

Universitätskurs Grundlegende Elektronik und Instrumentierung

- » Modalität: online
- » Dauer: 6 Wochen
- » Qualifizierung: TECH Technologische Universität
- » Aufwand: 16 Std./Woche
- » Zeitplan: in Ihrem eigenen Tempo
- » Prüfungen: online

Internet zugang: www.techtitute.com/de/informatik/universitatskurs/grundlegende-elektronik-instrumentierung

Index

Präsentation

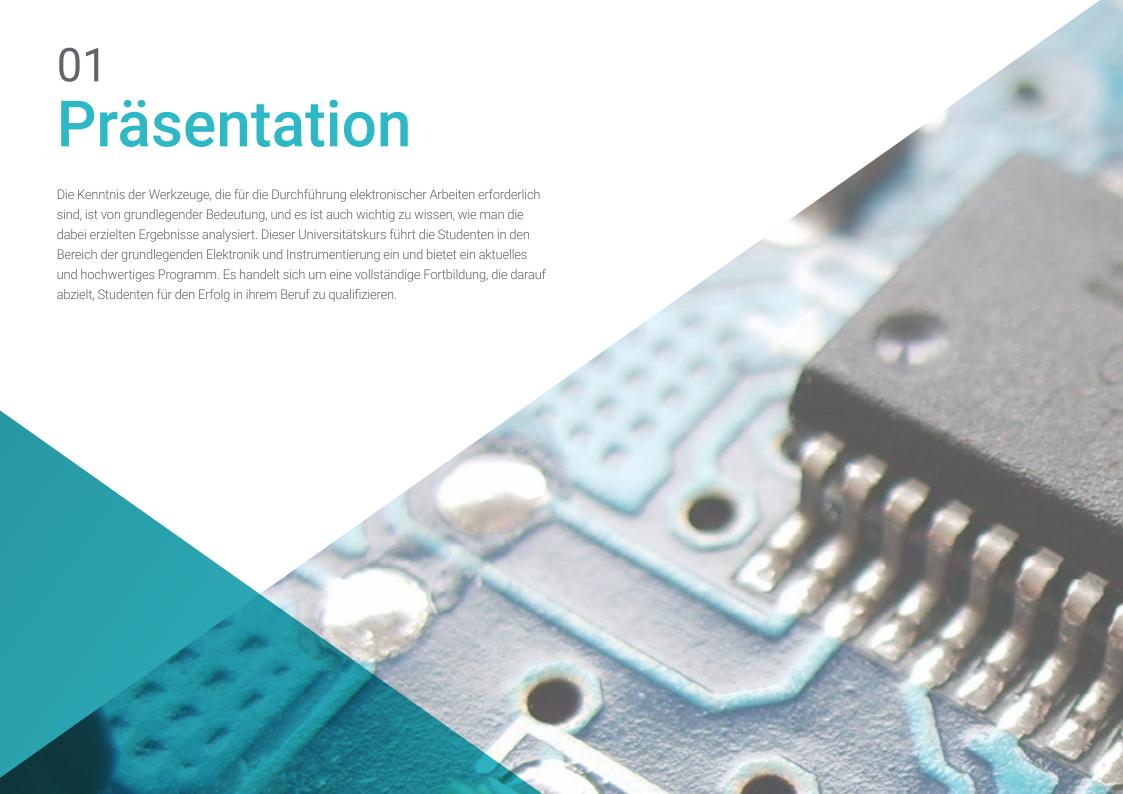
Seite 4

Ziele

Seite 8

O3

Struktur und Inhalt


Methodik

Seite 12

Seite 16

Seite 16

Seite 24

tech 06 | Präsentation

In der Telekommunikation, einem der sich am schnellsten entwickelnden Bereiche, gibt es ständig neue Entwicklungen. Es ist daher notwendig, über IT-Experten zu verfügen, die sich an diese Veränderungen anpassen können und die neuen Instrumente und Techniken, die in diesem Bereich entstehen, aus erster Hand kennen.

