3.	Allgemeine Gleichungen für Übertragungsleitungen
	4.6.4.	Lösung der Wellengleichung im Zeitbereich und im Frequenzbereich
	4.6.5.	Verlustarme und verlustfreie Leitungen
	4.6.6.	Leistung
4.7.	Fertigg	estellte Übertragungsleitungen
	4.7.1.	Einführung
	4.7.2.	Reflexion
	4.7.3.	Stationäre Wellen
	4.7.4.	Eingangsimpedanz
	4.7.5.	Fehlanpassung von Last und Generator
	4.7.6.	Einschwingverhalten
4.8.	Wellen	leiter und Übertragungsleitungen
	4.8.1.	Einführung
	4.8.2.	Allgemeine Lösungen für TEM-, TE- und TM-Wellen
	4.8.3.	Die parallele Ebenenführung
	4.8.4.	Rechteckiger Wellenleiter
	4.8.5.	Der kreisförmige Wellenleiter
	4.8.6.	Das Koaxialkabel
	4.8.7.	Ebenerdige Linien
4.9.	Mikrow	vellenschaltungen, Smith-Diagramm und Impedanzanpassung
	4.9.1.	Einführung in Mikrowellenschaltungen
		4.9.1.1. Äquivalente Spannungen und Ströme
		4.9.1.2. Impedanz- und Admittanzparameter
		4.9.1.3. Scattering-Parameter
	4.9.2.	Smith-Diagramm
		4.9.2.1. Definition von Smith-Diagramm
		4.9.2.2. Einfache Berechnungen
		4.9.2.3. Smith-Diagramm in der Zulassungsstelle
	4.9.3.	Impedanzanpassung. Einfacher Stummel (Simple Stub)
	4.9.4.	Impedanzanpassung. Doppelter Stummel (Doble Stub)
	4.9.5.	Viertelwellen-Transformatoren

l.10.	Einführu	ung in die Antennen
	4.10.1.	Einführung und kurzer historischer Überblick
	4.10.2.	Das elektromagnetische Spektrum
	4.10.3.	Strahlungsdiagramme
		4.10.3.1. Koordinatensystem
		4.10.3.2. Dreidimensionale Diagramme
		4.10.3.3. Zweidimensionale Diagramme
		4.10.3.4. Konturlinien
	4.10.4.	Grundlegende Parameter von Antennen
		4.10.4.1. Abgestrahlte Leistungsdichte
		4.10.4.2. Richtwirkung

4.10.4.3. Gewinn

4.10.4.4. Polarisierung

4.10.4.5. Impedanzen

4.10.4.6. Anpassung

4.10.4.7. Effektive Fläche und Länge

4.10.4.8. Übertragungsgleichung

Modul 5. Kommunikationstheorie

- 5.1. Einleitung: Telekommunikationssysteme und Übertragungssysteme
 - 5.1.1. Einführung
 - 5.1.2. Grundlegende Konzepte und Geschichte
 - 5.1.3. Telekommunikationssysteme
 - 5.1.4. Übertragungssysteme
- 5.2. Charakterisierung der Signale
 - 5.2.1. Deterministisches und zufälliges Signal
 - 5.2.2. Periodische und nichtperiodische Signale
 - 5.2.3. Energie- oder Leistungssignal
 - 5.2.4. Basisband und Bandpass-Signal
 - 5.2.5. Grundlegende Parameter eines Signals
 - 5.2.5.1. Mittelwert
 - 5.2.5.2. Energie und Durchschnittsleistung
 - 5.2.5.3. Höchstwert und Effektivwert
 - 5.2.5.4. Energie- und Leistungsspektraldichte
 - 5.2.5.5. Berechnung der Leistung in logarithmischen Einheiten

Struktur und Inhalt | 25 tech

5.3.	Störung	en in Übertragungsystemen
	5.3.1.	Ideale Kanalübertragung
	5.3.2.	Klassifizierung von Störungen
	5.3.3.	Lineare Verzerrung
	5.3.4.	Nichtlineare Verzerrung
	5.3.5.	Übersprechen und Interferenz
	5.3.6.	Rauschen
		5.3.6.1. Arten von Lärm
		5.3.6.2. Charakterisierung
	5.3.7.	Schmalbandige Bandpass-Signale
5.4.	Analoge	Kommunikation. Konzepte
	5.4.1.	Einführung
	5.4.2.	Allgemeine Konzepte
	5.4.3.	Basisband-Übertragung
		5.4.3.1. Modulation und Demodulation
		5.4.3.2. Charakterisierung
		5.4.3.3. Multiplexing
	5.4.4.	Mischer
	5.4.5.	Charakterisierung
	5.4.6.	Mischertypen
5.5.	Analoge	Kommunikation. Lineare Modulationen
	5.5.1.	Grundlegende Konzepte
	5.5.2.	Amplitudenmodulation (AM)
		5.5.2.1. Charakterisierung
		5.5.2.2. Parameter
		5.5.2.3. Modulation/Demodulation
	5.5.3.	Zweiseitenbandmodulation (ZSB)
		5.5.3.1. Charakterisierung
		5.5.3.2. Parameter
		5.5.3.3. Modulation/Demodulation

