

Mestrado

Engenharia de Telecomunicações

» Modalidade: online

» Duração: 12 meses

» Certificação: TECH Global University

» Créditos: 60 ECTS

» Horário: ao seu próprio ritmo

» Exames: online

Acesso ao site: www.techtitute.com/pt/informatica/mestrado/mestrado-engenharia-telecomunicacoes

Índice

02 Apresentação Objetivos pág. 4 pág. 8 05 03 Competências Direção do curso Estrutura e conteúdo pág. 14 pág. 18 pág. 22 06 07 Metodologia Certificação pág. 42 pág. 50

tech 06 | Apresentação

Os avanços nas telecomunicações estão constantemente a ocorrer, uma vez que esta é uma das áreas em mais rápida evolução. É, portanto, necessário contar com especialistas em Informática que possam adaptar-se a estas mudanças e ter conhecimentos em primeira mão das novas ferramentas e técnicas que estão a surgir neste campo.

O Mestrado em Engenharia de Telecomunicações cobre a gama completa de temáticas envolvidas neste campo. O seu estudo tem uma clara vantagem sobre outros mestrados que se concentram em blocos específicos, o que impede o estudante de conhecer a inter-relação com outras áreas incluídas no campo multidisciplinar das telecomunicações. Além disso, a equipa docente deste programa educativo fez uma seleção cuidadosa de cada uma das disciplinas desta capacitação, a fim de oferecer ao aluno uma oportunidade de estudo tão completa quanto possível e sempre ligada à atualidade.

Este programa destina-se aos interessados em atingir um nível de conhecimento mais elevado da Engenharia de Telecomunicações. O principal objetivo é a especialização dos estudantes para que possam aplicar os conhecimentos adquiridos neste Mestrado no mundo real, num ambiente de trabalho que reproduza as condições que possam encontrar no seu futuro, de uma forma rigorosa e realista.

Além disso, como é um programa 100% online, o estudante não está condicionado por horários fixos ou pela necessidade de se deslocar para outro local físico, mas pode aceder aos conteúdos em qualquer altura do dia, equilibrando o seu trabalho ou vida pessoal com a sua vida académica.

Este **Mestrado em Engenharia de Telecomunicações** conta com o conteúdo educacional mais completo e atualizado do mercado. As suas principais características são:

- O desenvolvimento de casos práticos apresentados por especialistas em Engenharia de Telecomunicações
- O conteúdo gráfico, esquemático e eminentemente prático do livro fornece informações científicas e práticas sobre as disciplinas que são essenciais para a prática profissional
- Exercícios práticos onde o processo de autoavaliação pode ser levado a cabo a fim de melhorar a aprendizagem
- Destaque especial para as metodologias inovadoras em Engenharia de Telecomunicações.
- Palestras teóricas, perguntas ao especialista, fóruns de discussão sobre questões controversas e atividades de reflexão individual
- A disponibilidade de acesso ao conteúdo a partir de qualquer dispositivo fixo ou portátil com ligação à Internet

Não perca a oportunidade de fazer este Mestrado em Engenharia de Telecomunicações connosco. É a oportunidade perfeita para progredir na sua carreira profissional"

Um programa educativo totalmente atualizado, que lhe permitirá adquirir os conhecimentos mais recentes e inovadores neste campo de trabalho"

O corpo docente do programa inclui profissionais do setor informático que trazem para este programa a experiência do seu trabalho, bem como especialistas reconhecidos de empresas de referência e universidades de prestígio.

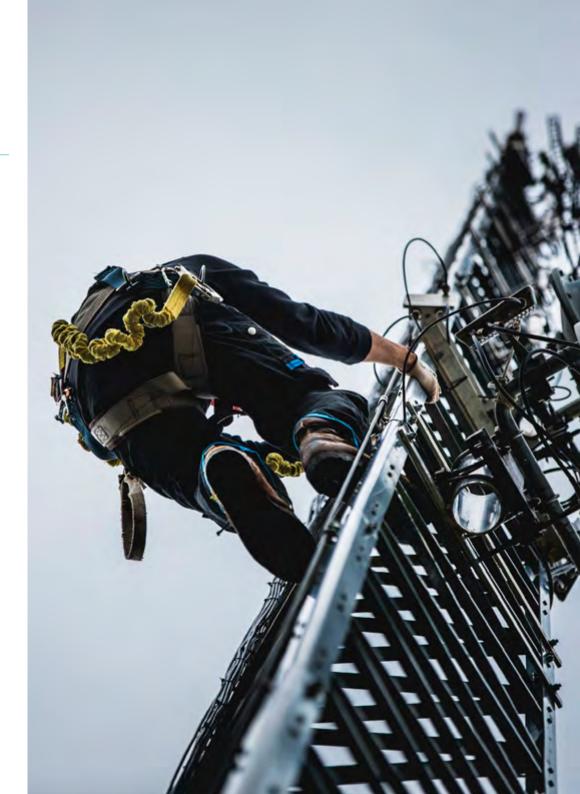
O seu conteúdo multimédia, desenvolvido com a mais recente tecnologia educacional, permitirá aos profissionais receberem uma aprendizagem situada e contextual, ou seja, um ambiente simulado que proporcionará uma capacitação imersiva programada para treinar em situações reais.

A conceção deste programa centra-se na Aprendizagem Baseada em Problemas, através da qual o profissional deve tentar resolver as diferentes situações de prática profissional que surgem ao longo do programa académico. Para isso, contará com a ajuda de um sistema inovador de vídeo interativo realizado por especialistas em Engenharia Mecânica e com ampla experiência.

Este programa tem o melhor material didático, o que lhe permitirá um estudo contextual que facilitará a sua aprendizagem.

Este programa 100% online permitir-lhe-á combinar os seus estudos com o seu trabalho profissional.

tech 10 | Objetivos



Objetivo geral

• Capacitar os estudantes para serem capazes de planear, calcular, conceber, implementar e gerir redes, equipamentos, instalações e sistemas em todas as áreas da Engenharia de Telecomunicações

Atinja os seus objetivos de crescimento profissional através deste programa de alta qualidade, com a segurança de estar nas melhores mãos"

Objetivos específicos

Módulo 1. Eletrónica e instrumentação básicas

- Aprender sobre o manuseamento e limitações dos instrumentos de uma estação de trabalho eletrónica básica
- Conhecer e implementar as técnicas básicas de medição de parâmetros elétricos de sinais, avaliar os erros associados e as suas possíveis técnicas de correção
- Dominar as caraterísticas básicas e o comportamento dos componentes passivos mais comuns e ser capaz de os selecionar para uma determinada aplicação
- Compreender as caraterísticas básicas dos amplificadores lineares
- Conhecer, conceber e implementar circuitos básicos utilizando amplificadores operacionais considerados ideais
- Compreender o funcionamento de amplificadores multifase sem realimentação acoplados de forma capacitiva e ser capaz de os conceber
- Analisar e saber aplicar as técnicas e configurações básicas em circuitos integrados analógicos

Módulo 2. Eletrónica analógica e digital

- Conhecer os conceitos básicos da eletrónica digital e analógica
- Dominar as diferentes portas lógicas e as suas caraterísticas
- Analisar e conceber circuitos digitais tanto combinados como sequenciais
- Distinguir e avaliar as vantagens e desvantagens entre circuitos sequenciais síncronos e assíncronos, e de utilizar um sinal de relógio
- Conhecer os circuitos integrados e famílias lógicas
- Compreender as diferentes fontes de energia, em particular a energia solar fotovoltaica e térmica
- Obter conhecimentos básicos de engenharia elétrica, distribuição elétrica e eletrónica de potência

Módulo 3. Sinais aleatórios e sistemas lineares

- Compreender os fundamentos de cálculo de probabilidades
- Conhecer a teoria básica das variáveis e vetores.
- Dominar em profundidade os processos aleatórios e as suas caraterísticas temporais e espetrais
- Aplicar os conceitos de sinais determinísticos e aleatórios à caraterização das perturbações e do ruído
- Conhecer as propriedades fundamentais dos sistemas
- Dominar os sistemas lineares e as funções e transformadas relacionadas
- Aplicar conceitos dos Sistemas Lineares Invariantes no Tempo (Sistemas LTI) para modelar, analisar, prever e modelar processos

Módulo 4. Redes de computadores

- Adquirir os conhecimentos essenciais sobre redes informáticas na Internet
- Compreender o funcionamento das diferentes camadas que definem um sistema em rede, tais como a camada de aplicação, de transporte, de rede e de ligação
- Compreender a composição das redes LAN, a sua topologia e os seus elementos de rede e interligação
- Aprender o funcionamento do endereçamento IP e a Subnetting
- Compreender a estrutura das redes wireless e móveis, incluindo a nova Rede 5G
- Conhecer os diferentes mecanismos de segurança de rede, bem como os diferentes protocolos de segurança da Internet

tech 12 | Objetivos

Módulo 5. Sistemas digitais

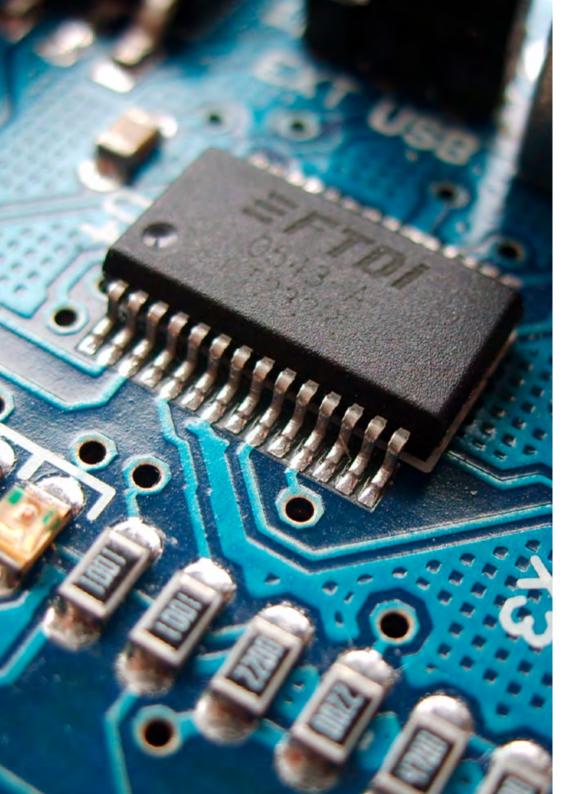
- Compreender a estrutura e o funcionamento dos microprocessadores
- Saber utilizar o conjunto de instruções e a linguagem máquina
- Ser capaz de utilizar linguagens de descrição de hardware
- Conhecer as caraterísticas básicas dos microcontroladores
- Analisar as diferenças entre microprocessadores e microcontroladores.
- Dominar as caraterísticas básicas dos sistemas digitais avançados