Der Universitätskurs in Grundlegende Elektronik und Instrumentierung deckt die gesamte Bandbreite der Themen in diesem Bereich ab. Das Studium hat einen klaren Vorteil gegenüber anderen Kursen, die sich auf bestimmte Blöcke konzentrieren, wodurch der Student die Zusammenhänge mit anderen Bereichen des multidisziplinären Bereichs der Telekommunikation nicht kennt. Darüber hinaus hat das Dozententeam dieses Bildungsprogramms eine sorgfältige Auswahl der einzelnen Themen getroffen, um den Studenten ein möglichst umfassendes Studium zu ermöglichen, das stets mit dem aktuellen Zeitgeschehen verbunden ist.

Dieses Bildungsprogramm vermittelt den Studenten die Schlüssel zur Beherrschung der grundlegenden Konzepte linearer Systeme, der Theorie elektrischer Schaltungen, elektronischer Schaltungen, der physikalischen Prinzipien von Halbleitern und elektronischen Geräten. Insbesondere werden die Studenten im Umgang mit den erforderlichen Instrumenten im Bereich der Elektronik spezialisiert.

Dieses Programm richtet sich an diejenigen, die ein höheres Niveau an Kenntnissen in Grundlegende Elektronik und Instrumentierung erreichen wollen. Das Hauptziel besteht darin, die Studenten in die Lage zu versetzen, das im Rahmen dieses Universitätskurses erworbene Wissen in der realen Welt anzuwenden, und zwar in einem Arbeitsumfeld, das die Bedingungen, denen sie in ihrer Zukunft begegnen könnten, auf strenge und realistische Weise wiedergibt.

Da es sich um ein 100%igen Online-Universitätskurs handelt, ist der Student nicht an feste Zeiten oder die Notwendigkeit, sich an einen anderen Ort zu begeben, gebunden, sondern kann zu jeder Tageszeit auf die Inhalte zugreifen und so sein Arbeits- oder Privatleben mit seinem akademischen Leben in Einklang bringen.

Dieser **Universitätskurs in Grundlegende Elektronik und Instrumentierung** enthält das vollständigste und aktuellste Programm auf dem Markt. Die hervorstechendsten Merkmale sind:

- Die Entwicklung von Fallstudien, die von Experten für Elektronik und Instrumentierung vorgestellt werden
- Der anschauliche, schematische und äußerst praxisnahe Inhalt soll wissenschaftliche und praktische Informationen zu den für die berufliche Praxis wesentlichen Disziplinen vermitteln
- Er enthält praktische Übungen in denen der Selbstbewertungsprozess durchgeführt werden kann um das Lernen zu verbessern
- Ein besonderer Schwerpunkt liegt auf innovativen Methoden in Grundlegender Elektronik und Instrumentierung
- Theoretische Vorträge, Fragen an den Experten, Diskussionsforen zu kontroversen Themen und individuelle Reflexionsarbeit
- Die Verfügbarkeit des Zugangs zu Inhalten von jedem festen oder tragbaren Gerät mit Internetanschluss

Verpassen Sie nicht die Gelegenheit, diesen Universitätskurs in Grundlegende Elektronik und Instrumentierung. Es ist die perfekte Gelegenheit, um Ihre Karriere voranzutreiben"

Präsentation | 07 tech

Dieser Universitätskurs ist die beste Investition, die Sie bei der Auswahl eines Auffrischungsprogramms tätigen können, um Ihr Wissen in Schlafmedizin zu aktualisieren"

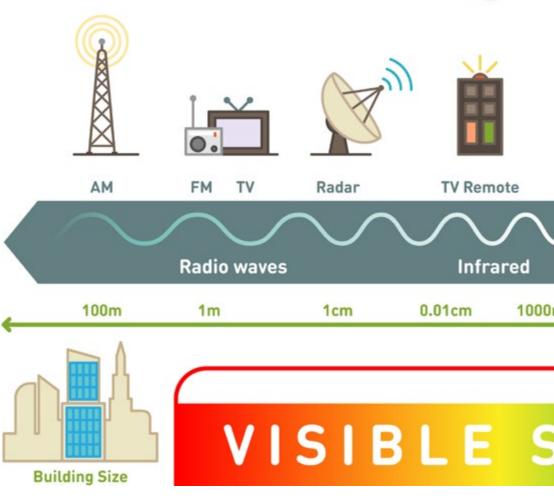
Das Dozententeam setzt sich aus Fachleuten aus dem Bereich der Informatik zusammen der Telekommunikation, die ihre Berufserfahrung in diese Fortbildung einbringen, sowie aus anerkannten Experten von führenden Gesellschaften und renommierten Universitäten

