
Master
Programmazione di Videogiochi

Master
Programmazione
di Videogiochi

	» Modalità: online
	» Durata: 12 mesi
	» Titolo: TECH Global University
	» Accreditamento: 60 ECTS
	» Orario: a scelta
	» Esami: online

Accesso al sito web: www.techtitute.com/it/informatica/master/master-programmazione-videogiochi

http://www.techtitute.com/it/informatica/master/master-programmazione-videogiochi

Indice

Presentazione

Struttura e contenuti

Obiettivi

Competenze Metodologia

pag. 4

pag. 16

pag. 8

pag. 12 pag. 32

04

02 01

03 05

Titolo

pag. 40

06

La maggiore attrattiva di un videogioco risiede nei suoi aspetti più visivi, come la grafica
o il design. Tuttavia, questi non possono distinguersi senza la programmazione. La
programmazione è la chiave di ogni videogioco, poiché ne determina la giocabilità o il
modo in cui la grafica interagisce con il giocatore. Senza una buona programmazione,
qualsiasi gioco fallirebbe, in quanto presenterebbe numerosi bug e un'esperienza
spiacevole. Le aziende ne sono consapevoli e per questo richiedono sviluppatori di alto
livello. La presente qualifica risponde a questa esigenza, in quanto prepara gli studenti
ad affrontare tutte le sfide del settore, grazie alle quali potranno ottenere numerose
opportunità professionali.

Presentazione
01

Presentazione | 05

Le aziende sanno che la chiave di un videogioco
sta nella programmazione. Specializzati e diventa
lo sviluppatore più richiesto nel tuo ambiente"

06 | Presentazione

Dietro ad ogni grande videogioco c'è un'enorme squadra di professionisti specializzati in
ogni area di lavoro che cercheranno di portare al successo la propria azienda. Di solito,
gli aspetti più importanti per i fan sono quelli che possono percepire direttamente, come
le immagini o quelli relativi al controllo dei personaggi, alle meccaniche o all'interazione
con gli oggetti.

Tuttavia, affinché tutti questi elementi funzionino e siano correttamente integrati, è bene
tenere conto di un lavoro essenziale che in genere non viene preso in considerazione:
la programmazione. Lo sviluppo di un videogioco prevede diverse fasi e coinvolge
vari reparti, ma la programmazione è quella che dà un senso a tutto e costituisce lo
scheletro di base su cui verranno incorporate le altre aree.

Per questo motivo le aziende del settore prestano molta attenzione a questo aspetto,
poiché sanno che uno sviluppo corretto ed efficiente dei loro videogiochi faciliterà
l'avanzamento del progetto ed eviterà la comparsa di errori e Bug. Di conseguenza,
cercano i migliori programmatori specializzati in questo campo.

Ma non è facile trovare veri specialisti del settore. Questo Master in Programmazione
di Videogiochi risponde perciò a questa esigenza, facendo sì che gli studenti diventino
grandi esperti nello sviluppo di videogiochi e che possano svilupparsi nel settore con
facilità, ottenendo grandi opportunità di carriera grazie alle competenze e alle abilità
acquisite nel corso del programma.

Questo Master in Programmazione di Videogiochi possiede il programma educativo
più completo e aggiornato del mercato. Le caratteristiche principali del corso sono:

	� Elaborazione di casi di studio presentati da esperti in sviluppo e programmazione di
videogiochi

	� Contenuti grafici, schematici ed eminentemente che forniscono informazioni scientifiche
e sanitarie sulle discipline essenziali per l’esercizio professionale

	� Esercizi pratici in cui il processo di autovalutazione può essere utilizzato per migliorare
l'apprendimento

	� Speciale enfasi sulle metodologie innovative

	� Lezioni teoriche, domande all'esperto, forum di discussione su questioni controverse e
lavoro di riflessione individuale

	� Disponibilità di accesso ai contenuti da qualsiasi dispositivo fisso o portatile con una
connessione internet

Sviluppa qualsiasi tipo di videogioco
all’interno delle migliori aziende del
mondo grazie a questo Master”

Presentazione | 07

Il programma comprende, nel suo personale docente, prestigiosi professionisti che
apportano la propria esperienza, così come specialisti riconosciuti e appartenenti a
società scientifiche e università di riferimento.

I contenuti multimediali, sviluppati in base alle ultime tecnologie educative, forniranno
al professionista un apprendimento coinvolgente e localizzato, ovvero inserito in un
contesto reale.

La creazione di questo programma è incentrata sull’Apprendimento Basato su Problemi,
mediante il quale lo specialista deve cercare di risolvere le diverse situazioni che gli
si presentano durante il corso. A tal fine, lo studente potrà usufruire di un innovativo
sistema di video interattivi creati da esperti di rinomata fama.

La programmazione è sempre
più essenziale nello sviluppo
di un videogioco. Diventa
parte essenziale dell'industria
grazie a questa qualifica”

Le migliori aziende del settore
ti aspettano. Specializzati ora.

I videogiochi sono la tua passione
e vuoi diventare un grande
sviluppatore? Non esitare e
iscriviti a questo Master.

Obiettivi
02

L'obiettivo principale di questo Master è trasformare gli studenti in grandi sviluppatori
di videogiochi. Questo settore è in espansione e ha sempre più necessità di
programmatori e specialisti con una preparazione di alto livello.Questa qualifica è
quindi l’occasione perfetta per ottenere grandi opportunità di carriera in alcune delle
aziende più prestigiose del mondo. Pertanto, questo programma offre ai suoi studenti
tutte le competenze necessarie per diventare esperti molto ricercati in questo settore,
ottenendo un significativo e immediato avanzamento di carriera.