		5.5.4.1. Charakterisierung
		5.5.4.2. Parameter
		5.5.4.3. Modulation/Demodulation
	5.5.5.	Restseitenbandmodulation (RSB)
		5.5.5.1. Charakterisierung
		5.5.5.2. Parameter
		5.5.5.3. Modulation/Demodulation
	5.5.6.	Quadraturamplitudenmodulation (QAM)
		5.5.6.1. Charakterisierung
		5.5.6.2. Parameter
		5.5.6.3. Modulation/Demodulation
	5.5.7.	Störungen bei analogen Modulationen
		5.5.7.1. Ansatz
		5.5.7.2. Störungen in ZSB
		5.5.7.3. Störungen in ESB
		5.5.7.4. Störungen in AM
5.6.	Analog	e Kommunikation. Winkelmodulationen
	5.6.1.	Phasen- und Frequenzmodulation
	5.6.2.	Schmalbandige Winkelmodulation
	5.6.3.	Berechnung des Spektrums
	5.6.4.	Erzeugung und Demodulation
	5.6.5.	Winkeldemodulation mit Lärm
		5.6.5.1. Störungen in PM
	5.6.6.	Störungen in FM
	5.6.7.	Vergleich zwischen analogen Modulationen
5.7.	Digitale	e Kommunikation. Einleitung. Übertragungsmodelle
	5.7.1.	Einführung
	5.7.2.	Grundlegende Parameter
	5.7.3.	Vorteile der digitalen Systeme
	5.7.4.	Einschränkungen der digitalen Systeme
	5.7.5.	PCM-Systeme
	5.7.6.	Modulationen in digitalen Systemen
	5.7.7.	Demodulationen in digitalen Systemen

5.5.4. Einseitenbandmodulation (ESB)

tech 26 | Struktur und Inhalt

5.8.	Digitale Kommunikation. Digitale Basisbandübertragung			5.9.3.	QAM-Modulation
	5.8.1.	1. Binäre PAM-Systeme			5.9.3.1. Charakterisierung
		5.8.1.1. Charakterisierung			5.9.3.2. Parameter
		5.8.1.2. Signalparameter			5.9.3.3. Modulation/Demodulation
		5.8.1.3. Spektrales Modell		5.9.4.	PSK-Modulation
	5.8.2.	Binäre Grundabtastung Binärempfänger			5.9.4.1. Charakterisierung
		5.8.2.1. Bipolar NRZ			5.9.4.2. Parameter
		5.8.2.2. Bipolar RZ			5.9.4.3. Modulation/Demodulation
		5.8.2.3. Fehlerwahrscheinlichkeit		5.9.5.	FSK-Modulation
	5.8.3.	Binärer optimaler Empfänger			5.9.5.1. Charakterisierung
		5.8.3.1. Kontext			5.9.5.2. Parameter
		5.8.3.2. Berechnung der Fehlerwahrscheinlichkeit			5.9.5.3. Modulation/Demodulation
		5.8.3.3. Optimaler Entwurf eines Empfängerfilters		5.9.6.	Andere digitale Modulationen
		5.8.3.4. SNR-Berechnung		5.9.7.	Vergleich zwischen digitalen Modulationen
		5.8.3.5. Leistung	5.10.	Digitale	Kommunikation. Vergleich, IES, Diagramm und Augen
		5.8.3.6. Charakterisierung		5.10.1.	Vergleich zwischen digitalen Modulationen
	5.8.4.	M-PAM-Systeme			5.10.1.1. Energie und Kraft der Modulationen
		5.8.4.1. Parameter			5.10.1.2. Hüllkurve
		5.8.4.2. Konstellationen			5.10.1.3. Lärmschutz
		5.8.4.3. Optimaler Empfänger			5.10.1.4. Spektrales Modell
		5.8.4.4. Bitfehlerwahrscheinlichkeit (BER)			5.10.1.5. Kanalcodierungstechniken
	5.8.5.	Signalvektorraum			5.10.1.6. Synchronisationssignale
	5.8.6.	Konstellation einer digitalen Modulation			5.10.1.7. SNR-Symbolfehlerwahrscheinlichkeit
	5.8.7.	M-Signal-Empfänger		5.10.2.	Bandbreitenbegrenzte Kanäle
5.9.	Digitale	Kommunikation. Digitale Bandpass-Übertragung. Digitale Modulationen		5.10.3.	Intersymbolinterferenz (ISI)
	5.9.1.	Einführung			5.10.3.1. Charakterisierung
	5.9.2.	ASK-Modulation			5.10.3.2. Beschränkungen
		5.9.2.1. Charakterisierung		5.10.4.	Optimaler Rezeptor in PAM ohne ISI
		5.9.2.2. Parameter		5.10.5.	Augendiagramme
		5.9.2.3. Modulation/Demodulation			

Modul 6. Übertragungssysteme. Optische Kommunikation

- 6.1. Einführung in Übertragungssysteme
 - 6.1.1. Grundlegende Definitionen und Übertragungsnetzmodell
 - 6.1.2. Beschreibung einiger Übertragungssysteme
 - 6.1.3. Standardisierung innerhalb der Übertragungssysteme
 - 6.1.4. In Übertragungssystemen verwendete Einheiten, logarithmische Darstellung
 - 6.1.5. MDT-Systeme
- 6.2. Charakterisierung digitaler Signale
 - 6.2.1. Charakterisierung analoger und digitaler Quellen
 - 6.2.2. Digitale Kodierung von Analogsignalen
 - 6.2.3. Digitale Darstellung des Audiosignals
 - 6.2.4. Digitale Darstellung des Videosignals
- 6.3. Übertragungsmedien und Störungen
 - 6.3.1. Einführung und Charakterisierung von Übertragungsmedien
 - 6.3.2. Metallische Übertragungsleitungen
 - 6.3.3. Übertragungsleitungen mit optischen Fasern
 - 6.3.4. Funkübertragung
 - 6.3.5. Vergleich von Übertragungsmedien
 - 6.3.6. Störungen in der Übertragung
 - 6.3.6.1. Abschwächung
 - 6.3.6.2. Verzerrung
 - 6.3.6.3. Rauschen
 - 6.3.6.4. Kanal-Kapazität
- 6.4. Digitale Übertragungssysteme
 - 6.4.1. Modell eines digitalen Übertragungssystems
 - 6.4.2. Vergleich der analogen Übertragung mit der digitalen Übertragung
 - 6.4.3. Übertragungssystem durch optische Faser
 - 6.4.4. Digitale Funkverbindung
 - 6.4.5. Andere Systeme