Módulo 6. Teoria da comunicação

- Conhecer as caraterísticas fundamentais dos diferentes tipos de sinais
- Analisar os diferentes distúrbios que podem ocorrer na transmissão de sinais
- Dominar as técnicas de modulação e demodulação de sinais
- Compreender a teoria das comunicações analógicas e as suas modulações
- Compreender a teoria das comunicações digitais e os seus modelos de transmissão
- Ser capaz de aplicar estes conhecimentos para especificar, implementar e manter sistemas e serviços de comunicações

Módulo 7. Redes de comutação e infraestruturas de telecomunicação

- Diferenciar os conceitos de redes de acesso e transporte, redes de comutação de circuitos e de pacotes, redes fixas e móveis, bem como sistemas e aplicações de rede distribuídas, serviços de voz, dados, áudio e vídeo
- Conhecer os métodos de interconexão e encaminhamento de redes, bem como as bases de planeamento e dimensionamento de redes com base em parâmetros de tráfego
- Dominar os fundamentos básicos de qualidade de serviço
- Analisar o desempenho (atraso, probabilidade de perda, probabilidade de bloqueio, etc.)
 de uma rede de telecomunicações


- Compreender e aplicar a normativa e regulamentos para protocolos e redes dos organismos internacionais de normalização
- Conhecer o planeamento de infraestruturas comuns de telecomunicações em contextos residenciais

Módulo 8. Redes de comunicações móveis

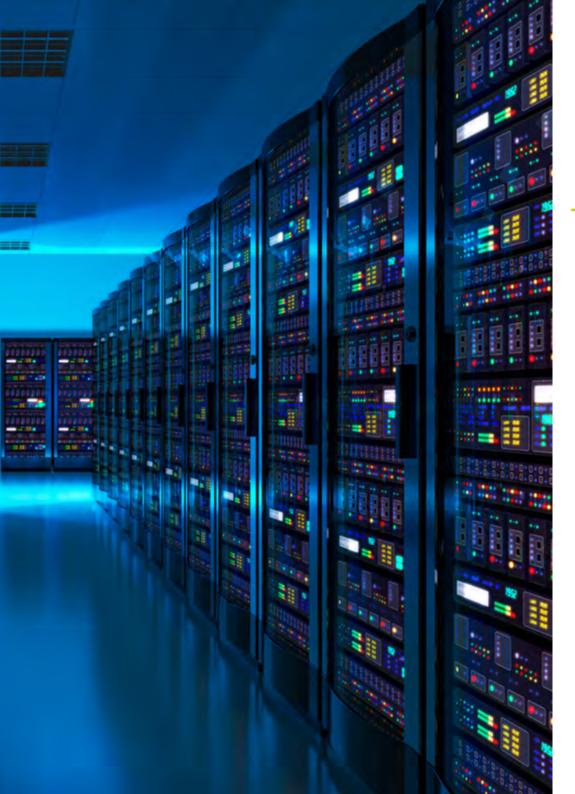
- Analisar os conceitos fundamentais das redes de comunicações móveis
- Conhecer os princípios de comunicações móveis
- Dominar a arquitetura e os protocolos das redes de comunicações móveis
- Conhecer as tecnologias básicas utilizadas nas redes GSM, UMTS e LTE
- Compreender os sistemas de sinalização e os diferentes protocolos de rede das redes GSM, UMTS e LTE
- Compreender as entidades funcionais de GSM, UMTS e LTE e a sua interligação com outras redes
- Compreender os mecanismos de acesso, controlo de ligação e controlo de recursos de rádio de um sistema LTE
- Compreender os conceitos fundamentais do espetro radioelétrico

Módulo 9. Redes e serviços de rádio

- Compreender os mecanismos de acesso, controlo de ligação e controlo de recursos de rádio de um sistema LTE
- Compreender os conceitos fundamentais do espetro de radioelétrico
- Conhecer os serviços específicos para redes de rádio
- Conhecer as técnicas de multicast IP que melhor se adaptam à conetividade fornecida pelas redes de rádio. Compreender o impacto das redes de rádio na qualidade de serviço de ponta a ponta e conhecer os mecanismos existentes para os atenuar
- Dominar as redes sem fios WLAN, WPAN, WMAN
- Analisar as diferentes arquiteturas das redes de satélite e conhecer os diferentes serviços suportados por uma rede de satélite

Módulo 10. Engenharia de sistemas e serviços de rede

- Dominar os conceitos fundamentais da engenharia de serviços
- Compreender os princípios básicos da gestão da configuração de sistemas de software em evolução
- Conhecer as tecnologias e ferramentas para a prestação de serviços telemáticos
- Conhecer diferentes estilos arquitetónicos de um sistema de software, compreender as suas diferenças e saber escolher o mais adequado de acordo com os requisitos do sistema
- Compreender os processos de validação e verificação e as suas relações com outras fases do ciclo de vida
- Ser capaz de integrar sistemas para a captação, representação, processamento, armazenamento, gestão e apresentação de informação multimédia para a construção de serviços de telecomunicações e aplicações telemáticas
- Conhecer elementos comuns para a conceção detalhada de um sistema de software
- Adquirir competências de programação, simulação e validação de serviços e aplicações telemáticas, em rede e distribuídas
- Conhecer o processo e as atividades de transição, configuração, implantação e operação
- Compreender os processos de gestão, automatização e otimização de rede


Competências gerais

• Conceber e implementar redes, instalações e sistemas de telecomunicações

Capacite-se na principal universidade online privada de língua espanhola do mundo"

Competências específicas

- Conhecer o funcionamento e a instrumentação básica dos dispositivos eletrónicos
- Dominar todos os aspetos da eletrónica analógica e digital
- Conhecer os sistemas lineares e os sinais aleatórios
- Utilizar linguagens de descrição de hardware e conhecer as caraterísticas dos sistemas digitais
- Conhecer a história e os desenvolvimentos na teoria da comunicação
- Estar familiarizado com os sistemas informáticos e as infraestruturas de telecomunicações, a fim de poder trabalhar com eles
- Trabalhar com redes de comunicação móvel e serviços de rádio
- Criar serviços de telecomunicação e aplicações telemáticas

Diretor Convidado Internacional

Sinan Akkaya é um destacado líder em tecnologia com uma vasta experiência internacional em Engenharia, gestão e liderança, especializado em redes de acesso e na construção e operação de infraestruturas empresariais. Nesse sentido, demonstrou uma grande capacidade para liderar equipas e projetos de grande escala, focando-se na implementação de tecnologia avançada, inovação e desenvolvimento de produtos. A sua experiência abrange desde o planeamento estratégico até à execução operacional de soluções complexas de redes sem fios e sistemas de comunicação.

Assim, no seu papel como Diretor de Engenharia de Redes de Acesso por Rádio na AT&T, liderou as atividades de Engenharia de Radiofrequência e de Rede para a região do Norte da Califórnia e Nevada, onde supervisionou a implementação de redes 4G e 5G, assim como a expansão da rede para mais de 900 locais. Sob a sua liderança, a região alcançou o maior EBITDA da empresa, destacando-se pela sua habilidade em gerir grandes orçamentos, otimizar custos operacionais e garantir o desempenho da rede. Além disso, desempenhou um papel chave na implementação de tecnologias emergentes, como Massive MIMO e 5G mm-wave, bem como na direção de serviços como o FirstNet, focados na segurança pública.

Adicionalmente, trabalhou em consultoria para grandes operadores de telecomunicações, OEMs e empresas globais, prestando assessoria técnica e estratégica para otimizar redes e melhorar a qualidade dos serviços. Também supervisionou equipas multidisciplinares, geriu investimentos em redes superiores a 500 milhões de dólares anuais e fez importantes contribuições para a expansão e otimização das redes de telecomunicações. Foi igualmente um orador frequente em conferências internacionais, onde partilhou o seu conhecimento e visão sobre as tendências tecnológicas e as estratégias para a evolução das redes sem fios.

Sr. Akkaya, Sinan

- Diretor de Engenharia de Redes de Acesso por Rádio na AT&T, San Ramón, Califórnia, Estados Unidos
- Gerente de Engenharia de Radiofrequência na AT&T
- Engenheiro Principal de Radiofrequência na Wireless Facilities International
- Engenheiro de Radiofrequência na Lightbridge Communications Corporation
- Engenheiro de Design de Radiofrequência na Turkcel
- Gerente de Produto na General Electric
- Mestrado em Ciências em Engenharia Elétrica e Eletrónica pela Universidade de Newcastle
- Licenciatura em Ciências em Engenharia Elétrica e Eletrónica pela Universidade Técnica Orta Doğu
- Membro da: American Heart Association

Graças à TECH, poderá aprender com os melhores profissionais do mundo"

05 Estrutura e conteúdo

A estrutura do conteúdo foi desenvolvida pelos melhores profissionais do setor da Engenharia Telecomunicações, com ampla experiência e reconhecido prestígio na profissão.

1se True the end -add back the des ect= 1 Jb.select=1 ntext.scene.objects.active = modifier ("Selected" + str(modifier_ob)) # modi mirror_ob.select = 0

tech 24 | Estrutura e conteúdo

Módulo 1. Eletrónica e instrumentação básicas

- 1.1. Instrumentação básica
 - 1.1.1. Introdução Sinais e os seus parâmetros
 - 1.1.2. Magnitudes elétricas básicas e a sua medida
 - 1.1.3. Osciloscópio
 - 1.1.4. Multímetro digital
 - 1.1.5. Gerador de funções
 - 1.1.6. Fonte de alimentação de laboratório
- 1.2. Componentes eletrónicos no laboratório
 - 1.2.1. Principais tipos e conceitos de tolerância e série
 - 1.2.2. Comportamento térmico e dissipação de potência. Tensão e corrente máximas
 - 1.2.3. Conceitos de coeficientes de variação, desvio e de não-linearidade
 - 1.2.4. Parâmetros específicos mais comuns dos principais tipos. Seleção em catálogo e limitações
- 1.3. O díodo de união, circuitos com díodos, díodos para aplicações especiais
 - 1.3.1. Introdução e funcionamento
 - 1.3.2. Circuitos com díodos
 - 1.3.3. Díodos para aplicações especiais
 - 1.3.4. Díodo Zener
- 1.4. O transístor de união bipolar BJT e FET/MOSFET
 - 1.4.1. Fundamentos dos transístores
 - 1.4.2. Polarização e estabilização do transístor
 - 1.4.3. Circuitos e aplicações dos transístores
 - 1.4.4. Amplificadores monofásicos
 - 1.4.5. Tipos de amplificadores, tensão, corrente
 - 1.4.6. Modelos alternados
- 1.5. Conceitos básicos de amplificadores Circuitos com amplificadores operacionais ideais
 - 1.5.1. Tipos de amplificadores. Tensão, corrente, transimpedância e transcondutância
 - 1.5.2. Parâmetros caraterísticos: impedâncias de entrada e saída, funções de transferência direta e inversa
 - 1.5.3. Visão como quadripolos e parâmetros
 - 1.5.4. Associação de amplificadores: cascata, série-série, série-paralela, paralela-série e paralela, paralela