Die multimedialen Inhalte, die mit den neuesten Bildungstechnologien entwickelt wurden, ermöglichen den Fachleuten ein situiertes und kontextbezogenes Lernen, d. h. eine simulierte Umgebung, die ein immersives Training ermöglicht, das auf reale Situationen ausgerichtet ist.

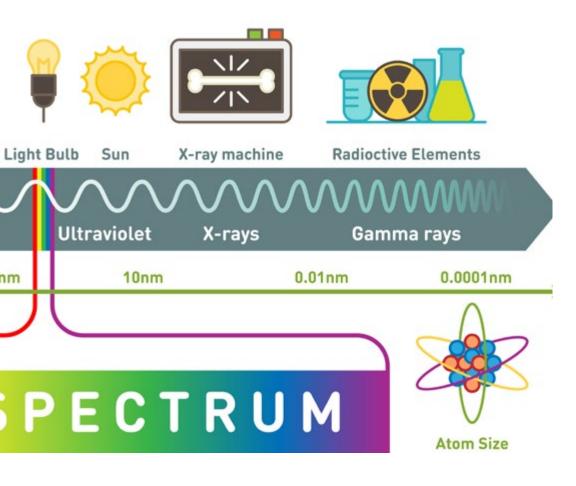
Das Konzept dieses Universitätskurses konzentriert sich auf problemorientiertes Lernen, bei dem die Fachkraft versuchen muss, die verschiedenen Situationen aus der beruflichen Praxis zu lösen, die während des gesamten Studiengangs gestellt werden. Dazu steht der Fachkraft ein innovatives interaktives Videosystem zur Verfügung, das von anerkannten und erfahrenen Experten für grundlegende Elektronik und Instrumentierung entwickelt wurde.

Dieser Universitätskurs verfügt über das beste didaktische Material, das Ihnen ein kontextbezogenes Studium ermöglicht, welches Ihr Lernen erleichtern wird.

Dieser Universitätskurs der zu 100% online absolviert wird, wird Ihnen ermöglichen, Ihr Studium mit Ihrer beruflichen Tätigkeit zu verbinden.



Allgemeines Ziel


• Den Studenten in die Lage versetzen, sicher und mit hoher Qualität auf dem Gebiet der der grundlegenden Elektronik und Instrumentierung zu arbeiten

Electromagne

etic Spectrum

Spezifische Ziele

- Erlernen der Handhabung und der Grenzen der Instrumente eines elektronischen Basisarbeitsplatzes
- Anwendung und Kenntnis der grundlegenden Techniken zur Messung elektrischer Signalparameter, Bewertung der damit verbundenen Fehler und ihrer möglichen Korrekturtechniken
- Beherrschung der grundlegenden Eigenschaften und des Verhaltens der gebräuchlichsten passiven Bauelemente und Fähigkeit, diese für eine bestimmte Anwendung auszuwählen
- Verständnis der grundlegenden Eigenschaften von linearen Verstärkern
- Entwerfen und Implementieren grundlegender Schaltungen mit Operationsverstärkern, die als ideal gelten
- Verständnis der Funktionsweise von kapazitiv gekoppelten, mehrstufigen, nicht rückgekoppelten Verstärkern und Fähigkeit, diese zu entwerfen
- Analyse und Anwendung der grundlegenden Techniken und Konfigurationen in analogen integrierten Schaltungen