- 6.5. Optische Kommunikationssysteme. Grundlegende Konzepte und optische Elemente
 - 6.5.1. Einführung in optische Kommunikationssysteme
 - 6.5.2. Grundlegende Beziehungen zum Licht
 - 6.5.3. Modulationsformate
 - 6.5.4. Leistungs- und Zeitbilanzen
 - 6.5.5. Multiplexing-Techniken
 - 6.5.6. Optische Netze
 - 6.5.7. Nichtwellenlängenselektive passive optische Elemente
 - 6.5.8. Wellenlängenselektive passive optische Elemente
- 6.6. Optische Faser
 - 6.6.1. Charakteristische Parameter von Singlemode- und Multimode-Fasern
 - 6.6.2. Dämpfung und Zeitdispersion
 - 6.6.3. Nichtlineare Effekte
 - 6.6.4. Vorschriften für die optische Faser
- 6.7. Optische Sende- und Empfangsgeräte
 - 6.7.1. Grundprinzipien der Lichtemission
 - 6.7.2. Stimulierte Emission
 - 6.7.3. Resonator Fabry-Perot
 - 6.7.4. Erforderliche Bedingungen zum Erreichen der Laserschwingung
 - 6.7.5. Merkmale der Laserstrahlung
 - 6.7.6. Emission von Licht in Halbleitern
 - 6.7.7. Halbleiterlaser
 - 6.7.8. Licht emittierende Dioden LEDs
 - 6.7.9. Vergleich zwischen LED und Halbleiterlaser
 - 6.7.10. Lichterkennungsmechanismen in Halbleiterübergängen
 - 6.7.11. PN-Fotodioden
 - 6.7.12. PIN-Fotodioden
 - 6.7.13. Avalanche- oder APO-Fotodioden
 - 6.7.14. Grundkonfiguration der Empfangsschaltung

tech 28 | Struktur und Inhalt

7.1.2. Lokale Netzwerke LAN

7.1.4. Grundlagen der Übertragung

7.1.5. Methoden des Zugriffs auf das Medium

7.1.3. Übersicht über Topologien und Übertragungsmedien

7.1.6. Ausrüstung für die Zusammenschaltung von Netzen

6.8.	Mittel z	zur Übertragung in der optischen Kommunikation	7.2.	7.2. Vermittlungstechniken und Vermittlungsstruktur. ISDN- und FR-Netz		
	6.8.1.	Brechung und Reflexion		7.2.1.	Vermittlungsnetze	
	6.8.2.	Ausbreitung in einem zweidimensionalen begrenzten Medium		7.2.2.	Leitungsvermittelte Netzwerke	
	6.8.3.	Verschiedene Arten von Lichtwellenleitern		7.2.3.	RDSI	
	6.8.4.	Physikalische Eigenschaften von Glasfasern		7.2.4.	Paketvermittelte Netze	
	6.8.5.	6.8.5. Dispersion in optischen Fasern		7.2.5.	FR	
		6.8.5.1. Intramodale Dispersion	7.3.	Verkeh	Verkehrsparameter und Netzdimensionierung	
		6.8.5.2. Phasengeschwindigkeit und Gruppengeschwindigkeit		7.3.1.	Grundlegende Verkehrskonzepte	
		6.8.5.3. Intramodale Dispersion		7.3.2.	Verlustsysteme	
6.9.	Multiple	exing und Vermittlung in optischen Netzen		7.3.3.	Wartende Systeme	
	6.9.1.	Multiplexing in optischen Netzen		7.3.4.	Beispiele für Systeme zur Verkehrsbeeinflussung	
	6.9.2.	Photonisches Schalten	7.4.	Service	equalität und Algorithmen für das Verkehrsmanagement	
	6.9.3.	WDM-Netze. Grundlegende Prinzipien		7.4.1.	Servicequalität	
	6.9.4.	Charakteristische Komponenten eines WDM-Systems		7.4.2.	Auswirkungen der Verkehrsüberlastung	
	6.9.5.	Architektur und Betrieb von WDM-Netzen		7.4.3.	Staukontrolle	
6.10.	Passive	e optische Netze (PON)		7.4.4.	Verkehrskontrolle	
	6.10.1.	Kohärente optische Kommunikation		7.4.5.	Algorithmen für das Verkehrsmanagement	
	6.10.2.	Optisches Zeitmultiplexing (OTDM)	7.5.	Zugan	gsnetze: WAN-Zugangstechnologien	
	6.10.3.	Charakteristische Elemente von passiven optischen Netzen		7.5.1.	Weitverkehrsnetze	
	6.10.4.	PON-Netzarchitektur		7.5.2.	WAN-Zugangstechnologien	
	6.10.5.	.10.5. Optisches Multiplexing in PON-Netzen		7.5.3.	xDSL-Zugang	
Mad		anna ikkli na arang kena mand Tallah sangan milipaki ang ainakna akmulukum		7.5.4.	FTTH-Zugang	
IVIOO	Modul 7. Vermittlungsnetze und Telekommunikationsinfrastruktur			ATM: A	Asynchroner Übertragungsmodus	
7.1.	Einführ	rung in die Vermittlungsnetze		7.6.1.	ATM-Dienst	
	7.1.1.	Umschalttechniken		7.6.2.	Protokoll Architektur	