Tutti i tuoi sogni sono ora a portata
di mano grazie a questo Master in
Programmazione di Videogiochi"

Obiettivi | 09

10 | Obiettivi

Obiettivi generali

	� Apprendere i diversi linguaggi e metodi di programmazione applicati ai videogiochi
	� Approfondire il processo di produzione dei videogiochi e l'integrazione della
programmazione in queste fasi

	� Imparare i fondamenti del Video Game Design e le conoscenze teoriche che un Video
Game Designer deve conoscere

	� Padroneggiare i linguaggi di programmazione di base utilizzati nei videogiochi
	� Applicare la conoscenza dell'ingegneria del software e della programmazione
specializzata ai videogiochi

	� Comprendere il ruolo della programmazione nello sviluppo di un videogioco
	� Conoscere le diverse console e piattaforme esistenti
	� Sviluppare videogiochi web e multiplayer

Obiettivi specifici

Modulo 1. Fondamenti di programmazione
	� Comprendere la struttura di base di un computer, il software e i linguaggi di
programmazione di uso generale

	� Analizzare gli elementi essenziali di un programma per computer, come i diversi tipi di
dati, gli operatori, le espressioni, le sentenze, le strutture di controllo e gli I/O

	� Interpretare gli algoritmi, che sono la base necessaria per poter sviluppare programmi
informatici

Modulo 2. Struttura dei dati e algoritmi
	� Imparare le principali strategie di progettazione degli algoritmi e i diversi metodi e
misure per il calcolo degli algoritmi

	� Distinguere il funzionamento degli algoritmi, la loro strategia ed esempi del loro utilizzo
nei principali problemi noti

	� Comprendere la tecnica del Backtracking e i suoi principali utilizzi

Modulo 3. Programmazione orientata agli oggetti
	� Conoscere i diversi Design Pattern per i problemi legati all'orientamento agli oggetti

	� Comprendere l'importanza della documentazione e dei test nello sviluppo del software

	� Gestire l'uso dei thread e della sincronizzazione, nonché la risoluzione di problemi
comuni nell'ambito della programmazione concorrente

Al termine di questa qualifica
sarai il miglior sviluppatore di
videogiochi del tuo territorio”

Obiettivi | 11

Modulo 4. Console e dispositivi per videogiochi
	� Comprendere il funzionamento di base delle principali periferiche di ingresso e di uscita

	� Comprendere le principali implicazioni progettuali delle diverse piattaforme

	� Studiare la struttura, l'organizzazione, il funzionamento e l'interconnessione di dispositivi
e sistemi

	� Comprendere il ruolo del sistema operativo e dei kit di sviluppo per dispositivi mobili e
piattaforme di videogiochi

Modulo 5. Ingegneria del software
	� Distinguere le basi dell'ingegneria del software, il processo del software e i diversi modelli
di sviluppo del software, comprese le tecnologie agili

	� Riconoscere l'ingegneria dei requisiti, il suo sviluppo, la sua elaborazione, la sua
negoziazione e la sua convalida per comprendere i principali standard relativi alla qualità
del software e alla gestione dei progetti

Modulo 6. Motori dei videogiochi
	� Scoprire il funzionamento e l'architettura di un motore per videogiochi

	� Comprendere le caratteristiche di base dei motori di gioco esistenti

	� Programmare applicazioni in modo corretto ed efficiente applicate ai motori per
videogiochi

	� Scegliere il paradigma e i linguaggi di programmazione più appropriati per programmare
applicazioni applicate ai motori per videogiochi

Modulo 7. Sistemi intelligenti
	� Stabilire i concetti relativi alla teoria e all'architettura degli agenti e ai loro processi di
ragionamento

	� Assimilare la teoria e la pratica dei concetti di informazione e conoscenza, nonché i
diversi modi di rappresentare la conoscenza

	� Comprendere il funzionamento dei ragionatori semantici, dei sistemi basati sulla
conoscenza e dei sistemi esperti

Modulo 8. Programmazione in tempo reale
	� Analizzare le caratteristiche principali di un linguaggio di programmazione in tempo reale
che lo differenziano da un linguaggio di programmazione tradizionale

	� Comprendere i concetti di base dei sistemi informatici

	� Acquisire la capacità di applicare le principali basi e tecniche della programmazione in
tempo reale

Modulo 9. Progettazione e sviluppo dei browser game
	� Progettare giochi e applicazioni web interattive con la relativa documentazione

	� Valutare le caratteristiche principali dei giochi e delle applicazioni web interattive per
comunicare in modo professionale e corretto

Modulo 10. Reti e sistemi multigiocatore
	� Descrivere l'architettura del Transmission Control Protocol/Internet Protocol (TCP/IP) e il
funzionamento di base delle reti wireless

	� Analizzare la sicurezza applicata ai videogiochi

	� Acquisire la capacità di sviluppare giochi online multiplayer

Competenze
03

Il Master in Programmazione di Videogiochi trasforma gli studenti in veri e propri
specialisti nello sviluppo di questo tipo di opere audiovisive grazie alle competenze e
alle abilità fornite.

In questo modo, grazie a questo eccellente programma, gli studenti otterranno una serie
di strumenti professionali con i quali saranno in grado di affrontare qualsiasi tipo di
sfida legata alla programmazione di videogiochi, diventando così personale essenziale
all’interno delle loro aziende.

Competenze | 13

Imparerai a conoscere tutti gli
aspetti dello sviluppo di videogiochi" 

Competenze generali

	� Progettare tutte le fasi di un videogioco, dall’idea iniziale al lancio finale

	� Specializzarsi come programmatore di videogiochi

	� Studiare a fondo tutte le parti dello sviluppo, dall’architettura iniziale, alla programmazione
del personaggio giocatore e a tutti gli elementi coinvolti nel processo di gioco

	� Ottenere una visione complessiva del progetto, essendo in grado di fornire soluzioni ai
diversi problemi e sfide che si presentano nella progettazione di un videogioco

14 | Competenze

Raggiungi l’eccellenza come
programmatore di videogiochi
grazie a questo Master”

Competenze specifiche

	� Conoscere i software necessari per essere uno sviluppatore di videogiochi professionista

	� Comprendere l'esperienza del giocatore e saper analizzare il gameplay del videogioco

	� Comprendere tutte le procedure teoriche e pratiche del processo di programmazione dei
videogiochi

	� Padroneggiare i linguaggi di programmazione più utili per il mondo dei videogiochi

	� Integrare la programmazione appresa con diversi tipi di console e piattaforme

	� Programmare browser game e giochi multiplayer

	� Assimilare il concetto di motori di gioco per poter programmare correttamente

	� Applicare la conoscenza dell’ingegneria del software alla programmazione di videogiochi

Competenze | 15

Struttura e contenuti
04

I contenuti di questo Master in Programmazione di Videogiochi sono stati
accuratamente progettati da un personale docente composto da grandi specialisti del
settore che conoscono alla perfezione lo stato attuale dell'industria. Grazie a questo
programma, gli studenti potranno apprendere tutte le conoscenze necessarie per
essere in grado di rispondere alle richieste delle aziende del settore, essendo stati
appositamente preparati per le loro particolarità e specificità, che sono complesse e in
continua evoluzione.