tech 14 | Struktur und Inhalt

Modul 1. Grundlegende Elektronik und Instrumentierung

- 1.1. Grundlegende Instrumentierung
 - 1.1.1. Einleitung. Signale und ihre Parameter
 - 1.1.2. Elektrische Grundgrößen und ihre Messung
 - 1.1.3. Oszilloskop
 - 1.1.4. Digitales Multimeter
 - 1.1.5. Funktionsgenerator
 - 1.1.6. Stromversorgung für das Labor
- 1.2. Elektronische Komponenten im Labor
 - 1.2.1. Haupttypen und Konzepte von Toleranz und Serie
 - 1.2.2. Thermisches Verhalten und Verlustleistung. Maximale Spannung und Stromstärke
 - 1.2.3. Konzepte von Variationskoeffizienten, Abweichung und Nichtlinearität.
 - 1.2.4. Gemeinsame spezifische Parameter der Haupttypen. Katalogauswahl und Einschränkungen
- 1.3. Die Sperrschichtdiode, Diodenschaltungen, Dioden für spezielle Anwendungen
 - 1.3.1. Einführung und Betrieb
 - 1.3.2. Schaltungen mit Dioden
 - 1.3.3. Dioden für spezielle Anwendungen
 - 1.3.4. Zener-Diode
- 1.4. Der BJT und FET/MOSFET Bipolarer Sperrschichttransistor
 - 1.4.1. Grundlagen der Transistoren
 - 1.4.2. Transistorpolarisierung und -stabilisierung
 - 1.4.3. Transistorschaltungen und Anwendungen
 - 1.4.4. Einstufige Verstärker
 - 1.4.5. Verstärkertypen, Spannung, Strom
 - 1.4.6. Wechselstrom-Modelle
- 1.5. Grundlegende Konzepte von Verstärkern. Schaltungen mit idealen Operationsverstärkern
 - 1.5.1. Arten von Verstärkern. Spannung, Strom, Transimpedanz und Transkonduktanz
 - 1.5.2. Charakteristische Parameter: Eingangs- und Ausgangsimpedanzen, direkte und inverse Übertragungsfunktionen
 - 1.5.3. Quadrupolansicht und Parameter

- 1.5.4. Zuordnung von Verstärkern: Kaskade, Serie-Reihe, Serie-Parallel, Parallel-Reihe und Parallel, Parallel
- 1.5.5. Konzept des Operationsverstärkers. Allgemeine Merkmale. Verwendung als Komparator und als Verstärker
- 1.5.6. Invertierende und nichtinvertierende Verstärkerschaltungen. Präzisions-Tracker und Gleichrichter. Steuerung des Spannungsstroms
- 1.5.7. Elemente für die Instrumentierung und Operationsrechnung: Addierer, Subtrahierer, Differenzverstärker, Integratoren und Differenzierer
- 1.5.8. Stabilität und Rückkopplung: Astabilitäten und Auslöser
- 1.6. Einstufige und mehrstufige Verstärker
 - 1.6.1. Allgemeine Vorspannungskonzepte für Geräte
 - 1.6.2. Grundlegende Vorspannungsschaltungen und -techniken. Implementierung für Bipolar- und Feldeffekttransistoren. Stabilität, Drift und Empfindlichkeit
 - 1.6.3. Grundlegende Kleinsignal-Verstärkerkonfigurationen: gemeinsame Emitter-Quelle, Basis-Tor, Kollektor-Drainer. Eigenschaften und Varianten
 - 1.6.4. Verhalten bei großen Signalausschlägen und Dynamikbereich
 - 1.6.5. Basisanalogschalter und ihre Eigenschaften
 - 1.6.5. Frequenzeffekte in einstufigen Konfigurationen: Fall mittlerer Frequenzen und deren Grenzen
 - 1.6.6. Mehrstufige Verstärkung mit R-C und direkter Kopplung. Überlegungen zu Verstärkung, Frequenzbereich, Polarisation und Dynamikbereich
- 1.7. Basis-Konfigurationen in analogen integrierten Schaltungen
 - 1.7.1. Konfigurationen mit Differenzeingang. Bartletts Theorem Polarisation, Parameter und Messungen
 - 1.7.2. Funktionsblöcke für die Polarisation: Stromspiegel und ihre Modifikationen. Aktive Lasten und Pegelumsetzer
 - 1.7.3. Standard-Eingangskonfigurationen und ihre Eigenschaften: Einzeltransistor, Darlington-Paare und ihre Modifikationen, Kaskode
 - 1.7.4. Ausgangskonfigurationen
- 1.8. Aktive Filter
 - 1.8.1. Allgemeines
 - 1.8.2. Filterdesign mit Betriebsfunktion
 - 1.8.3. Tiefpassfilter
 - 1.8.4. Hochpassfilter
 - 1.8.5. Bandpass- und Bandstoppfilter
 - 1.8.6. Andere Arten von aktiven Filtern