7.6.3. Logische ATM-Verbindungen

7.6.5. ATM-Zellen-Übertragung

7.6.6. ATM-Dienstklassen

7.6.4. ATM-Zellen

7.7.	MPLS: 1	Multiprotocol Label Switching
	7.7.1.	Einführung in MPLS
	7.7.2.	Betrieb von MPLS
	7.7.3.	Tags
	7.7.4.	VPN
7.8.	Projekt	zur Einrichtung eines Telematiknetzes
	7.8.1.	Informationen einholen
	7.8.2.	Planung
		7.8.2.1. System-Dimensionierung
		7.8.2.2. Zeichnungen und Diagramme des Aufstellungsortes
	7.8.3.	Technische Spezifikationen für das Design
	7.8.4.	Ausführung und Einrichtung des Netzes
7.9.	Struktu	rierte Verkabelung. Fallstudien
	7.9.1.	Einführung
	7.9.2.	Organismen und Normen für die strukturierte Verkabelung
	7.9.3.	Mittel der Übermittlung
	7.9.4.	Strukturierte Verkabelung
	7.9.5.	Physikalische Schnittstelle
	7.9.6.	Teile der strukturierten Verkabelung (horizontal und vertikal)
	7.9.7.	Identifizierungssystem
	7.9.8.	Fallstudien
7.10.	Planung	g der gemeinsamen Telekommunikationsinfrastruktur
	7.10.1.	Einführung in gemeinsame Telekommunikationsinfrastrukturen
		7.10.1.1. Verordnungen über gemeinsame Telekommunikationsinfrastrukturen
	7.10.2.	Schaltschränke und Rohrleitungen
		7.10.2.1. Außenbereich
		7.10.2.2. Gemeinsamer Bereich
		7.10.2.3. Privater Bereich

7.10.3. Vertriebsnetze für gemeinsame Telekommunikationsinfrastrukturen

7.10.4. Technisches Projekt

Modul 8. Grundlagen der Mobilkommunikation und mobiler Netzwerke

- 8.1. Einführung in die Mobilkommunikation
 - 8.1.1. Allgemeine Überlegungen
 - 8.1.2. Zusammensetzung und Klassifizierung
 - 8.1.3. Frequenzbänder
 - 8.1.4. Kanalklassen und Modulation
 - 8.1.5. Funkabdeckung, Qualität und Kapazität
 - 8.1.6. Entwicklung der Mobilkommunikationssysteme
- 8.2. Grundlagen der Funkschnittstelle, strahlende Elemente und grundlegende Parameter
 - 8.2.1. Die physikalische Schicht
 - 8.2.2. Grundlagen der Funkschnittstelle
 - 8.2.3. Lärm in mobilen Systemen
 - 8.2.4. Mehrfachzugriffstechniken
 - 8.2.5. In der Mobilkommunikation verwendete Modulationen
 - 8.2.6. Modi der Wellenausbreitung
 - 8.2.6.1. Oberflächenwelle
 - 8.2.6.2. Ionosphärische Welle
 - 8.2.6.3. Raumwelle
 - 8.2.6.4. lonosphärische und troposphärische Effekte
- 8.3. Wellenausbreitung im mobilen Kanal
 - 8.3.1. Grundlegende Merkmale der Ausbreitung mobiler Kanäle
 - 8.3.2. Entwicklung von Modellen zur Vorhersage von Basisausbreitungsverlusten
 - 8.3.3. Auf der Strahlentheorie basierende Methoden
 - 3.3.4. Empirische Ausbreitungsvorhersagemethoden
 - 8.3.5. Ausbreitungsmodelle für Mikrozellen
 - 8.3.6. Mehrwegkanäle
 - 8.3.7. Merkmale von Mehrwegkanälen

tech 30 | Struktur und Inhalt

8.4.	SS7-Sig	nalisierungssystem				
	8.4.1.	Meldesysteme				
	8.4.2.	SS7. Merkmale und Architektur				
	8.4.3.	Teil der Nachrichtenübertragung (MTP)				
	8.4.4.	Teil der Signalsteuerung (SCCP)				
	8.4.5.	Benutzerteile (TUP, ISUP)				
	8.4.6.	Anwendungsteile (MAP, TCAP, INAP usw.)				
8.5.	PMR- ur	nd PAMR-Systeme. TETRA-System				
	8.5.1.	Grundlegende Konzepte eines PRM-Netzes				
	8.5.2.	Struktur eines PMR-Netzwerks				
	8.5.3.	Bündelungssysteme. PAMR				
	8.5.4.	TETRA-System				
8.6.	Klassiso	che mobile Systeme (FDMA/TDMA)				
	8.6.1.	Grundlagen der mobilen Systeme				
	8.6.2.	Klassisches mobiles Konzept				
	8.6.3.	Mobilplanung				
	8.6.4.	Geometrie mobiler Netze				
	8.6.5.	Mobilteilung				
	8.6.6.	Dimensionierung eines mobilen Systems				
	8.6.7.	Interferenzberechnung in mobilen Systemen				
	8.6.8.	Netzabdeckung und Interferenzen in realen mobilen Systemen				
	8.6.9.	Frequenzzuweisung in mobilen Systemen				
	8.6.10.	Architektur des mobilen Netzes				
8.7.	GSM-System: Globales System für mobile Kommunikation					
	8.7.1.	Einführung GSM. Ursprung und Entwicklung				
	8.7.2.	GSM-Telekommunikationsdienste				
	8.7.3.	Architektur des GSM-Netzes				
	8.7.4.	GSM-Funkschnittstelle: Kanäle, TDMA-Struktur und Bursts				
	8.7.5.	Modulation, Kodierung und Verschachtelung				
	8.7.6.	Übertragungseigenschaften				
	8.7.7.	Protokolle				