- 1.5.5. Conceito de amplificador operacional. Caraterísticas gerais Utilização como comparador e como amplificador
- 1.5.6. Circuitos amplificadores inversores e não inversores. Seguidores e retificadores de precisão. Controlo de corrente por tensão
- 1.5.7. Elementos para instrumentação e cálculo operativo: adicionadores, subtratores, amplificadores diferenciais, integradores e diferenciadores
- 1.5.8. Estabilidade e feedback: tabelas e disparadores
- 1.6. Amplificadores monofásicos e amplificadores multifase
 - 1.6.1. Conceitos gerais de polarização de dispositivos
 - 1.6.2. Circuitos e técnicas básicas de polarização. Implementação para transístores bipolares e de efeito de campo. Estabilidade, deriva e sensibilidade
 - 1.6.3. Configurações básicas de amplificação de pequeno sinal: transmissor-fonte, base-porta, coletor-ordenador comuns. Propriedades e variantes
 - 1.6.4. Desempenho contra grandes excursões de sinal e gama dinâmica
 - 1.6.5. Comutadores analógicos básicos e as suas propriedades
 - 1.6.6. Efeitos de frequência em configurações de uma só fase: caso de frequências médias e seus limites
 - 1.6.7. Amplificação multifase com acoplamento R-C e direto. Considerações de amplificação, gama de frequências, polarização e de gama dinâmica
- 1.7. Configurações básicas em circuitos integrados analógicos
 - 1.7.1. Configurações diferenciais de entrada. Teorema de Bartlett. Polarização, parâmetros e medidas
 - 1.7.2. Blocos funcionais de polarização: espelhos de corrente e suas modificações. Cargas ativas e alteradores de nível
 - 1.7.3. Configurações de entrada padrão e suas propriedades: transístor simples, pares Darlington e suas modificações, casco
 - 1.7.4. Configurações de saída
- .8. Filtros ativos
 - 1.8.1. Visão geral
 - 1.8.2. Generalidades
 - 1.8.3. Filtros passa baixo
 - 1.8.4. Filtros passa alto
 - 1.8.5. Filtros passe de banda e banda eliminada
 - 1.8.6. Outro tipo de filtros ativos

- 1.9. Conversores analógico-digitais (A/D)
 - 1.9.1. Introdução e funcionalidades
 - 1.9.2. Sistemas instrumentais
 - 1.9.3. Tipos de conversores
 - 1.9.4. Caraterísticas dos conversores
 - 1.9.5. Tratamento de dados
- 1.10. Sensores
 - 1.10.1. Sensores primários
 - 1.10.2. Sensores resistivos
 - 1.10.3. Sensores capacitivos
 - 1.10.4. Sensores indutivos e eletromagnéticos
 - 1.10.5. Sensores digitais
 - 1.10.6. Sensores geradores de sinal
 - 1.10.7. Outros tipos de sensores

Módulo 2. Eletrónica analógica e digital

- 2.1. Introdução: conceitos e parâmetros digitais
 - 2.1.1. Magnitudes analógicas e digitais
 - 2.1.2. Dígitos binários, níveis lógicos e formas de onda digitais
 - 2.1.3. Operações lógicas básicas
 - 2.1.4. Circuitos integrados
 - 2.1.5. Introdução lógica programável
 - 2.1.6. Instrumentos de medição
 - 2.1.7. Números decimais, binários, octais, hexadecimais, BCD
 - 2.1.8. Operações aritméticas com números
 - 2.1.9. Deteção de erros e códigos de correção
 - 2.1.10. Códigos alfanuméricos
- 2.2. Portas lógicas
 - 2.2.1. Introdução
 - 2.2.2. O inversor
 - 2.2.3. A porta AND
 - 2.2.4. A porta OR

tech 26 | Estrutura e conteúdo

2.5. Latches, Flip-Flops e Temporizadores

	2.2.5.	A porta NAND		2.5.1.	Conceitos básicos
	2.2.6.	A porta NOR		2.5.2.	Latches
	2.2.7.	Portas OR e NOR exclusiva		2.5.3.	Flip-flops disparados por flanco
	2.2.8.	Lógica programável		2.5.4.	Caraterísticas de funcionamento dos Flip-Flops
	2.2.9.	Lógica de função fixa			2.5.4.1. Tipo D
2.3.	Álgebra	de Boole			2.5.4.2. Tipo J-K
	2.3.1.	Operações e expressões booleanas		2.5.5.	Monoestáveis
	2.3.2.	Leis e regras da álgebra de Boole		2.5.6.	Astáveis
	2.3.3.	Teorema de DeMorgan		2.5.7.	O temporizador 555
	2.3.4.	Análise booleana dos circuitos lógicos		2.5.8.	Aplicações
	2.3.5.	Simplificação usando álgebra de Boole	2.6.	Contad	lores e registos de deslocação
	2.3.6.	Formas padrão de expressões booleanas		2.6.1.	Funcionamento de contador assíncrono
	2.3.7.	Expressões booleanas e tabelas de verdade		2.6.2.	Funcionamento de contador síncrono
	2.3.8.	Mapas de Karnaugh			2.6.2.1. Ascendente
	2.3.9.	Minimização de uma soma de produtos e minimização de um produto de somas			2.6.2.2. Descendente
2.4.	Circuito	s combinacionais básicos		2.6.3.	Desenho de contadores síncronos
	2.4.1.	Circuitos básicos		2.6.4.	Contadores em cascata
	2.4.2.	Implementação de lógica combinacional		2.6.5.	Descodificação de contadores
	2.4.3.	A propriedade universal das portas NAND e NOR		2.6.6.	Aplicação dos contadores
	2.4.4.	Lógica combinada com portas NAND e NOR		2.6.7.	Funções básicas dos registos de deslocação
	2.4.5.	Funcionamento de circuitos lógicos com comboios de impulsos			2.6.7.1. Registos de deslocação com entrada em série e saída paralela
	2.4.6.	Adders			2.6.7.2. Registos de deslocação com entrada em paralelo e saída em série
		2.4.6.1. Adders básicos			2.6.7.3. Registos de deslocação com entrada e saída em paralelo
		2.4.6.2. Adders binários em paralelo			2.6.7.4. Registos de deslocação bidirecionais
		2.4.6.3. Adders com transporte		2.6.8.	Contadores baseados em registos de deslocação
	2.4.7.	Comparadores		2.6.9.	Aplicações dos registos de contadores
	2.4.8.	Descodificadores	2.7.	Memór	rias, introdução ao SW e lógica programável
	2.4.9.	Codificadores		2.7.1.	Princípios das memórias semicondutoras
	2.4.10.	Conversores de código		2.7.2.	Memórias RAM
	2.4.11.	Multiplexadores		2.7.3.	Memórias ROM
	2.4.12.	Demultiplexadores			
	2.4.13.	Aplicações			

	2.7.3.1. De leitura apenas
	2.7.3.2. PROM
	2.7.3.3. EPROM
2.7.4.	Memória Flash
2.7.5.	Expansão de memórias
2.7.6.	Tipos especiais de memória
	2.7.6.1. FIFO
	2.7.6.2. LIFO
2.7.7.	Memórias óticas e magnéticas
2.7.8.	Lógica programável: SPLD e CPLD
2.7.9.	Macrocélulas
2.7.10.	Lógica programável: FPGA
2.7.11.	Software de lógica programável
2.7.12.	Aplicações
Eletróni	ca analógica: osciladores
2.8.1.	Teoria dos osciladores
2.8.2.	Oscilador em Ponte de Wien
2.8.3.	Outros osciladores RC
2.8.4.	Oscilador Colpitts
2.8.5.	Outros osciladores LC
2.8.6.	Oscilador de cristal
2.8.7.	Cristais de quartzo
2.8.8.	Temporizador 555
	2.8.8.1. Funcionamento como astável
	2.8.8.2. Funcionamento como monoestável
	2.8.8.3. Circuitos
2.8.9.	Diagramas de BODE
	2.8.9.1. Amplitude
	2.8.9.2. Fase
	2.8.9.3. Funções de transferência
Fletróni	ca de notência: tirístores, conversores, inversore

2.8.

2.9.1.	Introdução
2.9.2.	Conceito de conversor
2.9.3.	Tipos de conversores
2.9.4.	Parâmetros para caraterizar os conversores
	2.9.4.1. Sinal periódico
	2.9.4.2. Representação no domínio do tempo
	2.9.4.3. Representação no domínio da frequência
2.9.5.	Semicondutores de potência
	2.9.5.1. Elemento ideal
	2.9.5.2. Díodo
	2.9.5.3. Tirístor
	2.9.5.4. GTO (Gate Turn-off Thyristor)
	2.9.5.5. BJT (Bipolar Junction Transistor)
	2.9.5.6. MOSFET
	2.9.5.7. IGBT (Insulated Gate Bipolar Transistor)
2.9.6.	Conversores ca/cc. Retificadores
	2.9.6.1. Conceito de quadrante
	2.9.6.2. Retificadores não controlados
	2.9.6.2.1. Ponte simples de meia onda
	2.9.6.2.2. Ponte de onda completa
	2.9.6.3. Retificadores controlados
	2.9.6.3.1. Ponte simples de meia onda
	2.9.6.3.2. Ponte controlada de onda completa
	2.9.6.4. Conversores cc/cc
	2.9.6.4.1. Conversor cc/cc redutor
	2.9.6.4.2. Conversor cc/cc elevador
	2.9.6.5. Conversores cc/ca. Inversores
	2.9.6.5.1. Inversor de onda quadrada
	2.9.6.5.2. Inversor PWM
	2.9.6.6. Conversores ca/ca. Cicloconversores
	2.9.6.6.1. Controlo tudo/nada
	2.9.6.6.2. Controlo de fase

tech 28 | Estrutura e conteúdo

2.10.	Produça	ao de energia eletrica, instalação fotovoltaica. Legislação
	2.10.1.	Componentes de um sistema solar fotovoltaico
	2.10.2.	Introdução à energia solar
	2.10.3.	Classificação das instalações solares fotovoltaicas
		2.10.3.1. Aplicações autónomas
		2.10.3.2. Aplicações ligadas à rede
	2.10.4.	Elementos de uma ISF
		2.10.4.1. Célula solar: caraterísticas básicas
		2.10.4.2. O painel solar
		2.10.4.3. O regulador
		2.10.4.4. Acumuladores Tipos de baterias
		2.10.4.5. O inversor
	2.10.5.	Aplicações ligadas à rede
		2.10.5.1. Introdução
		2.10.5.2. Elementos de um sistema solar fotovoltaico ligado à rede
		2.10.5.3. Conceção e cálculo de instalações fotovoltaicas ligadas à rede
		2.10.5.4. Desenho de um jardim solar
		2.10.5.5. Conceção de instalações integradas em edifícios
		2.10.5.6. Interação da instalação com a rede elétrica
		2.10.5.7. Análise de possíveis perturbações e qualidade do abastecimento
		2.10.5.8. Medições dos consumos elétricos
		2.10.5.9. Segurança e proteções na instalação
		2.10.5.10. Normativa vigente
	2.10.6.	Legislação Energias Renováveis
Mód	ulo 3. S	inais aleatórios e sistemas lineares
3.1.	Teoria d	la probabilidade