Struttura e contenuti | 17

Questi contenuti ti faranno
diventare un grande esperto in
Programmazione di Videogiochi"

Modulo 1. Fondamenti di programmazione
1.1.	 Introduzione alla programmazione

1.1.1. 	 Struttura di base di un computer
1.1.2. 	 Software
1.1.3. 	 Il linguaggio di programmazione
1.1.4. 	 Ciclo di vita di un'applicazione informatica

1.2.	 Progettazione di algoritmi
1.2.1. 	 La risoluzione di problemi
1.2.2. 	 Tecniche descrittive
1.2.3. 	 Elementi e struttura di un algoritmo

1.3. 	 Elementi di un programma
1.3.1. 	 Origine e caratteristiche del linguaggio C++
1.3.2. 	 L'ambiente di sviluppo
1.3.3. 	 Concetto di programma
1.3.4. 	 Tipi di dati fondamentali
1.3.5. 	 Operatori
1.3.6. 	 Espressioni
1.3.7. 	 Strutture
1.3.8. 	 Ingresso e uscita dati

1.4. 	 Strutture di controllo
1.4.1. 	 Strutture
1.4.2. 	 Fork
1.4.3. 	 Loop

1.5. 	 Astrazione e modularità: Funzioni
1.5.1. 	 Design modulare
1.5.2. 	 Concetto di funzione e utilità
1.5.3. 	 Definizione di una funzione
1.5.4. 	 Flusso di esecuzione nella chiamata di una funzione
1.5.5. 	 Prototipo di funzione
1.5.6. 	 Ritorno dei risultati
1.5.7. 	 Chiamare una funzione: Parametri
1.5.8. 	 Passaggio di parametri per riferimento e per valore
1.5.9. 	 Identificatore

18 | Struttura e contenuti

1.6. 	 Strutture dati statiche
1.6.1. 	 Arrays
1.6.2. 	 Matrici: Poliedri
1.6.3. 	 Ricerca e ordine
1.6.4. 	 Stringhe. Funzioni di I/O per le stringhe
1.6.5. 	 Strutture. Unioni
1.6.6. 	 Nuovi tipi di dati

1.7. 	 Strutture dati dinamiche: Puntatori
1.7.1. 	 Concetto. Definizione di puntatore
1.7.2. 	 Operatori e operazioni con i puntatori
1.7.3. 	 Array di puntatori
1.7.4. 	 Puntatori e array
1.7.5. 	 Puntatori a stringhe
1.7.6. 	 Puntatori a strutture
1.7.7. 	 Indirezione multipla
1.7.8. 	 Puntatori a funzione
1.7.9. 	 Passaggio di funzioni, strutture e array come parametri di funzione

1.8. 	 File
1.8.1. 	 Concetti di base
1.8.2. 	 Operazioni sui file
1.8.3. 	 Tipi di file
1.8.4. 	 Organizzazione dei file
1.8.5. 	 Introduzione ai file C++
1.8.6. 	 Gestione dei file

1.9. 	 Ricorsione
1.9.1. 	 Definizione di ricorsione
1.9.2. 	 Tipi di ricorsione
1.9.3. 	 Vantaggi e svantaggi
1.9.4. 	 Considerazioni
1.9.5. 	 Conversione ricorsiva-iterativa
1.9.6. 	 Lo stack di ricorsione

Struttura e contenuti | 19

1.10. 	 Test e documentazione
1.10.1. 	 Test del programma
1.10.2. 	 Test della scatola bianca
1.10.3. 	 Test a scatola nera
1.10.4. 	 Strumenti di test
1.10.5. 	 Documentazione del programma

Modulo 2. Struttura dei dati e algoritmi
2.1. 	 Introduzione alle strategie di progettazione degli algoritmi

2.1.1. 	 Ricorsione
2.1.2. 	 Dividere e conquistare
2.1.3. 	 Altre strategie

2.2. 	 Efficienza e analisi degli algoritmi
2.2.1. 	 Misure di efficienza
2.2.2. 	 Misurare le dimensioni di ingresso
2.2.3. 	 Misurare il tempo di esecuzione
2.2.4. 	 Caso peggiore, migliore e medio
2.2.5. 	 Notazione asintotica
2.2.6. 	 Criteri di analisi matematica per algoritmi non ricorsivi
2.2.7. 	 Analisi matematica degli algoritmi ricorsivi
2.2.8. 	 Analisi empirica degli algoritmi

2.3. 	 Algoritmi di ordinamento
2.3.1. 	 Concetto di ordinamento
2.3.2. 	 Ordinamento a bolle
2.3.3. 	 Ordinamento per selezione
2.3.4. 	 Ordinamento per inserimento
2.3.5. 	 Ordinamento per fusione (merge_sort)
2.3.6. 	 Ordinamento rapido (quick_sort)

2.4. 	 Algoritmi ad albero
2.4.1. 	 Concetto di albero
2.4.2. 	 Alberi binari
2.4.3. 	 Percorsi degli alberi
2.4.4. 	 Rappresentare le espressioni
2.4.5. 	 Alberi binari ordinati
2.4.6. 	 Alberi binari bilanciati

2.5. 	 Algoritmi con Heaps
2.5.1. 	 Heaps
2.5.2. 	 L’algoritmo Heapsort
2.5.3. 	 Le code di priorità

2.6. 	 Algoritmi grafici
2.6.1. 	 Rappresentazione
2.6.2. 	 Percorso in ampiezza
2.6.3. 	 Percorso in profondità
2.6.4. 	 Ordinamento topologico