8.8.	GPRS-D	ienst: General Packet Radio Service
	8.8.1.	Einführung GPRS. Ursprung und Entwicklung
	8.8.2.	Allgemeine Merkmale des GPRS
	8.8.3.	Architektur des GPRS-Netzes
	8.8.4.	GPRS-Funkschnittstelle: Kanäle, TDMA-Struktur und Bursts
	8.8.5.	Übertragungseigenschaften
	8.8.6.	Protokolle
8.9.	UMTS -	System (CDMA)
	8.9.1.	Ursprung von UMTS. Merkmale der 3. Generation
	8.9.2.	Architektur des UMTS-Netzes
	8.9.3.	UMTS-Funkschnittstelle: Kanäle, Codes und Funktionen
	8.9.4.	Modulation, Kodierung und Verschachtelung
	8.9.5.	Übertragungseigenschaften
	8.9.6.	Protokolle und Dienste
	8.9.7.	Kapazität in UMTS
	8.9.8.	Funkverbindungsplanung und -abgleich
8.10.	Mobile :	Systeme: 3G-, 4G- und 5G-Entwicklung
	8.10.1.	Einführung
	8.10.2.	Entwicklung zu 3G
	8.10.3.	Entwicklung zu 4G
	8.10.4.	Entwicklung zu 5G
Mod	ul 9. M	obilkommunikationsnetze
9.1.	Einführ	ung Mobilfunknetze

9.1.1. Kommunikationsnetze

9.1.3. Funkfrequenzspektrum9.1.4. Funk-Telefonanlagen9.1.5. Mobile Technologie

9.1.2. Klassifizierung von Kommunikationsnetzen

9.1.6. Entwicklung der Mobiltelefonsysteme

Struktur und Inhalt | 31 tech

9.2.	Protok	olle und Architektur				
	9.2.1.	Überprüfung des Protokollkonzepts				
	9.2.2.	Überprüfung über das Konzept der Kommunikationsarchitektur				
	9.2.3.	Überprüfung des OSI-Modells				
	9.2.4.	Überprüfung der TCP/IP-Protokollarchitektur				
	9.2.5.	Struktur eines Mobiltelefonnetzes				
9.3.	Grunds	Grundsätze der mobilen Kommunikation				
	9.3.1.	Abstrahlung und Antennentypen				
	9.3.2.	Wiederverwendung von Frequenzen				
	9.3.3.	Signalausbreitung				
	9.3.4.	Roaming und Weitergabe				
	9.3.5.	Mehrfachzugriffstechniken				
	9.3.6.	Analoge und digitale Systeme				
	9.3.7.	Tragbarkeit				
9.4.	Überpr	Überprüfung der GSM-Netze: technische Merkmale, Architektur und Schnittstellen				
	9.4.1.	GSM-System				
	9.4.2.	Technische Merkmale von GSM				
	9.4.3.	Architektur eines GSM-Netzes				
	9.4.4.	GSM-Kanalstruktur				
	9.4.5.	GSM-Schnittstellen				
9.5.	Überpr	üfung des GSM- und GPRS-Protokolls				
	9.5.1.	Einführung				
	9.5.2.	GSM-Protokolle				
	9.5.3.	Entwicklung von GSM				
	9.5.4.	GPRS				
9.6.	UMTS-	System. Technische Merkmale, Architektur und HSPA				
	9.6.1.	Einführung				
	9.6.2.	UMTS-System				
	9.6.3.	Technische Merkmale von UMTS				
	964	Architektur eines LIMTS-Netzes				

9.6.5. HSPA

9.7.	UMTS-System. Protokolle, Schnittstellen und VoIP	
	9.7.1.	Einführung
	9.7.2.	UMTS-Kanalstruktur
	9.7.3.	UMTS-Protokolle
	9.7.4.	UMTS-Schnittstellen
	9.7.5.	VoIP und IMS
9.8.	VoIP: Verkehrsmodelle für IP-Telefondienste	
	9.8.1.	Einführung VoIP
	9.8.2.	Protokolle
	9.8.3.	VoIP-Elemente
	9.8.4.	VoIP-Transport in Echtzeit
	9.8.5.	Modelle für den paketbasierten Sprachverkehr
9.9.	LTE-System. Technische Merkmale und Architektur. CS fallback	
	9.9.1.	LTE-System
	9.9.2.	Technische Merkmale von LTE
	9.9.3.	Architektur eines LTE-Netzes
	9.9.4.	LTE-Kanalstruktur
	9.9.5.	LTE-Anrufe: VoLGA, CS FB und VoLTE
9.10.	LTE-System. Benutzeroberflächen, Protokolle und Dienste	
	9.10.1.	Einführung
	9.10.2.	LTE-Schnittstellen
	9.10.3.	LTE-Protokolle