3.1.1. Conceito de probabilidade. Espaço de probabilidade
3.1.2. Probabilidade condicional e eventos independentes
3.1.3. Teorema da probabilidade total. Teorema de Bayes
3.1.4. Experiências compostas. Ensaios de Bernoulli

3.2.	Variáveis aleatórias						
	3.2.1.	Definição de variável aleatória					
	3.2.2.	Distribuições de Probabilidade					
	3.2.3.	Principais distribuições					
	3.2.4.	Funções de variáveis aleatórias					
	3.2.5.	Momentos de uma variável aleatória					
	3.2.6.	Funções geratrizes					
3.3.	Vetores	Vetores aleatórios					
	3.3.1.	Definição de vetor aleatório					
	3.3.2.	Distribuição conjunta					
	3.3.3.	Distribuições marginais					
	3.3.4.	Distribuições condicionadas					
	3.3.5.	Relações linear entre duas variáveis					
	3.3.6.	Distribuição normal multivariante					
3.4.	Processos aleatórios						
	3.4.1.	Definição e descrição de processo aleatório					
	3.4.2.	Processos aleatórios em tempo discreto					
	3.4.3.	Processos aleatórios em tempo contínuo					
	3.4.4.	Processos estacionários					
	3.4.5.	Processos gaussianos					
	3.4.6.	Processos markovianos					
3.5.	Teoria	de filas de espera em telecomunicações					
	3.5.1.	Introdução					
	3.5.2.	Conceitos básicos					
	3.5.2.	Descrição de modelos					
	3.5.2.	Exemplo da aplicação da teoria de filas de espera nas telecomunicações					
3.6.	Proces	sos aleatórios Caraterísticas temporárias					
	3.6.1.	Conceito de processo aleatório					
	3.6.2.	Classificação de processos					
	3.6.3.	Principais estatísticos					

3.6.4. Estacionariedade e independência

3.6.5. Médias temporárias3.6.6. Ergodicidade

- 3.7. Processos aleatórios Caraterísticas espetrais
 - 3.7.1. Introdução
 - 3.7.2. Espectro de densidade de potência
 - 3.7.3. Propriedades da densidade espectral de potência
 - 3.7.3. Relações entre o espectro de potência e a autocorrelação
- 3.8. Sinais e sistemas. Propriedades
 - 3.8.1. Introdução aos sinais
 - 3.8.2. Introdução aos sistemas
 - 3.8.3. Propriedades básicas dos sistemas:
 - 3.8.3.1. Linearidade
 - 3.8.3.2. Invariância no tempo
 - 3.8.3.3. Causalidade
 - 3834 Estabilidade
 - 3.8.3.5. Memória
 - 3.8.3.6. Invertibilidade
- 3.9. Sistemas lineares com entradas aleatórias
 - 3.9.1. Fundamentos dos sistemas lineares
 - 3.9.2. Resposta dos sistemas lineares a sinais aleatórios
 - 3.9.3. Sistemas com ruído aleatório
 - 3.9.4. Caraterísticas espectrais da resposta do sistema
 - 3.9.5. Largura de banda e temperatura equivalente de ruído
 - 3.9.6. Modelação de fontes de ruído
- 3.10. Sistemas LTI
 - 3.10.1. Introdução
 - 3.10.2. Sistemas de LTI de tempo discreto
 - 3.10.3. Sistemas de LTI de tempo contínuo
 - 3.10.4. Propriedades dos sistemas LTI
 - 3.10.5. Sistemas descritos por equações diferenciais

Módulo 4. Redes de computadores

- 4.1. Redes de computadores na Internet
 - 4.1.1. Redes e Internet
 - 4.1.2. Arquitetura de protocolos
- 4.2. A camada de aplicação
 - 4.2.1. Modelo e protocolos
 - 4.2.2. Serviços FTP e SMTP
 - 4.2.3. Serviço DNS
 - 4.2.4. Modelo operacional HTTP
 - 4.2.5. Formatos de mensagens HTTP
 - 4.2.6. Interação com métodos avançados
- 4.3. A camada de transporte
 - 4.3.1. Comunicação entre processos
 - 4.3.2. Transporte orientado para a ligação: TCP e SCTP
- 4.4. A camada de rede
 - 4.4.1. Comutação de circuitos e pacotes
 - 4.4.2. O protocolo IP (v4 e v6)
 - 4.4.3. Algoritmos de roteamento
- 4.5. A camada de rede
 - 4.5.1. Técnicas de deteção e correção de erros e camada de ligação
 - 4.5.2. Ligações e protocolos de acesso múltiplo
 - 4.5.3. Direcionamento a nível de ligação
- 4.6. Redes LAN
 - 4.6.1. Topologias de rede
 - 4.6.2. Elementos de rede e interligação
- 4.7. Direcionamento IP
 - 4.7.1. Direcionamiento IP e Subnetting
 - 4.7.2. Visão geral: um pedido HTTP

tech 30 | Estrutura e conteúdo

4.8.	Redes s	sem fios e móveis				
	4.8.1.	Redes e serviços móveis 2G, 3G e 4G				
	4.8.2F	Redes, 5G				
4.9.	Segurança de redes					
	4.9.1.	Fundamentos da segurança das comunicações				
	4.9.2.	Controlo de acesso				
	4.9.3.	Segurança em sistemas				
	4.9.4.	Fundamentos da criptografia				
	4.9.5.	Assinatura digital				
4.10.	Protoco	los de segurança na Internet				
	4.10.1.	Segurança IP e redes privadas virtuais (VPNs)				
	4.10.2.	Segurança Web com SSL/TLS				
Mód	ulo 5. S	sistemas digitais				
5.1.	Conceit	os básicos e organização funcional do computador				
	5.1.1.	Conceitos básicos				
	5.1.2.	Estrutura funcional dos computadores				
	5.1.3.	Conceito de linguagem máquina				
	5.1.4.	Parâmetros básicos para a caraterização do desempenho de um computador				
	5.1.5.	Níveis concetuais de descrição de um computador				
	5.1.6.	Conclusões				
5.2.	Representação da informação ao nível de máquina					
	5.2.1.	Introdução				
	5.2.2.	Representação de textos				
		5.2.2.1. Código ASCII (American Standard Code for Information Interchange)				
		5.2.2.2. Código Unicode				
	5.2.3.	Representação de sons				
	5.2.4.	Representação de imagens				
		5.2.4.1. Mapas de bits				
		5.2.4.2. Mapas de vetores				

5.2.5.	Representação de vídeo
5.2.6.	Representação de dados numéricos
	5.2.6.1. Representação integral
	5.2.6.2. Representação de números reais
	5.2.6.2.1. Arredondamentos
	5.2.6.2.2. Situações especiais
5.2.7.	Conclusões
Esquer	na de funcionamento de um computador
5.3.1.	Introdução
5.3.2.	Elementos internos do processador
5.3.3.	Sequenciação do funcionamento interno de um computador
5.3.4.	Gestão das instruções de controlo
	5.3.4.1. Gestão das instruções de salto
	5.3.4.2. Gestão das instruções de chamada e retorno d subrotina
5.3.5.	As Interrupções
5.3.6.	Conclusões
Descriç	ão de um computador ao nível da linguagem máquina e montagem
5.4.1.	Introdução: processadores RISC vs CISC
5.4.2.	Um processador RISC: CODE-2
	5.4.2.1. Caraterísticas de CODE-2
	5.4.2.2. Descrição da linguagem máquina CODE-2
	5.4.2.3. Metodologia para a realização de programas em linguagem máquina de CODE-2
	5.4.2.4. Descrição da linguagem de montagem de CODE-2
5.4.3.	Uma família CISC: processadores Intel de 32 bits (IA-32)
	5.4.3.1. Evolução dos processadores da família Intel
	5.4.3.2. Estrutura básica da família de processadores 80×86
	5.4.3.3. Sintaxe, formato de instrução e tipos de operandos
	5.4.3.4. Repertório de instruções básico da família de processadores 80×86
	5.4.3.5. Diretivas de montagem e reserva de posições de memória
5.4.4.	Conclusões

5.3.

5.4.

- 5.5. Organização e desenho do processador
 - 5.5.1. Introdução ao desenho do processador de CODE-2
 - 5.5.2. Sinais de controlo do processador de CODE-2
 - 5.5.3. Desenho da unidade de tratamento de dados
 - 5.5.4. Desenho da unidade de controlo
 - 5.5.4.1. Unidades de controlo com cabo e microprogramadas
 - 5.5.4.2. Ciclo da unidade de controlo de CODE-2
 - 5.5.4.3. Desenho da unidade de controlo microprogramada de CODE-2
 - 5.5.5. Conclusões
- 5.6. Entradas e saídas: buses
 - 5.6.1. Organização de entradas/saídas
 - 5.6.1.1. Controladores de entrada/saída
 - 5.6.1.2. Direcionamento de portas de entrada/saída
 - 5.6.1.3. Técnicas de transferência de E/S.
 - 5.6.2. Estruturas básicas de interligação
 - 563 Buses
 - 5.6.4. Estrutura interna de um PC
- 5.7. Microcontroladores e PICs
 - 5.7.1. Introdução
 - 5.7.2 Caraterísticas básicas dos microcontroladores
 - 5.7.3. Caraterísticas básicas dos PICs
 - 5.7.4. Diferenças entre microcontroladores, PICs e microprocessadores
- 5.8. Conversores A/D e sensores
 - 5.8.1. Amostragem e reconstrução de sinais
 - 5.8.2. Conversores A/D
 - 5.8.3. Sensores e transdutores
 - 5.8.4. Processamento digital básico de sinais
 - 5.8.5. Circuitos e sistemas básicos para conversão A/D
- 5.9. Programação de um sistema microcontrolador
 - 5.9.1. Conceção e configuração eletrónica do sistema
 - 5.9.2. Configuração de um ambiente de desenvolvimento de sistemas digitais microcontrolados utilizando ferramentas livres