2.7. 	 Algoritmi Greedy
2.7.1. 	 La strategia Greedy
2.7.2. 	 Elementi della strategia Greedy
2.7.3. 	 Cambio valuta
2.7.4. 	 Problema del commesso viaggiatore
2.7.5. 	 Problema dello zaino

2.8. 	 Pathfinding minimo
2.8.1. 	 Il problema del percorso minimo
2.8.2. 	 Archi e cicli negativi
2.8.3. 	 Algoritmo di Dijkstra

2.9. 	 Algoritmi Greedy sui grafi
2.9.1. 	 L'albero di copertura minimo
2.9.2. 	 Algoritmo di Prim
2.9.3. 	 Algoritmo di Kruksal
2.9.4. 	 Analisi della complessità

2.10. 	 Backtracking
2.10.1. 	 Il Backtracking
2.10.2. 	 Tecniche alternative

Modulo 3. Programmazione orientata agli oggetti
3.1. 	 Introduzione alla programmazione orientata agli oggetti

3.1.1. 	 Introduzione alla programmazione orientata agli oggetti
3.1.2. 	 Progettazione di classe
3.1.3. 	 Introduzione a UML per la modellazione dei problemi

3.2. 	 Relazioni tra classi
3.2.1. 	 Astrazione e ereditarietà
3.2.2. 	 Concetti avanzati di ereditarietà
3.2.3. 	 Polimorfismo
3.2.4. 	 Composizione e aggregazione

3.3. 	 Introduzione ai design pattern per i problemi orientati agli oggetti
3.3.1. 	 Cosa sono i Design Pattern?
3.3.2. 	 Pattern Factory
3.3.4. 	 Pattern Singleton
3.3.5. 	 Pattern Observer
3.3.6. 	 Pattern Composite

3.4. 	 Eccezioni
3.4.1.	 Cosa sono le eccezioni?
3.4.2.	 Cattura e gestione delle eccezioni
3.4.3. 	 Lancio di eccezioni
3.4.4. 	 Creazione di eccezioni

3.5. 	 Interfacce utente
3.5.1. 	 Introduzione a Qt
3.5.2. 	 Posizionamento
3.5.3. 	 Cosa sono gli eventi?
3.5.4. 	 Eventi: definizione e cattura
3.5.5. 	 Sviluppo di interfacce utente

20 | Struttura e contenuti

3.6. 	 Introduzione alla programmazione concorrente
3.6.1. 	 Introduzione alla programmazione concorrente
3.6.2. 	 Il processo e il concetto di thread
3.6.3. 	 Interazione tra processi o thread
3.6.4. 	 Thread in C++
3.6.5. 	 Vantaggi e svantaggi della programmazione concorrente

3.7. 	 Gestione e sincronizzazione dei thread
3.7.1. 	 Ciclo di vita di un thread
3.7.2. 	 La Classe Thread
3.7.3. 	 Pianificazione dei thread
3.7.4. 	 Gruppi di thread
3.7.5. 	 Thread tipo demone
3.7.6. 	 Sincronizzazione
3.7.7. 	 Meccanismi di bloccaggio
3.7.8. 	 Meccanismi di comunicazione
3.7.9. 	 Monitor

3.8. 	 Problemi comuni nella programmazione concorrente
3.8.1. 	 Il problema del consumatore-produttore
3.8.2. 	 Il problema dei lettori e degli scrittori
3.8.3. 	 Il problema della cena dei filosofi

3.9. 	 Documentazione e test del software
3.9.1. 	 Perché la documentazione del software è importante?
3.9.2. 	 Documentazione di progetto
3.9.3. 	 Uso degli strumenti di documentazione

3.10. 	 Test del software
3.10.1. 	 Introduzione al test del software
3.10.2. 	 Tipi di test
3.10.3. 	 Test unitari
3.10.4. 	 Test di integrazione
3.10.5. 	 Test di convalida
3.10.6. 	 Test del sistema

Struttura e contenuti | 21

Modulo 4. Console e dispositivi per videogiochi
4.1. 	 Storia della programmazione di videogiochi

4.1.1. 	 Periodo Atari (1977-1985)
4.1.2. 	 Periodo NES e SNES (1985-1995)
4.1.3. 	 Periodo PlayStation / PlayStation 2 (1995-2005)
4.1.4. 	 Periodo Xbox 360, PS3 e Wii (2005-2013)
4.1.5. 	 Xbox One, PS4 e Wii U - Periodo Switch (2013-presente)
4.1.6. 	 Il futuro

4.2. 	 Storia del gameplay nei videogiochi
4.2.1. 	 Introduzione
4.2.2. 	 Il contesto sociale
4.2.3. 	 Diagramma strutturale
4.2.4. 	 Futuro

4.3. 	 Adattamento ai tempi moderni
4.3.1. 	 Giochi basati sul movimento
4.3.2. 	 Realtà virtuale
4.3.3.	 Realtà aumentata
4.3.4. 	 Realtà mista

4.4. 	 Unity: Scripting I ed esempi
4.4.1. 	 Che cos'è uno Script?
4.4.2. 	 Il nostro primo Script
4.4.3. 	 Aggiunta di uno Script
4.4.4. 	 Apertura di uno Script
4.4.5. 	 MonoBehaviour
4.4.6. 	 Debugging

4.5. 	 Unity: Scripting II ed esempi
4.5.1.	 Input da tastiera e mouse
4.5.2.	 Raycast
4.5.3. 	 Installazione
4.5.4. 	 Variabili
4.5.5. 	 Variabili pubbliche e serializzate

4.6. 	 Unity: Scripting III ed esempi
4.6.1. 	 Ottenere i componenti
4.6.2. 	 Modifica dei componenti
4.6.3. 	 Test
4.6.4. 	 Oggetti multipli
4.6.5. 	 Colliders e Triggers
4.6.6. 	 Quaternioni

4.7. 	 Periferiche
4.7.1. 	 Evoluzione e classificazioni
4.7.2. 	 Periferiche e interfacce
4.7.3. 	 Periferiche attuali
4.7.4. 	 Futuro prossimo