Struktur und Inhalt | 15 tech

- 1.9. Analog-Digital-Wandler (A/D)
 - 1.9.1. Einführung und Funktionalitäten
 - 1.9.2. Instrumentierte Systeme
 - 1.9.3. Arten von Wandlern
 - 1.9.4. Merkmale von Wandlern
 - 1.9.5. Datenverarbeitung
- 1.10. Sensoren
 - 1.10.1. Primäre Sensoren
 - 1.10.2. Widerstandsfähige Sensoren
 - 1.10.3. Kapazitive Sensoren
 - 1.10.4. Induktive und elektromagnetische Sensoren
 - 1.10.5. Digitale Sensoren
 - 1.10.6. Signalerzeugende Sensoren
 - 1.10.7. Andere Arten von Sensoren

Diese Fortbildung wird es Ihnen ermöglichen, Ihre Karriere auf bequeme Weise voranzutreiben"

tech 18 | Methodik

Fallstudie zur Kontextualisierung aller Inhalte

Unser Programm bietet eine revolutionäre Methode zur Entwicklung von Fähigkeiten und Kenntnissen. Unser Ziel ist es, Kompetenzen in einem sich wandelnden, wettbewerbsorientierten und sehr anspruchsvollen Umfeld zu stärken.

Mit TECH werden Sie eine Art des Lernens erleben, die die Grundlagen der traditionellen Universitäten in der ganzen Welt verschiebt"

Sie werden Zugang zu einem Lernsystem haben, das auf Wiederholung basiert, mit natürlichem und progressivem Unterricht während des gesamten Lehrplans.

Die Studenten lernen durch gemeinschaftliche Aktivitäten und reale Fälle die Lösung komplexer Situationen in realen Geschäftsumgebungen.

Eine innovative und andersartige Lernmethode

Dieses TECH-Programm ist ein von Grund auf neu entwickeltes, intensives Lehrprogramm, das die anspruchsvollsten Herausforderungen und Entscheidungen in diesem Bereich sowohl auf nationaler als auch auf internationaler Ebene vorsieht. Dank dieser Methodik wird das persönliche und berufliche Wachstum gefördert und ein entscheidender Schritt in Richtung Erfolg gemacht. Die Fallmethode, die Technik, die diesem Inhalt zugrunde liegt, gewährleistet, dass die aktuellste wirtschaftliche, soziale und berufliche Realität berücksichtigt wird.

Unser Programm bereitet Sie darauf vor, sich neuen Herausforderungen in einem unsicheren Umfeld zu stellen und in Ihrer Karriere erfolgreich zu sein"

Die Fallmethode ist das am weitesten verbreitete Lernsystem an den besten Informatikschulen der Welt, seit es sie gibt. Die Fallmethode wurde 1912 entwickelt, damit die Jurastudenten das Recht nicht nur anhand theoretischer Inhalte erlernen, sondern ihnen reale, komplexe Situationen vorlegen, damit sie fundierte Entscheidungen treffen und Werturteile darüber fällen können, wie diese zu lösen sind. Sie wurde 1924 als Standardlehrmethode in Harvard eingeführt.

Was sollte eine Fachkraft in einer bestimmten Situation tun? Mit dieser Frage konfrontieren wir Sie in der Fallmethode, einer handlungsorientierten Lernmethode. Während des gesamten Kurses werden die Studierenden mit mehreren realen Fällen konfrontiert. Sie müssen Ihr gesamtes Wissen integrieren, recherchieren, argumentieren und Ihre Ideen und Entscheidungen verteidigen.

Relearning Methodik

TECH kombiniert die Methodik der Fallstudien effektiv mit einem 100%igen Online-Lernsystem, das auf Wiederholung basiert und in jeder Lektion verschiedene didaktische Elemente kombiniert.