- 5.9.3. Descrição da linguagem utilizada pelo microcontrolador
- 5.9.4. Programação das funções do microcontrolador
- 5.9.5. Montagem final do sistema
- 5.10. Sistemas Digitais Avançados: FPGAs e DSPs
 - 5.10.1. Descrição de outros sistemas digitais avançados
 - 5.10.2. Caraterísticas básicas das FPGAs
 - 5.10.3. Caraterísticas básicas dos DSPs
 - 5.10.4. Línguas de descrição de Hardware

Módulo 6. Teoria da comunicação

- 6.1. Introdução Sistemas de telecomunicação e sistemas de transmissão
 - 6.1.1. Introdução
 - 6.1.2. Conceitos básicos e história
 - 6.1.3. Sistemas de telecomunicações
 - 6.1.4. Sistemas de transmissão
- 6.2. Caraterização de sinais
 - 6.2.1. Sinal determinista, aleatório
 - 6.2.2. Sinal periódico e não periódico
 - 6.2.3. Sinal de energia ou de potência
 - 6.2.4. Sinal de banda base e passa-banda
 - 6.2.5. Parâmetros básicos de um sinal
 - 6.2.5.1. Valor médio
 - 6.2.5.2. Energia e potência média
 - 6.2.5.3. Valor máximo e valor eficaz
 - 6.2.5.4. Densidade espectral de energia e de potência
 - 6.2.5.5. Cálculo de potência em unidades logarítmicas
- 6.3. Perturbações nos sistemas de transmissão
 - 6.3.1. Transmissão por canais ideais
 - 6.3.2. Classificação das perturbações
 - 6.3.3. Distorção linear
 - 6.3.4. Distorção não linear

tech 32 | Estrutura e conteúdo

	6.3.5.	Crosstalk e interferência		6.5.5.	Modulação Banda Lateral Vestigial (BLV)
	6.3.6.	3.6. Ruído			6.5.5.1. Caracterização
		6.3.6.1. Tipos de ruído			6.5.5.2. Parâmetros
		6.3.6.2. Caraterização			6.5.5.3. Modulação/demodulação
	6.3.7.	Sinais passa-banda de banda estreita		6.5.6.	Modulação de Amplitude em Quadratura (QAM)
6.4.	Comun	icações analógicas. Conceitos			6.5.6.1. Caraterização
	6.4.1.	Introdução			6.5.6.2. Parâmetros
	6.4.2.	Conceitos gerais			6.5.6.3. Modulação/demodulação
	6.4.3.	4.3. Transmissão banda base			Ruído nas modulações analógicas
		6.4.3.1. Modulação e demodulação			6.5.7.1. Abordagem
		6.4.3.2. Caraterização			6.5.7.2. Ruido em DBL
		6.4.3.3. Multiplexação			6.5.7.3. Ruido em BLU
	6.4.4.	Misturadores			6.5.7.4. Ruido em AM
	6.4.5.	.5. Caracterização 6.6		Comur	nicações analógicas. Modulações angulares
	6.4.6.	Tipo de misturadores		6.6.1.	Modulação de fase e frequência
6.5.	Comunicações analógicas. Modulações lineares			6.6.2.	Modulação Angular de banda estreita
	6.5.1.	Conceitos básicos		6.6.3.	Cálculo do espectro
	6.5.2.	Modulação em amplitude (AM)		6.6.4.	Geração e demodulação
		6.5.2.1. Caracterização		6.6.5.	Demodulação angular com ruído
		6.5.2.2. Parâmetros		6.6.6.	Ruído em PM
		6.5.2.3. Modulação/demodulação		6.6.7.	Ruído em FM
	6.5.3.	Modulação Dupla Banda Lateral (DBL)		6.6.8.	Comparação entre modulações analógicas
		6.5.3.1. Caraterização	6.7.	Comur	nicações Digitais Introdução Modelos de transmissão
		6.5.3.2. Parâmetros		6.7.1.	Introdução
		6.5.3.3. Modulação/demodulação		6.7.2.	Parâmetros fundamentais
	6.5.4.	Modulação Banda Lateral Única (BLU)		6.7.3.	Vantagens dos sistemas digitais
		6.5.4.1. Caracterização		6.7.4.	Limitações dos sistemas digitais
		6.5.4.2. Parâmetros		6.7.5.	Sistemas PCM
		6.5.4.3. Modulação/demodulação		6.7.6.	Modulações nos sistemas digitais
				6.7.7.	Demodulações nos sistemas digitais

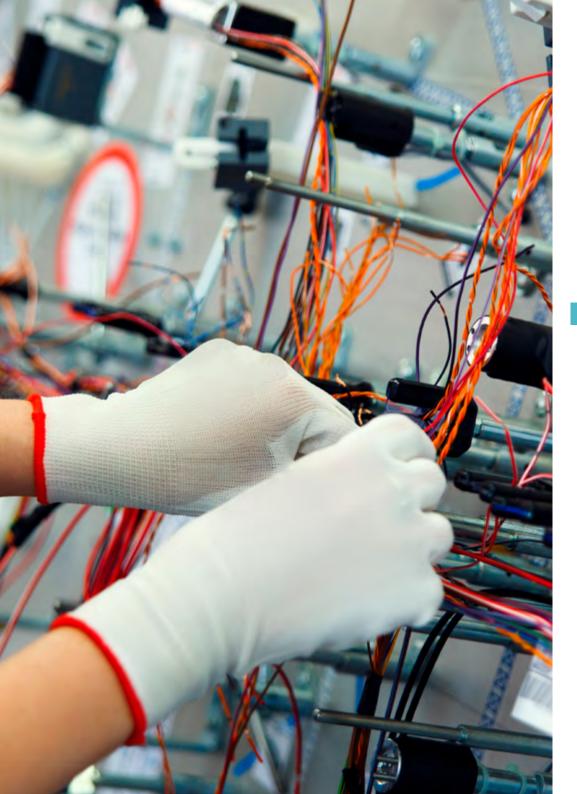
Comunicações digitais. Transmissão digital Banda Base 6.8.1. Sistemas PAM Binários 6.8.1.1. Caraterização 6.8.1.2. Parâmetros dos sinais 6.8.1.3. Modelo espectral 6.8.2. Recetor binário de amostragem básica 6.8.2.1. NRZ bipolar 6.8.2.2. RZ bipolar 6.8.2.3. Probabilidade de Erro 6.8.3. Recetor binário ótimo 6831 Contexto 6.8.3.2. Cálculo da Probabilidade de erro 6 8 3 3 Desenho do filtro do recetor ótimo 6.8.3.4. Cálculo SNR 6.8.3.5. Prestações 6.8.3.6. Caraterização 6.8.4. Sistemas M-PAM 6.8.4.1. Parâmetros 6.8.4.2. Constelações 6.8.4.3. Recetor ótimo 6.8.4.4. Probabilidade de Erro de bit (BER) 6.8.5. Espaço vetorial de sinais 6.8.6. Constelação de uma modulação digital 6.8.7. Recetores de M-sinais Comunicações Digitais. Transmissão Digital Banda Passante. Modulações digitais 6.9.1. Introdução 6.9.2. Modulação ASK 6.9.2.1. Caracterização

6.9.2.2. Parâmetros

6.9.2.3. Modulação/demodulação

6.9.3. Modulação QAM 6.9.3.1. Caracterização 6.9.3.2. Parâmetros 6.9.3.3. Modulação/demodulação 6.9.4. Modulação PSK 6.9.4.1. Caracterização 6.9.4.2. Parâmetros 6.9.4.3. Modulação/demodulação 6.9.5. Modulação FSK 6.9.5.1. Caracterização 6952 Parâmetros 6.9.5.3. Modulação/demodulação 6.9.6. Outras modulações digitais Comparação entre modulações digitais 6.10. Comunicações digitais. Comparação, IES, diagrama e olhos 6.10.1. Comparação de modulações digitais 6.10.1.1. Energia e potência das modulações 6.10.1.2. Envolvente 6.10.1.3. Proteção contra o ruído 6.10.1.4. Modelo espectral 6.10.1.5. Técnicas de codificação do canal 6.10.1.6. Sinais de sincronização 6.10.1.7. Probabilidade de erro de símbolo de SNR 6.10.2. Canais de largura de banda limitada 6.10.3. Interferência entre Símbolos (IES) 6.10.3.1. Caracterização 6.10.3.2. Limitações 6.10.4. Recetor ótimo em PAM sem IES

6.10.5. Diagramas de olhos


tech 34 | Estrutura e conteúdo

Módulo 7. Redes de comutação e infraestruturas de telecomunicação

- 7.1. Introdução às redes de comutação
 - 7.1.1. Técnicas de comutação
 - 7.1.2. Redes de área local LAN
 - 7.1.3. Revisão de topologias e meios de transmissão
 - 7.1.4. Conceitos básicos de transferência
 - 7.1.5. Métodos de acesso ao meio
 - 7.1.6. Equipamento de interligação de redes
- 7.2. Técnicas de comutação e estrutura de comutadores. Redes RDSI e FR
 - 7.2.1. Redes comutadas
 - 7.2.2. Redes de comutação de circuitos
 - 7.2.3. RDSI
 - 7.2.4. Redes de comutação de pacotes
 - 7.2.5. FR
- 7.3. Parâmetros de tráfego e dimensionamento de rede
 - 7.3.1. Conceitos fundamentais de tráfego
 - 7.3.2. Sistemas de perdas
 - 7.3.3. Sistemas de espera
 - 7.3.4. Exemplos de sistemas de modelação de tráfego
- 7.4. Qualidade de serviço e algoritmos de gestão do tráfego
 - 7.4.1. Qualidade de serviço
 - 7.4.2. Efeitos da congestão
 - 7.4.3. Controlo de congestão
 - 7.4.4. Controlo de tráfico
 - 7.4.5. Algoritmos de gestão de tráfego
- 7.5. Redes de acesso: tecnologias de acesso a redes WAN
 - 7.5.1. Redes de área ampla
 - 7.5.2. Tecnologias de acesso a redes WAN
 - 7.5.3. Acessos xDSL
 - 7 5 4 Acessos FTTH