4.8. 	 Videogiochi: prospettive future
4.8.1. 	 Giochi basati sul cloud
4.8.2. 	 Mancanza di controller
4.8.3. 	 Realtà immersiva
4.8.4. 	 Altre alternative

4.9. 	 Architettura
4.9.1. 	 Esigenze speciali dei videogiochi
4.9.2. 	 Evoluzione dell'architettura
4.9.3. 	 Architettura contemporanea
4.9.4. 	 Differenze tra le architetture

4.10. 	 Kit di sviluppo e loro evoluzione
4.10.1. 	 Introduzione
4.10.2. 	 Kit di sviluppo di terza generazione
4.10.3. 	 Kit di sviluppo di quarta generazione
4.10.4. 	 Kit di sviluppo di quinta generazione
4.10.5. 	 Kit di sviluppo di sesta generazione

22 | Struttura e contenuti

Modulo 5. Ingegneria del software
5.1. 	 Introduzione all'ingegneria e alla modellazione del software

5.1.1. 	 La natura del software
5.1.2. 	 La natura unica delle webapp
5.1.3. 	 Ingegneria del software
5.1.4. 	 Il processo del software
5.1.5. 	 La pratica dell'ingegneria del software
5.1.6. 	 Miti del software
5.1.7. 	 Come tutto ha inizio
5.1.8. 	 Concetti orientati agli oggetti
5.1.9. 	 Introduzione a UML

5.2. 	 Il processo del software
5.2.1. 	 Un modello generale di processo
5.2.2. 	 Modelli di processo prescrittivi
5.2.3. 	 Modelli di processo specializzati
5.2.4. 	 Il processo unificato
5.2.5. 	 Modelli di processo personali e di squadra
5.2.6. 	 Che cos'è l'agilità?
5.2.7. 	 Che cos'è un processo agile?
5.2.8. 	 Scrum
5.2.9. 	 Toolkit del processo agile

5.3. 	 Principi che guidano la pratica dell'ingegneria del software
5.3.1. 	 Principi che guidano il processo
5.3.2. 	 Principi che guidano la pratica
5.3.3. 	 Principi di comunicazione
5.3.4. 	 Principi di pianificazione
5.3.5. 	 Principi di modellazione
5.3.6. 	 Principi di costruzione
5.3.7. 	 Principi di implementazione

Struttura e contenuti | 23

5.4. 	 Comprendere i requisiti
5.4.1. 	 Ingegneria dei requisiti
5.4.2. 	 Stabilire le basi
5.4.3. 	 Richiesta di requisiti
5.4.4. 	 Sviluppo di casi d'uso
5.4.5. 	 Elaborazione del modello dei requisiti
5.4.6. 	 Negoziazione dei requisiti
5.4.7. 	 Convalida dei requisiti

5.5. 	 Modellazione dei requisiti: Scenari, informazioni e classi di analisi
5.5.1. 	 Analisi dei requisiti
5.5.2. 	 Modellazione basata su scenari
5.5.3. 	 Modelli UML che forniscono casi d'uso
5.5.4. 	 Concetti di modellazione dei dati
5.5.5. 	 Modellazione basata sulle classi
5.5.6. 	 Diagrammi di classe

5.6. 	 Modellazione dei requisiti: Flusso, comportamento e modelli
5.6.1. 	 Requisiti di modellazione delle strategie
5.6.2.	 Modellazione orientata al flusso
5.6.3. 	 Diagrammi di stato
5.6.4. 	 Creare un modello comportamentale
5.6.5. 	 Diagrammi di sequenza
5.6.6. 	 Diagrammi di comunicazione
5.6.7. 	 Pattern per la modellazione dei requisiti

5.7. 	 Concetti di design
5.7.1.	 La progettazione nel contesto dell'ingegneria del software
5.7.2. 	 Il processo di design
5.7.3. 	 Concetti di design
5.7.4. 	 Concetti di progettazione orientata agli oggetti
5.7.5. 	 Il modello di progettazione

5.8. 	 Design dell'architettura
5.8.1. 	 Architettura del software
5.8.2. 	 Generi architettonici
5.8.3. 	 Stili architettonici
5.8.4. 	 Progettazione architettonica
5.8.5. 	 Evoluzione di progetti alternativi per l'architettura
5.8.6. 	 Mappare l'architettura utilizzando il flusso di dati

5.9. 	 Progettazione a livello di componente e basata su pattern
5.9.1. 	 Che cos'è un componente?
5.9.2. 	 Progettazione di componenti basata su classi
5.9.3. 	 Realizzazione della progettazione a livello di componenti
5.9.4. 	 Design tradizionale dei componenti
5.9.5. 	 Sviluppo basato su componenti
5.9.6. 	 Pattern di progettazione
5.9.7. 	 Progettazione software basata su pattern
5.9.8. 	 Pattern architettonici
5.9.9. 	 Pattern di progettazione a livello di componente
5.9.10. 	 Pattern di progettazione dell'interfaccia utente

5.10. 	 Qualità del software e gestione dei progetti
5.10.1. 	 Qualità
5.10.2. 	 Qualità del software
5.10.3. 	 Il dilemma della qualità del software
5.10.4. 	 Ottenere la qualità del software
5.10.5. 	 Garanzia di qualità del software
5.10.6. 	 Lo spettro gestionale
5.10.7. 	 Il personale
5.10.8. 	 Il prodotto
5.10.9. 	 Il processo
5.10.10. 	Il progetto
5.10.11. 	Principi e pratiche

24 | Struttura e contenuti

Modulo 6. Motori dei videogiochi
6.1. 	 Videogiochi e TIC

6.1.1. 	 Introduzione
6.1.2. 	 Opportunità
6.1.3. 	 Sfide
6.1.4. 	 Conclusioni

6.2. 	 Storia dei motori per videogiochi
6.2.1. 	 Introduzione
6.2.2. 	 Era Atari
6.2.3. 	 Anni '80
6.2.4. 	 I primi motori. Anni '90
6.2.5. 	 Motori attuali