Wir ergänzen die Fallstudie mit der besten 100%igen Online-Lehrmethode: Relearning.

> Im Jahr 2019 erzielten wir die besten Lernergebnisse aller spanischsprachigen Online-Universitäten der Welt.

Bei TECH lernen Sie mit einer hochmodernen Methodik, die darauf ausgerichtet ist, die Führungskräfte der Zukunft auszubilden. Diese Methode, die an der Spitze der weltweiten Pädagogik steht, wird Relearning genannt.

Unsere Universität ist die einzige in der spanischsprachigen Welt, die für die Anwendung dieser erfolgreichen Methode zugelassen ist. Im Jahr 2019 ist es uns gelungen, die Gesamtzufriedenheit unserer Studenten (Qualität der Lehre, Qualität der Materialien, Kursstruktur, Ziele...) in Bezug auf die Indikatoren der besten Online-Universität in Spanisch zu verbessern.

Methodik | 21 tech

In unserem Programm ist das Lernen kein linearer Prozess, sondern erfolgt in einer Spirale (lernen, verlernen, vergessen und neu lernen). Daher wird jedes dieser Elemente konzentrisch kombiniert. Mit dieser Methode wurden mehr als 650.000 Hochschulabsolventen mit beispiellosem Erfolg in so unterschiedlichen Bereichen wie Biochemie, Genetik, Chirurgie, internationales Recht, Managementfähigkeiten, Sportwissenschaft, Philosophie, Recht, Ingenieurwesen, Journalismus, Geschichte, Finanzmärkte und -Instrumente ausgebildet. Dies alles in einem sehr anspruchsvollen Umfeld mit einer Studentenschaft mit hohem sozioökonomischem Profil und einem Durchschnittsalter von 43,5 Jahren.

Das Relearning ermöglicht es Ihnen, mit weniger Aufwand und mehr Leistung zu Iernen, sich mehr auf Ihr Fachgebiet einzulassen, einen kritischen Geist zu entwickeln, Argumente zu verteidigen und Meinungen zu kontrastieren: eine direkte Gleichung zum Erfolg.

Nach den neuesten wissenschaftlichen Erkenntnissen der Neurowissenschaften wissen wir nicht nur, wie wir Informationen, Ideen, Bilder und Erinnerungen organisieren, sondern auch, dass der Ort und der Kontext, in dem wir etwas gelernt haben, von grundlegender Bedeutung dafür sind, dass wir uns daran erinnern und es im Hippocampus speichern können, um es in unserem Langzeitgedächtnis zu behalten.

Auf diese Weise sind die verschiedenen Elemente unseres Programms im Rahmen des so genannten neurokognitiven kontextabhängigen E-Learnings mit dem Kontext verbunden, in dem der Teilnehmer seine berufliche Praxis entwickelt. Dieses Programm bietet die besten Lehrmaterialien, die sorgfältig für Fachleute aufbereitet sind:

Studienmaterial

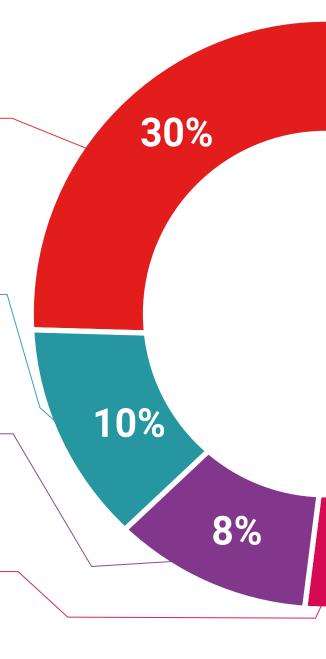
Alle didaktischen Inhalte werden von den Fachleuten, die den Kurs unterrichten werden, speziell für den Kurs erstellt, so dass die didaktische Entwicklung wirklich spezifisch und konkret ist.

