

Специализированная магистратура Инфраструктура гидротехнических

сооружений

- » Формат: **онлайн**
- » Продолжительность: 12 месяцев
- » Учебное заведение: ТЕСН Технологический университет
- » Расписание: по своему усмотрению
- » Экзамены: **онлайн**

 ${\tt Be6\text{-}доступ: www.techtitute.com/ru/engineering/professional-master-degree/master-hydraulic-works-infrastructure}$

Оглавление

 О1
 02

 Презентация
 Цели

 03
 04
 05

 Компетенции
 Руководство курса
 Структура и содержание

 стр. 14
 стр. 18
 07

Методология

стр. 42

Квалификация

стр. 34

tech 06 | Презентация

Раньше строительство гидротехнических сооружений требовало больших затрат на их проведение и обслуживание и не способствовало сохранению окружающей среды, поскольку не располагало инструментами, связанными с техникой и материалами, предназначенными для устойчивого строительства. Поэтому сегодня этот вид сооружений по созданию гидротехнической инфраструктуры направлен на решение экологических проблем путем обеспечения доступа населения к чистой воде. В этом смысле специалисты научатся применять понятия поверхностной гидрологии к природным средам для создания гидрологических моделей водохранилищ и городских гидрологических моделей.

Это область ежедневно обновляется в том, что касается материалов, методов и технологий, способствующих сохранению природы и развитию выполнения работ, помогающих улучшить управление водными ресурсами. Поэтому данная Специализированная магистратура ТЕСН обеспечит студентов глубокими и современными знаниями в области типологии дамб и основных процессов очистки воды. В центре ее содержания — проектирование и строительство гидравлических инфраструктур, позволяющих подавать водные ресурсы в городские системы водоснабжения и очистки.

Таким образом, профессионалы приобретают специальные знания и навыки, например, в подходе к решению реальных инженерно-строительных задач с использованием передового программного обеспечения, углубляясь в такие понятия, как методология и ВІМ-модель. Программа, объединяющая специализированную команду преподавателей и в то же время поддерживаемая качественным мультимедийным содержанием, которое обеспечивает динамичность и удобство при работе в онлайн-режиме.

ТЕСН предоставляет отличную возможность для инженеров, желающих совместить свою работу и личные обязанности с получением качественного университетского образования. Специалисту достаточно иметь электронное устройство с подключением к Интернету, чтобы в любое время получить доступ к виртуальной платформе. Таким образом, студент сможет распределить учебную нагрузку в соответствии со своими потребностями.

Данная Специализированная магистратура в области инфраструктуры гидротехнических сооружений содержит самую полную современную образовательную программу на рынке. Основными особенностями обучения являются:

- Разбор практических кейсов, представленных экспертами в области гражданского строительства со специализацией на гидротехнических сооружениях
- Наглядное, схематичное и исключительно практичное содержание курса предоставляет научную и практическую информацию по тем дисциплинам, которые необходимы для осуществления профессиональной деятельности
- Практические упражнения для самооценки, контроля и улучшения успеваемости
- Особое внимание уделяется инновационным методологиям
- Теоретические занятия, вопросы эксперту, дискуссионные форумы по спорным темам и самостоятельная работа
- Учебные материалы курса доступны с любого стационарного или мобильного устройства с выходом в интернет

Специалисты научатся применять понятия поверхностной гидрологии к природным средам для создания гидрологических моделей водохранилищ и городских гидрологических моделей"

Данная Специализированная магистратура предоставит вам передовые знания в области типологий дамб и основных процессов очистки воды"

В преподавательский состав программы входят профессионалы из данного сектора, которые привносят в обучение опыт своей работы, а также признанные специалисты из ведущих сообществ и престижных университетов.

Мультимедийное содержание программы, разработанное с использованием новейших образовательных технологий, позволит специалисту проходить обучение с учетом контекста и ситуации, т.е. в симулированной среде, обеспечивающей иммерсивный учебный процесс, запрограммированный на обучение в реальных ситуациях.

Структура этой программы основана на проблемно-ориентированном обучении, с помощью которого специалист должен попытаться разрешать различные ситуации из профессиональной практики, возникающие в течение учебного курса. В этом специалистам поможет инновационная интерактивная видеосистема, созданная признанными экспертами.

Углубите свои знания и станьте инженером-экспертом в области гидравлических инфраструктур.