6.3. 	 Motori dei videogiochi
6.3.1. 	 Tipi di motori
6.3.2. 	 Parti di un motore per videogiochi
6.3.3. 	 Motori attuali
6.3.4. 	 Selezione di un motore per il nostro progetto

6.4. 	 Motori Game Maker
6.4.1. 	 Introduzione
6.4.2. 	 Progettazione di scenari
6.4.3. 	 Sprite e animazioni
6.4.4. 	 Collisioni
6.4.5. 	 Scripting in GML

6.5. 	 Motore Unreal Engine 4: Introduzione
6.5.1. 	 Che cos'è Unreal Engine 4? Qual è la sua filosofia?
6.5.2. 	 Materiali
6.5.3. 	 UI
6.5.4. 	 Animazioni
6.5.5. 	 Sistema di particelle
6.5.6. 	 Intelligenza artificiale
6.5.7. 	 FPS

6.6. 	 Motore Unreal Engine 4: Visual Scripting
6.6.1. 	 Filosofía dei Blueprint e il Visual Scripting
6.6.2. 	 Debugging
6.6.3. 	 Tipi di variabili
6.6.4. 	 Controllo del flusso di base

6.7. 	 Motore Unity 5
6.7.1. 	 Programmazione in C# e Visual Studio
6.7.2. 	 Creazione di Prefabs
6.7.3. 	 Uso di gizmos per controllare il videogioco
6.7.4. 	 Motore adattivo: 2D e 3D

6.8. 	 Motore Godot
6.8.1. 	 Filosofia del design Godot
6.8.2. 	 Progettazione e composizione orientata agli oggetti
6.8.3. 	 Pacchetto All-in-One
6.8.4. 	 Software libero e comunitario

6.9. 	 Motore RPG Maker
6.9.1. 	 Filosofia dell’RPG Maker
6.9.2. 	 Come riferimento
6.9.3. 	 Creare un gioco con personalità
6.9.4. 	 Giochi commerciali di successo

6.10. 	 Motore Source 2
6.10.1. 	 Filosofia di Source 2
6.10.2. 	 Source e Source 2: evoluzione
6.10.3. 	 Uso della Comunità: Contenuti audiovisivi e videogiochi
6.10.4. 	 Il futuro del motore Source 2
6.10.5. 	 Mod e giochi di successo

Struttura e contenuti | 25

Modulo 7. Sistemi intelligenti
7.1. 	 Teoria dell'agente

7.1.1. 	 Storia del concetto
7.1.2. 	 Definizione di agente
7.1.3. 	 Agenti nell'intelligenza artificiale
7.1.4. 	 Agenti nell'ingegneria del software

7.2. 	 Architetture di agenti
7.2.1. 	 Il processo di ragionamento dell'agente
7.2.2. 	 Agenti reattivi
7.2.3. 	 Agenti deduttivi
7.2.4. 	 Agenti ibridi
7.2.5. 	 Confronto

7.3. 	 Informazione e conoscenza
7.3.1. 	 Distinzione tra dati, informazioni e conoscenza
7.3.2. 	 Valutazione della qualità dei dati
7.3.3. 	 Metodi di acquisizione dei dati
7.3.4. 	 Metodi di acquisizione delle informazioni
7.3.5. 	 Metodi di acquisizione della conoscenza

7.4. 	 Rappresentazione della conoscenza
7.4.1. 	 L'importanza della rappresentazione della conoscenza
7.4.2. 	 Definizione della rappresentazione della conoscenza attraverso i suoi ruoli
7.4.3. 	 Caratteristiche di una rappresentazione della conoscenza

7.5. 	 Ontologie
7.5.1. 	 Introduzione ai metadati
7.5.2. 	 Concetto filosofico di ontologia
7.5.3. 	 Concetto informatico di ontologia
7.5.4. 	 Ontologie di dominio e di livello superiore
7.5.5. 	 Come costruire un'ontologia

7.6. 	 Linguaggi ontologici e software per la creazione di ontologie
7.6.1. 	 Tripletta RDF, Turtle e N3
7.6.2. 	 Schema RDF
7.6.3. 	 OWL
7.6.4. 	 SPARQL
7.6.5. 	 Introduzione ai diversi strumenti per la creazione di ontologie
7.6.6. 	 Installazione e utilizzo di Protégé

7.7. 	 Web semantico
7.7.1. 	 Stato attuale e futuro del Web semantico
7.7.2. 	 Applicazioni del Web semantico

7.8. 	 Altri modelli di rappresentazione della conoscenza
7.8.1. 	 Vocabolari
7.8.2. 	 Visione globale
7.8.3. 	 Tassonomie
7.8.4. 	 Thesauri
7.8.5. 	 Folksonomie
7.8.6. 	 Confronto
7.8.7. 	 Mappe mentali

7.9. 	 Valutazione e integrazione delle rappresentazioni della conoscenza
7.9.1. 	 Logica dell'ordine zero
7.9.2. 	 Logica del primo ordine
7.9.3. 	 Logica descrittiva
7.9.4. 	 Relazione tra i diversi tipi di logica
7.9.5. 	 Prolog: Programmazione basata sulla logica del primo ordine

7.10. 	 Ragionatori semantici, sistemi basati sulla conoscenza e sistemi esperti
7.10.1. 	 Concetto di ragionatore
7.10.2. 	 Applicazioni di un ragionatore
7.10.3. 	 Sistemi basati sulla conoscenza
7.10.4. 	 MYCIN, storia dei sistemi esperti
7.10.5. 	 Elementi e architettura dei sistemi esperti
7.10.6. 	 Creazione di sistemi esperti

26 | Struttura e contenuti

Modulo 8. Programmazione in tempo reale
8.1. 	 Fondamenti di programmazione concorrente

8.1.1.	 Concetti fondamentali
8.1.2. 	 Concorrenza
8.1.3. 	 Vantaggi della concorrenza
8.1.4. 	 Concorrenza e hardware

8.2. 	 Strutture di supporto alla concorrenza di base in Java
8.2.1. 	 Concorrenza in Java
8.2.2. 	 Creazione di Thread
8.2.3. 	 Metodi
8.2.4. 	 Sincronizzazione