- 7.6. ATM: Modo de transferência assíncrona
 - 7.6.1. Serviço ATM
 - 7.6.2. Arquitetura de protocolos
 - 7.6.3. Conexões lógicas ATM
 - 7.6.4. Células ATM
 - 7.6.5. Transmissão de células ATM
 - 7.6.6. Classes de serviços ATM
- 7.7. MPLS: Comutação de etiqueta multiprotocolo
 - 7.7.1. Introdução MPLS
 - 7.7.2. Operação de MPLS
 - 7.7.3. Etiquetas
 - 7.7.4. VPNs
- 7.8. Projeto de implementação de uma rede telemática
 - 7.8.1. Obtenção da Informação
 - 7.8.2. Planificação
 - 7.8.2.1. Dimensionamento do sistema
 - 7.8.2.2. Planos e esquemas do local de instalação
 - 7.8.3. Especificações técnicas de conceção
 - 7.8.4. Execução e implantação da rede
- 7.9. Cablagem estruturada. Caso prático
 - 7.9.1. Introdução
 - 7.9.2. Organismos e normas de cablagem estruturada
 - 7.9.3. Meios de transmissão
 - 7.9.4. Cablagem estruturada
 - 7.9.5. Interface física
 - 7.9.6. Partes de uma cablagem estruturada (horizontal e vertical)
 - 7.9.7. Sistema de identificação
 - 7.9.8. Caso prático

- 7.10. Planeamento de infraestruturas comuns de telecomunicações
 - 7.10.1. Introdução ICT

7.10.1.2. Normativa ICT

7.10.2. Recintos e canalizações

7.10.2.1. Zona exterior

7.10.2.2. Zona comum

7.10.2.3. Zona privada

7.10.3. Redes de distribuição de ICT

7.10.4. Projeto técnico

Módulo 8. Redes de comunicações móveis

- 3.1. Introdução redes de comunicações móveis
 - 8.1.1. Redes de comunicações
 - 8.1.2. Classificação de redes de comunicações
 - 8.1.3. O espectro radioelétrico
 - 8.1.4. Sistemas de radiotelefonia
 - 8.1.5. Tecnologia celular
 - 8.1.6. Evolução dos sistemas de telefonia móvel
- 8.2. Protocolos e arquitetura
 - 8.2.1. Revisão do conceito de protocolo
 - 8.2.2. Revisão do conceito de arquitetura de comunicação
 - 8.2.3. Revisão modelo OSI
 - 8.2.4. Revisão arquitetura dos protocolos TCP/IP
 - 8.2.5. Estrutura numa rede de telefonia móvel
- 8.3. Princípios de comunicações móveis
 - 8.3.1. Radiação e tipos de antenas
 - 8.3.2. Reutilização de frequências
 - 8.3.3. Propagação de sinais
 - 8.3.4. Roaming e transferência
 - 8.3.5. Técnicas de acesso múltiplo
 - 8.3.6. Sistemas analógicos e digitais
 - 8.3.7. Portabilidade

tech 36 | Estrutura e conteúdo

8.4.	Revisã	o redes GSM: caraterísticas técnicas, arquitetura e interfaces				
		Sistemas GSM				
	8.4.2.	Caraterísticas técnicas de GSM				
	8.4.3.	Arquitetura de uma rede GSM				
		Estruturas de canais em GSM				
		Interfaces de GSM				
8.5.	Revisão protocolos GSM e GPRS					
		Introdução				
	8.5.2.	Protocolos de GSM				
	8.5.3.	Evolução de GSM				
		GPRS				
8.6.	Sistem	Sistema UMTS. Caraterísticas técnicas, arquitetura e HSPA				
	8.6.1.	Introdução				
	8.6.2.	Sistemas UMTS				
	8.6.3.	Caraterísticas técnicas de UMTS				
	8.6.4.	Arquitetura de uma rede UMTS				
	8.6.5.	HSPA				
8.7.	Sistema UMTS. Protocolos, interfaces e VoIP					
	8.7.1.	Introdução				
	8.7.2.	Estruturas de canais em UMTS				
	8.7.3.	Protocolos de UMTS				
	8.7.4.	Interfaces de UMTS				
	8.7.5.	VoIP e IMS				
8.8.	VoIP: Modelos de tráfego para telefonia IP					
	8.8.1.	Introdução VoIP				
	8.8.2.	Protocolos				
	8.8.3.	Elementos VoIP				
	8.8.4.	Transporte VoIP em tempo real				

8.8.5. Modelos de tráfego de voz embalada

- 8.9. Sistema LTE. Caraterísticas técnicas e arquitetura. CS fallback
 - 8.9.1. Sistemas LTE
 - 8.9.2. Caraterísticas técnicas de LTE
 - 8.9.3. Arquitetura de uma rede LTE
 - 8.9.4. Estruturas de canais em LTE
 - 8.9.5. Chamadas em LTE: VoLGA, CS FB e VoLTE
- 8.10. Sistemas LTE Interfaces, protocolos e serviços
 - 8.10.1. Introdução
 - 8.10.2. Interfaces de LTE
 - 8.10.3. Protocolos de LTE
 - 8.10.4. Serviços em LTE

Módulo 9. Redes e serviços de rádio

- 9.1. Técnicas básicas em redes de rádio
 - 9.1.1. Introdução às redes rádio
 - 9.1.2. Fundamentos básicos
 - 9.1.3. Técnicas de Acesso Múltiplo (MAC): Acesso Aleatório (RA). MF-TDMA, CDMA, OFDMA
 - 9.1.4. Otimização da ligação Rádio: Fundamentos de Técnicas de Controlo de Ligações (LLC). HARQ. MIMO
- 9.2. O espectro radioelétrico
 - 9.2.1. Definição
 - 9.2.2. Nomenclatura de bandas de frequência de acordo com a UIT-R
 - 9.2.3. Outras nomenclaturas para bandas de frequência
 - 9.2.4. Divisão do espectro radioelétrico
 - 9.2.5. Tipos de radiação eletromagnética
- 9.3. Sistemas e serviços de radiocomunicação
 - 9.3.1. Conversão e processamento de sinais: modulações analógicas e digitais
 - 9.3.2. Transmissão do sinal digital
 - 9.3.3. Sistema de rádio digital DAB, IBOC, DRM y DRM+

Estrutura e conteúdo | 37 tech

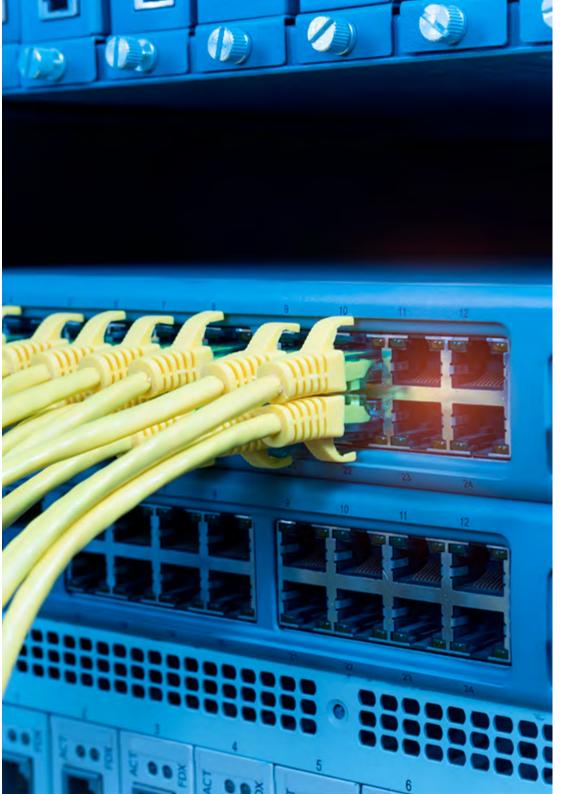
				^ .
9.3.4. Re	ides de	comunicação	nor radiotre	quencia

- 9.3.5. Configuração de instalações fixas e unidades móveis
- 9.3.6. Estrutura de um centro de transmissão de radiofrequência fixo e móvel
- 9.3.7. Instalação de sistemas de transmissão de sinais de rádio e televisão
- 9.3.8. Verificação do funcionamento de sistemas de emissão e transmissão
- 9.3.9. Manutenção de sistemas de transmissão
- 9.4. Multicast e QoS de extremo a extremo
 - 9.4.1. Introdução
 - 9.4.2. Multicast IP em redes rádio
 - 9.4.3. Delay/Disruption Tolerant networking (DTN). 6
 - 9.4.4. Qualidade de Serviço E-to-E:
 - 9.4.4.1. Impacto das redes rádio na E-to-E QoS
 - 9.4.4.2. TCP em redes rádio
- 9.5. Redes sem fios de área local WLAN
 - 9.5.1. Introdução às WLAN
 - 9.5.1.1. Princípios das WLAN
 - 9.5.1.1.1. Como trabalham
 - 9.5.1.1.2. Bandas de freguência
 - 9.5.1.1.3. Segurança
 - 9.5.1.2. Aplicações
 - 9.5.1.3. Comparação entre WLAN e LAN com cabo
 - 9.5.1.4. Efeitos da radiação na saúde
 - 9.5.1.5. Normalização e padronização da tecnologia WLAN
 - 9.5.1.6. Topologia e configurações
 - 9.5.1.6.1. Configuração Peer-to-Peer (Ad-Hoc)
 - 9.5.1.6.2. Configuração em modo ponto de acesso
 - 9.5.1.6.3. Outras configurações: interconexão de redes

9.5.2. O padrão IEEE 802.11 - WI-FI 9.5.2.1. Arquitetura 9.5.2.2. Camadas do IEEE 802.11. 9.5.2.2.1. A camada física 9.5.2.2. A camada de ligação (MAC) 9.5.2.3. Operação básica numa WLAN 9.5.2.4. Atribuição do espectro radioelétrico 9.5.2.5. Variantes do IEEE 802.11. 9.5.3. O padrão HiperLAN 9.5.3.1. Modelos de referência 9.5.3.2. HiperLAN/1 9.5.3.3. HiperLAN/2 9.5.3.4. Comparação de HiperLAN com 802.11a Redes sem fios de área metropolitana (WMAN) e redes sem fios de área ampla (WWAN) 9.6.1. Introdução a WMAN. Características 9.6.2. WiMAX. Caraterísticas e diagrama 9.6.3. Redes sem fios de área ampla (WWAN). Introdução 9.6.4. Rede móvel e de satélite Redes sem fios de área pessoal WPAN 9.7.1. Evolução e tecnologias 9.7.2. Bluetooth 9.7.3. Redes pessoais e de sensores 9.7.4. Perfis e aplicações Redes de acesso rádio terrestre 9.8.1. Evolução dos acessos rádio terrestre: WiMAX, 3GPP 9.8.2. Acesso à 4ª Geração. Introdução 9.8.3. Recursos rádio e capacidade 9.8.4. Portadores Rádio LTE. MAC, RLC e RRC Comunicações via satélite 9.9.1. Introdução 9.9.2. História das comunicações por satélite 9.9.3. Estrutura de um sistema de comunicação por satélite 9.9.3.1. O segmento especial