9.10.4. LTE-Dienste

tech 32 | Struktur und Inhalt

Modul 10. Funknetze und -dienste

- 10.1. Grundlegende Funknetztechniken
 - 10.1.1. Einführung in Funknetze
 - 10.1.2. Grundlagen
 - Mehrfachzugriffstechniken (MAC): Zufälliger Zugriff (RA). MF-TDMA, CDMA, OFDMA
 - 10.1.4. Optimierung von Funkverbindungen: Grundlagen der Link Control-Techniken (LLC). HARQ. MIMO
- 10.2. Funkfrequenzspektrum
 - 10.2.1. Definition
 - 10.2.2. ITU-R Frequenzband-Nomenklatur
 - 10.2.3. Andere Frequenzband-Nomenklatur
 - 10.2.4. Aufteilung des Funkspektrums
 - 10.2.5. Arten von elektromagnetischer Strahlung
- 10.3. Funkkommunikationssysteme und -dienste
 - 10.3.1. Signalumwandlung und -verarbeitung: analoge und digitale Modulationen
 - 10.3.2. Digitale Signalübertragung
 - 10.3.3. Digitales Radiosystem DAB, IBOC, DRM und DRM+
 - 10.3.4. Funkfrequenz-Kommunikationsnetze
 - 10.3.5. Konfiguration von Festinstallationen und mobilen Einheiten
 - 10.3.6. Aufbau einer festen und mobilen RF-Sendezentrale
 - 10.3.7. Installation von Rundfunk- und Fernsehübertragungssystemen
 - 10.3.8. Überprüfung des Betriebs von Rundfunk- und Übertragungssystemen
 - 10.3.9. Wartung der Übertragungssysteme
- 10.4. Multicast und QoS. Ende zu Ende
 - 10.4.1. Einführung
 - 10.4.2. IP-Multicast in Funknetzen
 - 10.4.3. Delay/Disruption Tolerant Networking (DTN)
 - 10.4.4. Qualität der E-to-E-Dienste:
 - 10.4.4.1. Auswirkungen von Funknetzen auf E-to-E QoS
 - 10.4.4.2. TCP in Funknetzen

10.5. Drahtlose lokale Netzwerke WLAN

10.5.1. Einführung in WLANs

10.5.1.1. Grundlagen von WLANs

10.5.1.1.1. Wie funktionieren sie?

10.5.1.1.2. Frequenzbänder

10.5.1.1.3. Sicherheit

10.5.1.2. Anwendungen

10.5.1.3. Vergleich zwischen WLANs und kabelgebundenen LANs

10.5.1.4. Gesundheitliche Auswirkungen der Strahlung

10.5.1.5. Standardisierung und Normung der WLAN-Technologie

10.5.1.6. Topologie und Konfigurationen

10.5.1.6.1. Peer-to-Peer-Konfiguration (Ad-Hoc)

10.5.1.6.2. Konfiguration des Zugangspunktmodus

10.5.1.6.3. Andere Konfigurationen: Netzzusammenschaltung

10.5.2. Der IEEE 802.11-Standard - Wifi

10.5.2.1. Architektur

10.5.2.2. IEEE 802.11-Schichten

10.5.2.2.1. Die physikalische Schicht

10.5.2.2. Die Verbindungsschicht (MAC)

10.5.2.3. Grundlegende WLAN-Bedienung

10.5.2.4. Zuweisung von Funkfreguenzen

10.5.2.5. IEEE 802.11-Varianten

10.5.3. Der HiperLAN-Standard

10.5.3.1. Referenzmodell

10.5.3.2. HyperLAN/1

10.5.3.3. HyperLAN/2

10.5.3.4. Vergleich von HiperLAN mit 802.11a

10.6. Drahtlose Großstadtnetze (WMAN) und drahtlose Weitverkehrsnetze (WWAN)

10.6.1. Einführung in WMAN. Eigenschaften

10.6.2. WiMAX. Merkmale und Diagramm

10.6.3. Drahtlose Weitverkehrsnetze (WWAN). Einführung

10.6.4. Mobilfunk- und Satellitennetz

10.7. Wireless Personal Area Networks WPANs

10.7.1. Entwicklungen und Technologien

10.7.2. Bluetooth

10.7.3. Persönliche und Sensornetzwerke

10.7.4. Profile und Anwendungen

10.8. Bodengebundene Funkzugangsnetze

10.8.1. Entwicklung des erdgebundenen Funkzugangs: WiMAX, 3GPP

10.8.2. Zugang der 4. Generation. Einführung

10.8.3. Funkressourcen und -kapazitäten

10.8.4. LTE-Funkträger. MAC, RLC und RRC

10.9. Satellitenkommunikation

10.9.1. Einführung

10.9.2. Geschichte der Satellitenkommunikation

10.9.3. Aufbau eines Satellitenkommunikationssystems

10.9.3.1. Das besondere Segment

10.9.3.2. Das Kontrollzentrum

10.9.3.3. Das Bodensegment

10.9.4. Satellitentypen

10.9.4.1. Nach Zweck

10.9.4.2. Entsprechend ihrer Umlaufbahn

10.9.5. Frequenzbänder

10.10. Planung und Regulierung von Funksystemen und -diensten

10.10.1. Terminologie und technische Merkmale

10.10.2. Frequenzen

10.10.3. Koordinierung, Benachrichtigung und Aufzeichnung von Frequenzzuteilungen und Planänderungen

10.10.4. Interferenzen

10.10.5. Verwaltungsvorschriften

10.10.6. Vorschriften für Dienste und Sender

Fallstudie zur Kontextualisierung aller Inhalte

Unser Programm bietet eine revolutionäre Methode zur Entwicklung von Fähigkeiten und Kenntnissen. Unser Ziel ist es, Kompetenzen in einem sich wandelnden, wettbewerbsorientierten und sehr anspruchsvollen Umfeld zu stärken.

Mit TECH werden Sie eine Art des Lernens erleben, die an den Grundlagen der traditionellen Universitäten auf der ganzen Welt rüttelt"

Sie werden Zugang zu einem Lernsystem haben, das auf Wiederholung basiert, mit natürlichem und progressivem Unterricht während des gesamten Lehrplans.

Der Student wird durch gemeinschaftliche Aktivitäten und reale Fälle lernen, wie man komplexe Situationen in realen Geschäftsumgebungen löst.

Eine innovative und andersartige Lernmethode

Dieses TECH-Programm ist ein von Grund auf neu entwickeltes, intensives
Lehrprogramm, das die anspruchsvollsten Herausforderungen und
Entscheidungen in diesem Bereich sowohl auf nationaler als auch auf
internationaler Ebene vorsieht. Dank dieser Methodik wird das persönliche und
berufliche Wachstum gefördert und ein entscheidender Schritt in Richtung
Erfolg gemacht. Die Fallmethode, die Technik, die diesem Inhalt zugrunde liegt,
gewährleistet, dass die aktuellste wirtschaftliche, soziale und berufliche Realität
berücksichtigt wird.