8.3. 	 Thread, ciclo di vita, priorità, interruzioni, stato, esecutori
8.3.1. 	 Thread
8.3.2. 	 Ciclo di vita
8.3.3. 	 Priorità
8.3.4. 	 Interruzioni
8.3.5. 	 Stati
8.3.6. 	 Esecutori

8.4. 	 Esclusione mutua
8.4.1. 	 Che cos'è l'esclusione mutua?
8.4.2. 	 Algoritmo di Dekker
8.4.3. 	 Algoritmo di Peterson
8.4.4. 	 Mutua esclusione in Java

8.5. 	 Dipendenze di stato
8.5.1. 	 Iniezione di dipendenza
8.5.2. 	 Implementazione del pattern Java
8.5.3. 	 Modi per iniettare le dipendenze
8.5.4. 	 Esempio

Struttura e contenuti | 27

8.6. 	 Pattern di progettazione
8.6.1. 	 Introduzione
8.6.2. 	 Pattern di creazione
8.6.3. 	 Pattern di struttura
8.6.4. 	 Pattern comportamentali

8.7. 	 Utilizzo delle librerie Java
8.7.1. 	 Cosa sono le librerie Java?
8.7.2. 	 Mockito-All, Mockito-Core
8.7.3. 	 Guava
8.7.4. 	 Commons-Io
8.7.5. 	 Commons-Lang, Commons-Lang3

8.8. 	 Programmazione degli shader
8.8.1. 	 Pipeline 3D y Raster
8.8.2. 	 Vertex Shading
8.8.3. 	 Pixel Shading: Illuminazione I
8.8.4. 	 Pixel Shading: Illuminazione II
8.8.5. 	 Post-Effects

8.9. 	 Programmazione in tempo reale
8.9.1. 	 Introduzione
8.9.2. 	 Elaborazione degli interrupt
8.9.3. 	 Sincronizzazione e comunicazione tra processi
8.9.4. 	 Sistemi di programmazione in tempo reale

8.10. 	 Pianificazione in tempo reale
8.10.1. 	 Concetti
8.10.2. 	 Modello di riferimento per i sistemi in tempo reale
8.10.3. 	 Politiche di pianificazione
8.10.4. 	 Pianificatori ciclici
8.10.5. 	 Pianificatori con proprietà statiche
8.10.6. 	 Pianificatori con proprietà dinamiche

28 | Struttura e contenuti

9.6. 	 Introduzione all'CSS ed esempi
9.6.1. 	 Sintassi CSS3
9.6.2. 	 Fogli di stile
9.6.3. 	 Tag
9.6.4. 	 Selezionatori
9.6.5. 	 Progettazione web con CSS

9.7. 	 Introduzione a Javascript ed esempi
9.7.1. 	 Che cos'è Javascript?
9.7.2. 	 Breve storia del linguaggio
9.7.3. 	 Versioni di Javascript
9.7.4. 	 Visualizzazione di una finestra di dialogo
9.7.5. 	 Sintassi Javascript
9.7.6. 	 Capire gli Scripts
9.7.7. 	 Spazi
9.7.8. 	 Commenti
9.7.9. 	 Funzioni
9.7.10. 	 JavaScript interno ed esterno alla pagina

9.8. 	 Funzioni Javascript
9.8.1. 	 Dichiarazioni di funzione
9.8.2. 	 Espressioni di funzione
9.8.3. 	 Chiamare le funzioni
9.8.4. 	 Ricorsione
9.8.5. 	 Funzioni annidate e chiusure
9.8.6. 	 Conservazione delle variabili
9.8.7. 	 Funzioni multi-nidificate
9.8.8. 	 Conflitti di nome
9.8.9. 	 Chiusure
9.8.10. 	 Parametri di una funzione

Modulo 9. Progettazione e sviluppo dei browser game
9.1. 	 Origini e standard del Web

9.1.1. 	 Le origini di Internet
9.1.2. 	 Creazione del World Wide Web
9.1.3. 	 Nascita degli standard web
9.1.4. 	 L'ascesa degli standard web

9.2. 	 HTTP e struttura client-server
9.2.1. 	 Ruolo client-server
9.2.2. 	 Comunicazione client-server
9.2.3. 	 Storia recente
9.2.4. 	 Informatica centralizzata

9.3. 	 Programmazione web: Introduzione
9.3.1. 	 Concetti di base
9.3.2. 	 Preparazione di un server web
9.3.3. 	 Nozioni di base di HTML5
9.3.4. 	 Moduli HTML

9.4. 	 Introduzione all'HTML ed esempi
9.4.1. 	 Storia di HTML5
9.4.2. 	 Elementi di HTML5
9.4.3. 	 APIS
9.4.4. 	 CCS3

9.5. 	 Modello a oggetti del documento
9.5.1. 	 Che cos'è il modello a oggetti del documento?
9.5.2. 	 Uso di DOCTYPE
9.5.3. 	 L'importanza della validazione dell'HTML
9.5.4. 	 Accesso agli elementi
9.5.5. 	 Creazione di elementi e testo
9.5.6. 	 Utilizzo di InnerHTML
9.5.7. 	 Eliminazione di un elemento o di un nodo di testo
9.5.8. 	 Lettura e scrittura degli attributi degli elementi
9.5.9. 	 Manipolazione degli stili degli elementi
9.5.10. 	 Allegare più file contemporaneamente

Struttura e contenuti | 29

9.9. 	 PlayCanvas per lo sviluppo di browser game
9.9.1. 	 Che cos'è PlayCanvas?
9.9.2. 	 Configurazione del progetto
9.9.3. 	 Creare un oggetto
9.9.4. 	 Aggiunta di fisiche
9.9.5. 	 Aggiunta di un modello
9.9.6. 	 Modifica delle impostazioni di gravità e di scena
9.9.7. 	 Esecuzione di Script
9.9.8. 	 Controlli della telecamera