9.9.3.2. O centro de controlo 9.9.3.3. O segmento terreno 9.9.4. Tipos de satélite 9.9.4.1. Por objetivo 9.9.4.2. De acordo com a sua órbita 9.9.5. Bandas de freguência 9.10. Planeamento e regulação de sistemas e serviços de rádio 9.10.1. Terminologia e caraterísticas técnicas 9.10.2. Frequências 9.10.3. Coordenação, notificação e inscrição de atribuições de frequência e modificação de Planos 9.10.4. Interferências 9.10.5. Disposições administrativas 9.10.6. Disposições relativas aos serviços e estações **Módulo 10.** Engenharia de sistemas e serviços de rede 10.1. Introdução à Engenharia de sistemas e serviços de rede 10.1.1. Conceito de sistema informático e engenharia informática 10.1.2. O software e as suas caraterísticas 10.1.2.1. Caraterísticas do software 10.1.3. A evolução do software 10.1.3.1. O alvorecer do desenvolvimento do software 10.1.3.2. A crise de software 10.1.3.3. Engenharia do software 10.1.3.4. A tragédia do software 10.1.3.5. A atualidade do software 10.1.4. Os mitos do software 10.1.5. Os novos desafios do software 10.1.6. Deontologia profissional da engenharia do software 10.1.7. SWEBOK. O Corpo de Conhecimentos da Engenharia de Software 10.2. O processo de desenvolvimento

10.2.1. Processo para a resolução de problemas


- 10.2.2. O processo de desenvolvimento do software
- 10.2.3. Processo de software face ao ciclo de vida
- 10.2.4. Ciclo de vida. Modelo de processo (tradicionais)
 - 10.2.4.1. Modelo em cascata
 - 10.2.4.2. Modelos baseados em protótipos
 - 10.2.4.3. Modelo de desenvolvimento incremental
 - 10.2.4.4. Desenvolvimento rápido de aplicações (RAD)
 - 10.2.4.5. Modelo em espiral
 - 10.2.4.6. Processo unificado de desenvolvimento ou processo de racional (RUP)
 - 10.2.4.7. Desenvolvimento de software baseado em componentes
- 10.2.5. O manifesto ágil. Os métodos ágeis
 - 10.2.5.1. Extreme Programming (XP)
 - 10 2 5 2 Scrum
 - 10.2.5.3. Feature Driven Development (FDD)
- 10.2.6. Padrões sobre o processo software
- 10.2.7. Definição de processo software
- 10.2.8. Maturidade do processo software
- 10.3. Planeamento e gestão de projetos ágeis
 - 10.3.1. O que é Ágil
 - 10.3.1.1. História de Ágil
 - 10.3.1.2. Manifesto Ágil
 - 10.3.2. Fundamentos de Ágil
 - 10.3.2.1. A mentalidade Ágil
 - 10.3.2.2. A adequação a Ágile
 - 10.3.2.3. Ciclo de vida do desenvolvimento de produtos
 - 10.3.2.4. O "Triângulo de ferro"
 - 10.3.2.5 Trabalhar com incerteza e volatilidade.
 - 10.3.2.6. Processos definidos e processos empíricos
 - 10.3.2.7. Os mitos de Ágil
 - 10.3.3. O ambiente Ágil
 - 10.3.3.1. Modelo operativo

- 10.3.3.2. Funções Ágil
- 10.3.3.3. Técnicas Ágil
- 10.3.3.4. Práticas Ágil
- 10.3.4. Marcos de trabalho Ágil
 - 10.3.4.1. Extreme Programming (XP)
 - 10.3.4.2. Scrum
 - 10.3.4.3. Dynamic Systems Development Method (DSDM)
 - 10.3.4.4. Agile Project Management
 - 10.3.4.5. Kanban
 - 10.3.4.6. Lean software Development
 - 10.3.4.7. Lean Start-up
 - 10.3.4.8. Scaled Agile Framework (SAFe)
- 10.4. Gestão de configuração e repositórios colaborativos
 - 10.4.1. Noções básicas de gestão de configuração do software
 - 10.4.1.1. Noções básicas de gestão de configuração do software?
 - 10.4.1.2. Configuração do software e elementos da configuração do software
 - 10.4.1.3. Linhas base
 - 10.4.1.4. Versões, revisões, variantes e Releases
 - 10.4.2. Atividades de gestão de configuração
 - 10.4.2.1. Identificação da configuração
 - 10.4.2.2. Controlo de mudanças na configuração
 - 10.4.2.3. Geração de relatórios de estado
 - 10.4.2.4. Auditoria da configuração
 - 10.4.3. O plano de gestão de configuração
 - 10.4.4. Ferramentas de gestão de configuração
 - 10.4.5. A gestão de configuração na metodologia Métrica v.3
 - 10.4.6. A gestão de configuração em SWEBOK
- 10.5. Teste de sistemas e serviços
 - 10.5.1. Conceitos gerais do teste

tech 40 | Estrutura e conteúdo

10.5.1.1. Verificar e validar 10.5.1.2. Definição de teste 10.5.1.3. Princípios dos testes 10.5.2. Abordagens dos testes 10.5.2.1. Testes de caixa branca 10.5.2.2. Testes de caixa negra 10.5.3. Testes estáticos ou revisões 10.5.3.1. Revisões técnicas formais 10.5.3.2. Walkthroughs 10.5.3.3. Inspeções de código 10.5.4 Testes dinâmicos 10.5.4.1. Testes de unidade ou unitários 10.5.4.2. Testes de integração 10.5.4.3. Testes do sistema 10.5.4.4. Testes de aceitação 10.5.4.5. Testes de regressão 10.5.5. Testes alfa e testes beta 10.5.6. O processo de teste 10.5.7. Erro, defeito e falha 10.5.8 Ferramentas de teste automático 10.5.8.1. Junit 10.5.8.2 LoadRunner 10.6. Modelação e desenho de arquiteturas de rede 10.6.1. Introdução 10.6.2. Caraterísticas dos sistemas 10.6.2.1. Descrição dos sistemas 10.6.2.2. Descrição e caraterísticas dos serviços 1.3. Requisitos de desempenho 10.6.2.3. Requisitos de operacionalidade 10.6.3. Análise de requisitos 10.6.3.1. Requisitos de utilizador

10.6.3.2. Requisitos de aplicações 10.6.3.3. Requisitos de rede 10.6.4. Desenho de arquiteturas de rede 10.6.4.1. Arquitetura de referência e componentes 10.6.4.2. Modelos de arquitetura 10.6.4.3. Arquiteturas de sistemas e de rede 10.7. Modelação e conceção de sistemas distribuídos 10.7.1. Introdução 10.7.2. Arguitetura de direcionamento e Routing 10.7.2.1. Estratégia de direcionamento 10.7.2.2. Estratégia de encaminhamento 10.7.2.3. Considerações de design 10.7.3. Conceitos de Desenho de redes 10.7.4 Processo de desenho 10.8. Plataformas e ambientes de implantação 10.8.1. Introdução 10.8.2. Sistemas de computadores distribuídos 10.8.2.1. Conceitos básicos 10.8.2.2. Modelos de computação 10.8.2.3. Vantagens, desvantagens e desafios 10.8.2.4. Noções básicas de sistemas operativos 10.8.3. Implementações de redes virtualizadas 10.8.3.1. Necessidade de mudança 10.8.3.2. Transformação das redes: de "all-IP" para a nuvem 10.8.3.3. Implementação de redes na nuvem 10.8.4. Exemplo: Arquitetura de rede em Azure 10.9. Prestações E2E: atraso e largura de banda. QoS 10.9.1. Introdução

Estrutura e conteúdo | 41 tech

10.9.2. Análise de desempenho

10.9.3. QoS

10.9.4. Priorização e gestão de tráfego

10.9.5. Acordos de nível de serviço

10.9.6. Considerações de desenho

10.9.6.1. Avaliação do desempenho

10.9.6.2. Relações e interações

10.10. Automatização e otimização de rede

10.10.1. Introdução

10.10.2. Gestão de rede

10.10.2.1. Protocolos de gestão e configuração

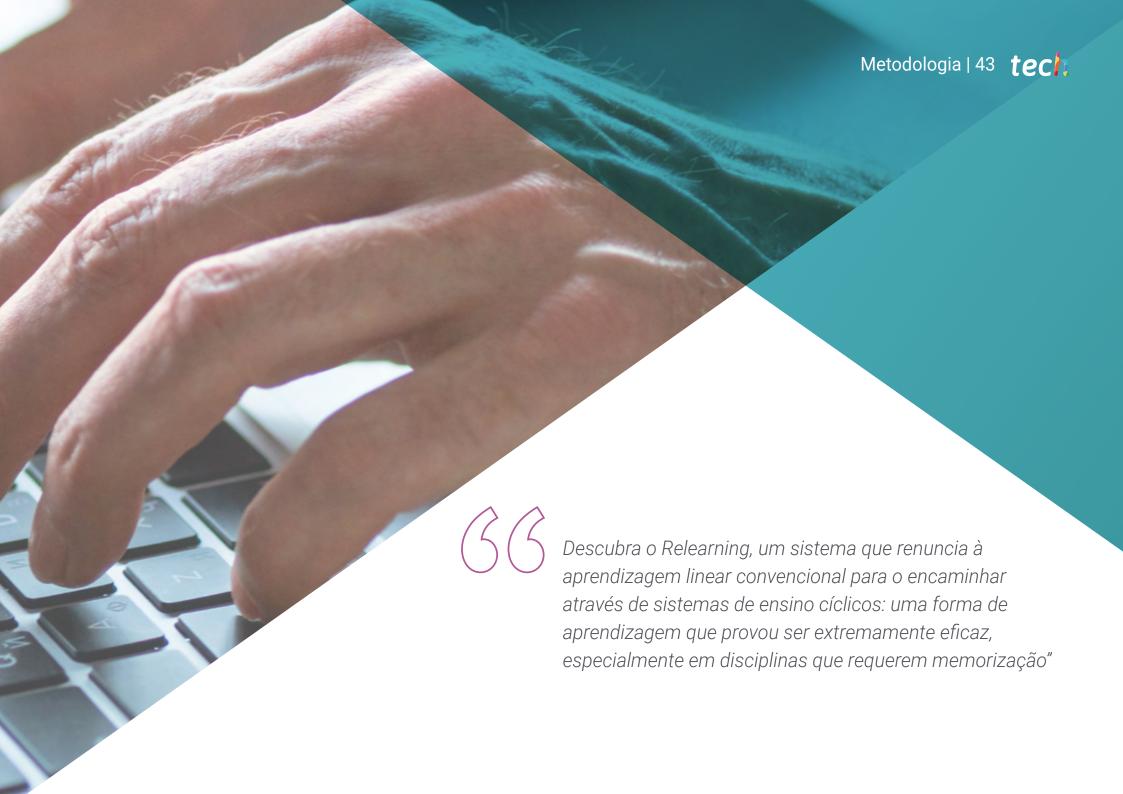
10.10.2.2. Arquiteturas de gestão de rede

10.10.3. Orquestração e automatização

10.10.3.1. Arquitetura ONAP

10.10.3.2. Controladores e funções

10.10.3.3. Políticas


10.10.3.4. Inventário de rede

10.10.4. Otimização

Esta capacitação permitir-lhe-á progredir na sua carreira profissional de forma cómoda"

Casos práticos para contextualizar todo o conteúdo

O nosso programa oferece um método revolucionário de desenvolvimento de competências e conhecimentos. O nosso objetivo é reforçar as competências num contexto de mudança, competitivo e altamente exigente.