Unser Programm bereitet Sie darauf vor, sich neuen Herausforderungen in einem unsicheren Umfeld zu stellen und in Ihrer Karriere erfolgreich zu sein"

Die Fallmethode ist das am weitesten verbreitete Lernsystem an den besten Informatikschulen der Welt, seit es sie gibt. Die Fallmethode wurde 1912 entwickelt, damit Jurastudenten das Recht nicht nur auf der Grundlage theoretischer Inhalte erlernen. Sie bestand darin, ihnen reale komplexe Situationen zu präsentieren, damit sie fundierte Entscheidungen treffen und Werturteile darüber fällen konnten, wie diese zu lösen sind. Sie wurde 1924 als Standardlehrmethode in Harvard etabliert.

Was sollte eine Fachkraft in einer bestimmten Situation tun? Mit dieser Frage konfrontieren wir Sie in der Fallmethode, einer handlungsorientierten Lernmethode. Während des gesamten Kurses werden die Studenten mit mehreren realen Fällen konfrontiert. Sie müssen ihr gesamtes Wissen integrieren, recherchieren, argumentieren und ihre Ideen und Entscheidungen verteidigen.

Relearning Methodology

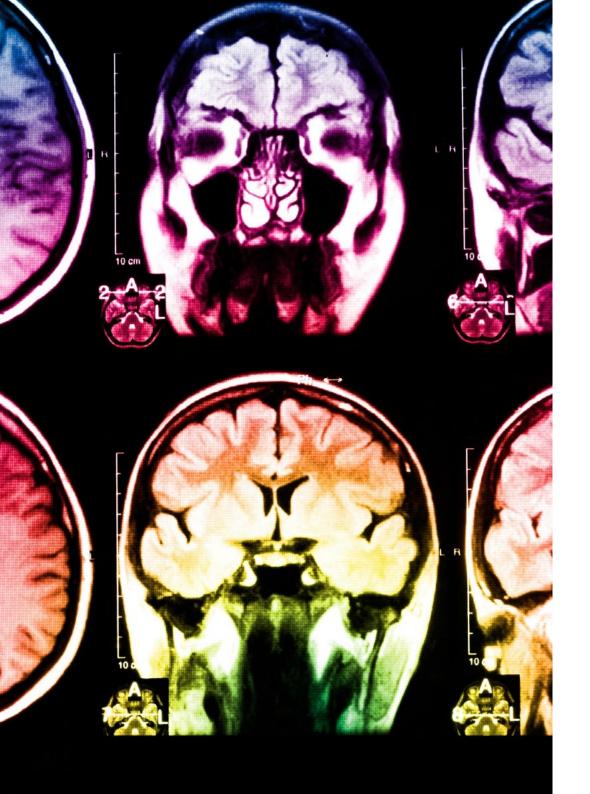
TECH kombiniert die Methodik der Fallstudien effektiv mit einem 100%igen Online-Lernsystem, das auf Wiederholung basiert und in jeder Lektion verschiedene didaktische Elemente kombiniert.

Wir ergänzen die Fallstudie mit der besten 100%igen Online-Lehrmethode: Relearning.

> Im Jahr 2019 erzielten wir die besten Lernergebnisse aller spanischsprachigen Online-Universitäten der Welt.

Bei TECH lernen Sie mit einer hochmodernen Methodik, die darauf ausgerichtet ist, die Führungskräfte der Zukunft zu spezialisieren. Diese Methode, die an der Spitze der weltweiten Pädagogik steht, wird Relearning genannt.

Unsere Universität ist die einzige in der spanischsprachigen Welt, die für die Anwendung dieser erfolgreichen Methode zugelassen ist. Im Jahr 2019 ist es uns gelungen, die Gesamtzufriedenheit unserer Studenten (Qualität der Lehre, Qualität der Materialien, Kursstruktur, Ziele...) in Bezug auf die Indikatoren der besten spanischsprachigen Online-Universität zu verbessern.



In unserem Programm ist das Lernen kein linearer Prozess, sondern erfolgt in einer Spirale (lernen, verlernen, vergessen und neu lernen). Daher wird jedes dieser Elemente konzentrisch kombiniert. Mit dieser Methode wurden mehr als 650.000 Hochschulabsolventen mit beispiellosem Erfolg in so unterschiedlichen Bereichen wie Biochemie, Genetik, Chirurgie, internationales Recht, Managementfähigkeiten, Sportwissenschaft, Philosophie, Recht, Ingenieurwesen, Journalismus, Geschichte, Finanzmärkte und -instrumente fortgebildet. Dies alles in einem sehr anspruchsvollen Umfeld mit einer Studentenschaft mit hohem sozioökonomischem Profil und einem Durchschnittsalter von 43,5 Jahren.

Das Relearning ermöglicht es Ihnen, mit weniger Aufwand und mehr Leistung zu Iernen, sich mehr auf Ihre Spezialisierung einzulassen, einen kritischen Geist zu entwickeln, Argumente zu verteidigen und Meinungen zu kontrastieren: eine direkte Gleichung zum Erfolg.

Nach den neuesten wissenschaftlichen Erkenntnissen der Neurowissenschaften wissen wir nicht nur, wie wir Informationen, Ideen, Bilder und Erinnerungen organisieren, sondern auch, dass der Ort und der Kontext, in dem wir etwas gelernt haben, von grundlegender Bedeutung dafür sind, dass wir uns daran erinnern und es im Hippocampus speichern können, um es in unserem Langzeitgedächtnis zu behalten.