9.10. 	 Phaser per lo sviluppo di browser game
9.10.1. 	 Che cos'è Phaser?
9.10.2. 	 Caricamento delle risorse
9.10.3. 	 Costruire il mondo
9.10.4. 	 Piattaforme
9.10.5. 	 Il giocatore
9.10.6. 	 Aggiungere fisiche
9.10.7. 	 Utilizzo della tastiera
9.10.8. 	 Raccogliere Pickup
9.10.9. 	 Punti e punteggi
9.10.10. 	Bouncing bombs

Modulo 10. Reti e sistemi multigiocatore
10.1. 	 Storia ed evoluzione dei videogiochi multiplayer

10.1.1. 	 Decennio 1970: I primi giochi multiplayer
10.1.2. 	 Anni 90: Duke Nukem, Doom, Quake
10.1.3. 	 L'ascesa dei videogiochi multiplayer
10.1.4. 	 Multiplayer locale e online
10.1.5. 	 Giochi per feste

10.2. 	 Modelli di business multiplayer
10.2.1.	 Origine e funzionamento dei modelli di business emergenti
10.2.2. 	 Servizi di vendita online
10.2.3. 	 Free to Play
10.2.4. 	 Micropagamenti
10.2.5. 	 Pubblicità
10.2.6. 	 Abbonamento con pagamenti mensili
10.2.7. 	 Pay to play
10.2.8. 	 Provare prima di acquistare

10.3. 	 Videogiochi locali e videogiochi in rete
10.3.1. 	 Videogiochi locali: gli inizi
10.3.2. 	 Giochi per feste: Nintendo e la famiglia
10.3.3. 	 Giochi in rete: inizi
10.3.4. 	 Evoluzione dei giochi in rete

10.4. 	 Modello OSI: Livelli I
10.4.1. 	 Modello OSI: Introduzione
10.4.2. 	 Livello fisico
10.4.3. 	 Livello di collegamento dati
10.4.4. 	 Livello di rete

10.5. 	 Modello OSI: Livelli II
10.5.1. 	 Livello di trasporto
10.5.2. 	 Livello di sessione
10.5.3. 	 Livello di presentazione
10.5.4. 	 Livello applicazione

10.6. 	 Reti di computer e Internet
10.6.1. 	 Che cos'è una rete di computer?
10.6.2. 	 Software
10.6.3. 	 Hardware
10.6.4. 	 Server
10.6.5. 	 Archiviazione di rete
10.6.6. 	 Protocolli di rete

10.7. 	 Reti mobili e wireless
10.7.1. 	 Rete mobile
10.7.2. 	 Rete wireless
10.7.3. 	 Funzionamento delle reti mobili
10.7.4. 	 Tecnologia digitale

10.8. 	 Sicurezza
10.8.1. 	 Sicurezza personale
10.8.2. 	 Hack e trucchi nei videogiochi
10.8.3. 	 Sicurezza anti-cheat
10.8.4. 	 Analisi dei sistemi di sicurezza anti-cheat

10.9. 	 Sistemi multigiocatore: Server
10.9.1. 	 Hosting server
10.9.2. 	 Videogiochi MMO
10.9.3. 	 Server dedicati ai videogiochi
10.9.4. 	 LAN Parties

10.10. 	Progettazione e programmazione di giochi multiplayer
10.10.1.	Fondamenti di progettazione di giochi multiplayer Unreal
10.10.2.	Fondamenti di progettazione di giochi multiplayer in Unity
10.10.3.	Come rendere divertente un gioco multiplayer?
10.10.4.	Oltre il controller Innovazione nei controller multigiocatore

30 | Struttura e contenuti

Se vuoi intraprendere una grande
carriera nella programmazione
di videogiochi di fama mondiale,
questa è la qualifica che fa per te"

Struttura e contenuti | 31

05

Metodologia di studio | 33

34 | Metodologia di studio

Metodologia di studio | 35

36 | Metodologia di studio

Metodologia di studio | 37

38 | Metodologia di studio

Metodologia di studio | 39

40 | Metodologia di studio

Metodologia di studio | 41

Titolo
06

Il Master in Programmazione di Videogiochi ti garantisce, oltre alla formazione più
rigorosa e aggiornata, l’accesso al Master rilasciato dalla TECH Global University.

Titolo | 43

“Porta a termine questo programma e
ricevi la tua qualifica universitaria senza
spostamenti o fastidiose formalità"

44 | Titolo

*Se lo studente dovesse richiedere che il suo diploma cartaceo sia provvisto di Apostille dell’Aia, TECH Global University effettuerà le gestioni opportune per ottenerla pagando un costo aggiuntivo.

Questo programma ti consentirà di ottenere il titolo di studio di Master in Programmazione di
Videogiochi rilasciato da TECH Global University, la più grande università digitale del mondo.

TECH Global University è un‘Università Ufficiale Europea riconosciuta pubblicamente dal

Governo di Andorra (bollettino ufficiale). Andorra fa parte dello Spazio Europeo dell‘Istruzione

Superiore (EHEA) dal 2003. L‘EHEA è un‘iniziativa promossa dall‘Unione Europea che mira a

organizzare il quadro formativo internazionale e ad armonizzare i sistemi di istruzione superiore

dei Paesi membri di questo spazio. Il progetto promuove valori comuni, l’implementazione di

strumenti congiunti e il rafforzamento dei meccanismi di garanzia della qualità per migliorare la

collaborazione e la mobilità tra studenti, ricercatori e accademici.

Questo titolo privato di TECH Global University è un programma europeo di formazione continua

e aggiornamento professionale che garantisce l‘acquisizione di competenze nella propria area di

conoscenza, conferendo allo studente che supera il programma un elevato valore curriculare.

Titolo: Master in Programmazione di Videogiochi

Modalità: online

Durata: 12 mesi

Accreditamento: 60 ECTS​

https://bopadocuments.blob.core.windows.net/bopa-documents/036016/pdf/GV_2024_02_01_09_43_31.pdf

Master
Programmazione
di Videogiochi

	» Modalità: online
	» Durata: 12 mesi
	» Titolo: TECH Global University
	» Accreditamento: 60 ECTS
	» Orario: a scelta
	» Esami: online

Master
Programmazione di Videogiochi