Com a TECH poderá experimentar uma forma de aprendizagem que abala as bases das universidades tradicionais em todo o mundo"

Terá acesso a um sistema de aprendizagem baseado na repetição, com ensino natural e progressivo ao longo de todo o programa.

O aluno aprenderá, através de atividades de colaboração e casos reais, a resolução de situações complexas em ambientes empresariais reais.

Um método de aprendizagem inovador e diferente

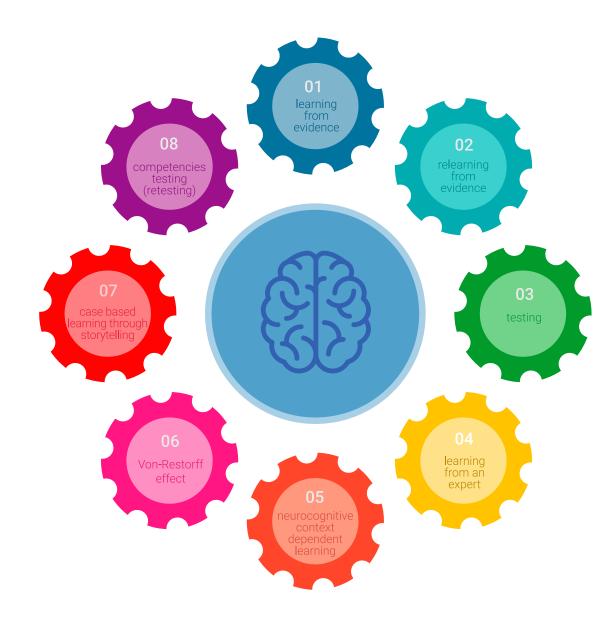
Este curso da TECH é um programa de ensino intensivo, criado de raiz, que propõe os desafios e decisões mais exigentes neste campo, tanto a nível nacional como internacional. Graças a esta metodologia, o crescimento pessoal e profissional é impulsionado, dando um passo decisivo para o sucesso. O método do caso, técnica que constitui a base deste conteúdo, assegura que a realidade económica, social e profissional mais atual seja seguida.

O nosso programa prepara-o para enfrentar novos desafios em ambientes incertos e alcançar o sucesso na sua carreira.

O método do caso tem sido o sistema de aprendizagem mais amplamente utilizado nas melhores escolas de Informática do mundo desde que estas existem. Desenvolvido em 1912 para que os estudantes de direito não aprendessem apenas o direito com base no conteúdo teórico, o método do caso consistia em apresentar-lhes situações verdadeiramente complexas, a fim de tomarem decisões informadas e valorizarem juízos sobre a forma de as resolver. Em 1924 foi estabelecido como um método de ensino padrão em Harvard.

Numa dada situação, o que deve fazer um profissional? Esta é a questão que enfrentamos no método do caso, um método de aprendizagem orientado para a ação. Ao longo do curso, os estudantes serão confrontados com múltiplos casos da vida real. Terão de integrar todo o seu conhecimento, investigar, argumentar e defender as suas ideias e decisões

Relearning Methodology


A TECH combina eficazmente a metodologia do Estudo de Caso com um sistema de aprendizagem 100% online baseado na repetição, que combina elementos didáticos diferentes em cada lição.

Potenciamos os Casos Práticos com o melhor método de ensino 100% online: o Relearning.

Em 2019 alcançámos os melhores resultados de aprendizagem de todas as universidades online de língua espanhola do mundo.

Na TECH aprenderá com uma metodologia de vanguarda concebida para formar os gestores do futuro. Este método, pioneiro na pedagogia mundial, chama-se Relearning.

A nossa universidade é a única licenciada para utilizar este método de sucesso. Em 2019, conseguimos melhorar os níveis globais de satisfação dos nossos estudantes (qualidade de ensino, qualidade dos materiais, estrutura dos cursos, objetivos...) no que diz respeito aos indicadores da melhor universidade online em espanhol.

Metodologia | 47 tech

No nosso programa, a aprendizagem não é um processo linear, mas acontece numa espiral (aprender, desaprender, esquecer e reaprender). Por isso, combinamos cada um destes elementos de forma concêntrica. Com esta metodologia formamos mais de 650.000 alunos com um sucesso sem precedentes em áreas tão diversas como Bioquímica, Genética, Cirurgia, Direito Internacional, Competências de Gestão, Ciências Desportivas, Filosofia, Direito, Engenharias, Jornalismo, História ou Mercados e Instrumentos Financeiros. Tudo isto num ambiente altamente exigente, com um corpo estudantil universitário com um elevado perfil socioeconómico e uma idade média de 43,5 anos.

A reaprendizagem permitir-lhe-á aprender com menos esforço e mais desempenho, envolvendo-o mais na sua capacitação, desenvolvendo um espírito crítico, defendendo argumentos e opiniões contrastantes: uma equação direta rumo ao sucesso.

A partir das últimas provas científicas no campo da neurociência, não só sabemos como organizar informação, ideias, imagens e memórias, mas sabemos que o lugar e o contexto em que aprendemos algo é fundamental para a nossa capacidade de o recordar e armazenar no hipocampo, para o reter na nossa memória a longo prazo.

Desta forma, e no que se chama Neurocognitive context-dependent e-learning, os diferentes elementos do nosso programa estão ligados ao contexto em que o participante desenvolve a sua prática profissional.

Este programa oferece o melhor material educacional, cuidadosamente preparado para profissionais:

Material de estudo

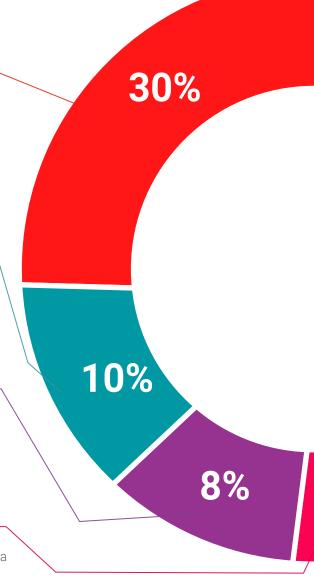
Todos os conteúdos didáticos são criados pelos especialistas que irão ministrar o curso, em específico para o mesmo, para que o desenvolvimento didático seja realmente específico e concreto.

Estes conteúdos são então aplicados em formato audiovisual, para criar o método de trabalho online da TECH. Tudo isto, com as mais recentes técnicas que oferecem componentes de alta qualidade em cada um dos materiais que são colocados à disposição do aluno.

Masterclasses

Existem provas científicas acerca da utilidade da observação por terceiros especialistas.

O que se designa de Learning from an Expert fortalece o conhecimento e a recordação, e constrói a confiança em futuras decisões difíceis.


Estágios de aptidões e competências

Exercerão atividades para desenvolver competências e aptidões específicas em cada área temática. Práticas e dinâmicas para adquirir e desenvolver as competências e capacidades que um especialista deve desenvolver no quadro da globalização em que vivemos.

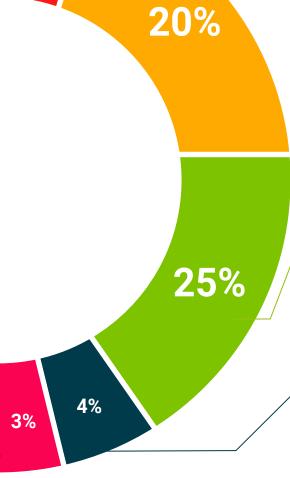
Leituras complementares

Artigos recentes, documentos de consenso e guias internacionais, entre outros. Na biblioteca virtual da TECH, o aluno terá acesso a tudo o que precisa para completar a sua formação.

Completarão uma seleção dos melhores estudos de caso escolhidos especificamente para esta licenciatura. Casos apresentados, analisados e instruídos pelos melhores especialistas do panorama internacional.

Resumos interativos

A equipa da TECH apresenta os conteúdos de forma atrativa e dinâmica em conteúdos multimédia que incluem áudios, vídeos, imagens, diagramas e mapas conceituais, a fim de reforçar o conhecimento.



Este sistema educativo único para a apresentação de conteúdos multimédia foi premiado pela Microsoft como um "Caso de Sucesso Europeu".

Testing & Retesting

Os conhecimentos do aluno são periodicamente avaliados e reavaliados ao longo do curso, por meio de atividades e exercícios de avaliação e autoavaliação, para que o aluno controle o cumprimento dos seus objetivos.

tech 52 | Certificação

Este programa permitirá a obtenção do certificado próprio de **Mestrado em Engenharia de Telecomunicações** reconhecido pela **TECH Global University**, a maior universidade digital do mundo.

A **TECH Global University**, é uma Universidade Europeia Oficial reconhecida publicamente pelo Governo de Andorra (*bollettino ufficiale*). Andorra faz parte do Espaço Europeu de Educação Superior (EEES) desde 2003. O EEES é uma iniciativa promovida pela União Europeia com o objetivo de organizar o modelo de formação internacional e harmonizar os sistemas de ensino superior dos países membros desse espaço. O projeto promove valores comuns, a implementação de ferramentas conjuntas e o fortalecimento de seus mecanismos de garantia de qualidade para fomentar a colaboração e a mobilidade entre alunos, pesquisadores e acadêmicos.

Esse título próprio da **TECH Global University**, é um programa europeu de formação contínua e atualização profissional que garante a aquisição de competências em sua área de conhecimento, conferindo um alto valor curricular ao aluno que conclui o programa.

Título: Mestrado em Engenharia de Telecomunicações

Modalidade: online

Duração: 12 meses

Acreditação: 60 ECTS

^{*}Apostila de Haia Caso o aluno solicite que o seu certificado seja apostilado, a TECH Global University providenciará a obtenção do mesmo com um custo adicional.

salud Configura personas salud educación información tutores garantía acreditación enseñanza instituciones tecnología aprendiza

Mestrado Engenharia de Telecomunicações

- » Modalidade: online
- » Duração: 12 meses
- » Certificação: TECH Global University
- » Créditos: 60 ECTS
- » Horário: ao seu próprio ritmo
- » Exames: online