Auf diese Weise sind die verschiedenen Elemente unseres Programms im Rahmen des so genannten Neurocognitive Context-Dependent E-Learning mit dem Kontext verbunden, in dem der Teilnehmer seine berufliche Praxis entwickelt.

Dieses Programm bietet die besten Lehrmaterialien, die sorgfältig für Fachleute aufbereitet sind:

Studienmaterial

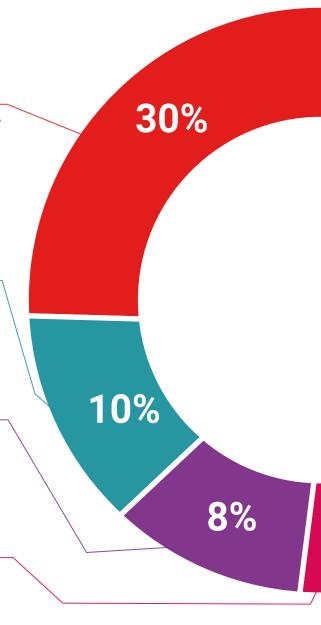
Alle didaktischen Inhalte werden von den Fachleuten, die den Kurs unterrichten werden, speziell für den Kurs erstellt, so dass die didaktische Entwicklung wirklich spezifisch und konkret ist.

Diese Inhalte werden dann auf das audiovisuelle Format angewendet, um die Online-Arbeitsmethode von TECH zu schaffen. All dies mit den neuesten Techniken, die in jedem einzelnen der Materialien, die dem Studenten zur Verfügung gestellt werden, qualitativ hochwertige Elemente bieten.

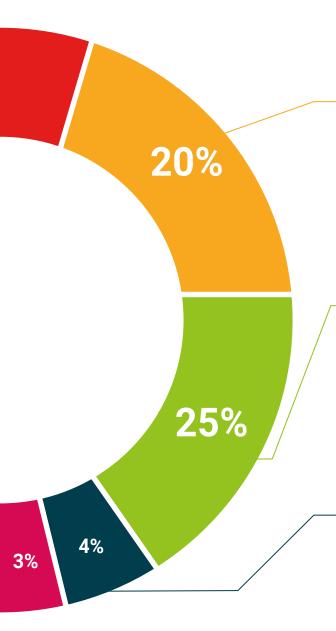
Meisterklassen

Die Nützlichkeit der Expertenbeobachtung ist wissenschaftlich belegt.

Das sogenannte Learning from an Expert festigt das Wissen und das Gedächtnis und schafft Vertrauen für zukünftige schwierige Entscheidungen.


Übungen für Fertigkeiten und Kompetenzen

Sie werden Aktivitäten durchführen, um spezifische Kompetenzen und Fertigkeiten in jedem Fachbereich zu entwickeln. Übungen und Aktivitäten zum Erwerb und zur Entwicklung der Fähigkeiten und Fertigkeiten, die ein Spezialist im Rahmen der Globalisierung, in der wir leben, entwickeln muss.



Weitere Lektüren

Aktuelle Artikel, Konsensdokumente und internationale Leitfäden, u. a. In der virtuellen Bibliothek von TECH hat der Student Zugang zu allem, was er für seine Fortbildung benötigt.

Methodik | 41 tech

Case Studies

Sie werden eine Auswahl der besten Fallstudien vervollständigen, die speziell für diese Qualifizierung ausgewählt wurden. Die Fälle werden von den besten Spezialisten der internationalen Szene präsentiert, analysiert und betreut.

Interaktive Zusammenfassungen

Das TECH-Team präsentiert die Inhalte auf attraktive und dynamische Weise in multimedialen Pillen, die Audios, Videos, Bilder, Diagramme und konzeptionelle Karten enthalten, um das Wissen zu vertiefen.

Dieses einzigartige Bildungssystem für die Präsentation multimedialer Inhalte wurde von Microsoft als "Europäische Erfolgsgeschichte" ausgezeichnet.

Testing & Retesting

Die Kenntnisse des Studenten werden während des gesamten Programms regelmäßig durch Bewertungs- und Selbsteinschätzungsaktivitäten und -übungen beurteilt und neu bewertet, so dass der Student überprüfen kann, wie er seine Ziele erreicht.

tech 44 | Qualifizierung

Dieser **Privater Masterstudiengang in Spezifische Telekommunikationstechnologie** enthält das vollständigste und aktuellste Programm auf dem Markt.

Sobald der Student die Prüfungen bestanden hat, erhält er/sie per Post* mit Empfangsbestätigung das entsprechende Diplom, ausgestellt von der **TECH Technologischen Universität.**

Das von **TECH Technologische Universität** ausgestellte Diplom drückt die erworbene Qualifikation aus und entspricht den Anforderungen, die in der Regel von Stellenbörsen, Auswahlprüfungen und Berufsbildungsausschüssen verlangt werden.

Titel: Privater Masterstudiengang in Spezifische Telekommunikationstechnologie Anzahl der offiziellen Arbeitsstunden: 1.500 Std.

^{*}Haager Apostille. Für den Fall, dass der Student die Haager Apostille für sein Papierdiplom beantragt, wird TECH EDUCATION die notwendigen Vorkehrungen treffen, um diese gegen eine zusätzliche Gebühr zu beschaffen.

technologische universität **Privater Masterstudiengang** Spezifische Telekommunikationstechnologie » Modalität: online

- » Dauer: 12 Monate
- Qualifizierung: TECH Technologische Universität
- » Aufwand: 16 Std./Woche
- » Zeitplan: in Ihrem eigenen Tempo
- » Prüfungen: online