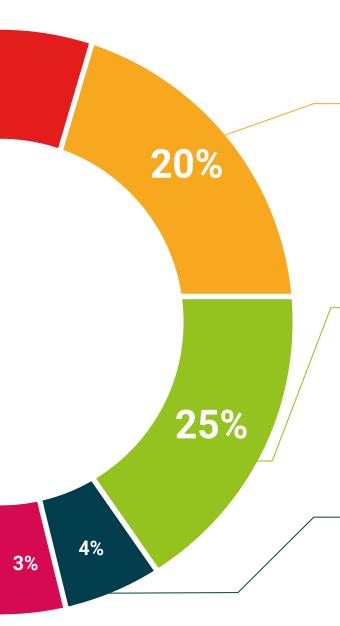
Diese Inhalte werden dann auf das audiovisuelle Format angewendet, um die TECH-Online-Arbeitsmethode zu schaffen. Und das alles mit den neuesten Techniken, die dem Studenten qualitativ hochwertige Stücke aus jedem einzelnen Material zur Verfügung stellen.

Meisterklassen

Die Nützlichkeit der Expertenbeobachtung ist wissenschaftlich belegt.

Das sogenannte Learning from an Expert baut Wissen und Gedächtnis auf und schafft Vertrauen für zukünftige schwierige Entscheidungen.


Fertigkeiten und Kompetenzen Praktiken


Sie werden Aktivitäten durchführen, um spezifische Kompetenzen und Fertigkeiten in jedem Fachbereich zu entwickeln. Praktiken und Dynamiken zum Erwerb und zur Entwicklung der Fähigkeiten und Fertigkeiten, die ein Spezialist im Rahmen der Globalisierung, in der wir leben, entwickeln muss.

Weitere Lektüren

Aktuelle Artikel, Konsensdokumente und internationale Leitfäden, u.a. In der virtuellen Bibliothek von TECH haben die Studenten Zugang zu allem, was sie für ihre Ausbildung benötigen.

Fallstudien

Sie werden eine Auswahl der besten Fallstudien vervollständigen, die speziell für diese Qualifizierung ausgewählt wurden. Die Fälle werden von den besten Spezialisten der internationalen Szene präsentiert, analysiert und betreut.

Interaktive Zusammenfassungen

Das TECH-Team präsentiert die Inhalte auf attraktive und dynamische Weise in multimedialen Pillen, die Audios, Videos, Bilder, Diagramme und konzeptionelle Karten enthalten, um das Wissen zu vertiefen.

Dieses einzigartige Bildungssystem für die Präsentation multimedialer Inhalte wurde von Microsoft als "europäische Erfolgsgeschichte" ausgezeichnet.

Prüfung und Nachprüfung

Die Kenntnisse der Studenten werden während des gesamten Programms regelmäßig durch Bewertungs- und Selbsteinschätzungsaktivitäten und -übungen beurteilt und neu bewertet, so dass die Studenten überprüfen können, wie sie ihre Ziele erreichen.

tech 26 | Qualifizierung

Dieser **Universitätskurs in Grundlegende Elektronik und Instrumentierung** enthält das vollständigste und aktuellste Programm auf dem Markt.

Sobald der Student die Prüfungen bestanden hat, erhält er/sie per Post* mit Empfangsbestätigung das entsprechende Diplom, ausgestellt von der **TECH Technologischen Universität.**

Das von **TECH Technologische Universität** ausgestellte Diplom drückt die erworbene Qualifikation aus und entspricht den Anforderungen, die in der Regel von Stellenbörsen, Auswahlprüfungen und Berufsbildungsausschüssen verlangt werden.

Titel: Universitätskurs in Grundlegende Elektronik und Instrumentierung

Anzahl der offiziellen Arbeitsstunden: 150 Std.

^{*}Haager Apostille. Für den Fall, dass der Student die Haager Apostille für sein Papierdiplom beantragt, wird TECH EDUCATION die notwendigen Vorkehrungen treffen, um diese gegen eine zusätzliche Gebühr zu beschaffen.

technologische universität Universitätskurs Grundlegende Elektronik und Instrumentierung » Modalität: online » Dauer: 6 Wochen

- » Qualifizierung: TECH Technologische Universität
- » Aufwand: 16 Std./Woche
- » Zeitplan: in Ihrem eigenen Tempo
- » Prüfungen: online