В ТЕСН вам всего лишь нужно устройство с доступом в Интерне и вы получите доступ к виртуальной платформе в любой момент.

tech 10 | Цели

Общие цели

- Определять самые актуальные понятия гидрологии и гидравлики для их применения в гражданском строительстве
- Проанализировать ключевые элементы, применимые именно к гидравлическим инфраструктурам водного цикла
- Развить специальные знания по применению этих понятий при проектировании таких инфраструктур
- Представить практические примеры для применения полученных знаний
- Определять основные элементы системы водосбора, хранения и очистки воды
- Оценить различные альтернативы при выборе систем сбора и/или стабилизации воды
- Разработать основные критерии для проектирования элементов, входящих в состав системы
- Обосновать конкретные примеры полученными теоретическими знаниями
- Сформировать новые знания о методологии ВІМ, концепцию информационного моделирования, процессы совместной работы и инструменты моделирования
- Сформировать навыки моделирования плотин с использованием современного программного обеспечения
- Распространить теоретические понятия на проектирование и моделирование сооружений такого типа
- Проанализировать использование и применение методологии ВІМ при проектировании, строительстве и эксплуатации плотин
- Развивать новые знания в области гидравлики трубопроводов со свободным потоком

- Определять конкретные элементы, входящие в состав канализационной системы
- Использовать полученные знания для решения реальных инженерно-строительных задач, предлагая решения и определяя порядок строительства
- Проанализировать работу каналов и русел с помощью компьютерных программ, основываясь на результатах гидравлики каналов
- Развивать новые знания в области хранения питьевой воды, строительства и эксплуатации водохранилищ
- Проанализировать основные элементы, входящие в состав водохранилищ, их материалы и области применения
- Определять основные критерии проектирования водохранилищ, установки рабочего и регулирующего оборудования и управления активами
- Определять использование и применение методологии BIM с учетом моделирования и управления информацией

Вы достигнете поставленных целей, опираясь на самое современное и инновационное содержание, которое может предоставить только ТЕСН"

Модуль 1. Гидрология и гидравлика в гражданском строительстве

- Применять понятия поверхностной гидрологии к природным средам для создания гидрологических моделей водохранилищ и городских гидрологических моделей
- Обобщить различные методы, применяемые в гидрологии поверхностных вод для оценки их возможностей
- Сформировать специализированные навыки для проведения исследований наводнений на речных территориях
- Проанализировать элементы общей гидравлики при проектировании гидротехнических инфраструктур
- Сформировать новые знания о конкретных элементах, входящих в состав гидравлической инфраструктуры
- Определять гидравлические переменные, которые должны присутствовать при проектировании каналов и труб, выявить гидродинамику инфраструктуры

Модуль 2. Дамбы, водозабор и водоочистка. Элементы и проектирование

- Сформировать основные знания по типологии дамб и их применению
- Определять основы проектирования дамб в соответствии с их типологией
- Проанализировать системы водозабора
- Определять элементы водозабора
- Изучить основные процессы очистки воды
- Определять основные параметры для выбора систем очистки
- Применять теоретические знания для представления решений практических задач

Модуль 3. Моделирование плотин

- Изучить основы методологии BIM применительно к гражданскому строительству
- Определять рабочие процессы при разработке ВІМ-модели дамб
- Развить навыки моделирования вертикальных и горизонтальных конструкций
- Проанализировать проектные решения и альтернативы при моделировании плотин
- Определять основные ВІМ-объекты, входящие в состав модели дамбы
- Предлагать решения реальных инженерно-строительных задач с использованием современных программных средств
- Применять методологию ВІМ, принимая на себя роль разработчика модели и обогащая модели необходимой информацией для их построения и эксплуатации

Модуль 4. Каналы и речные протоки. Элементы и проектирование

- Разработать общие гидравлические понятия и основы трубопроводов свободных потоков
- Определять элементы, входящие в состав канализационных гидравлических систем
- Изучить общие аспекты компоновки трубопровода
- Глубоко проанализировать каналы с бетонной облицовкой, включая соображения, которые необходимо учитывать, а также процессы строительства
- Определять элементы регулирования расхода в каналах, чтобы иметь возможность оптимально управлять инфраструктурой
- Определять специальные элементы, входящие в состав каналов
- Применять теоретические понятия к моделированию трубопроводов в компьютерных программах

tech 12 | Цели

Модуль 5. Резервуары, элементы и конструкция

- Определять функции, назначение и классификацию резервуаров
- Проанализировать основы проектирования резервуаров для водоснабжения
- Разработать общие аспекты, составляющие резервуары, вспомогательные сооружения и объекты
- Определять основные критерии определения размеров водохранилищ
- Предложить решения проблем хранения воды, управления и обслуживания водохранилищ
- Применить методологию ВІМ, предложив стратегию моделирования вертикальных сооружений и включения информации для их управления

Модуль 6. Орошение. Элементы и проектирование

- Указать факторы, влияющие на процесс орошения
- Рассмотреть основы проектирования оросительных сетей
- Разработать общие аспекты, из которых складывается оросительная сеть
- Определять основные критерии для определения размеров оросительных сетей
- Проанализировать решения на основе технологий капельного и дождевального орошения
- Применять методологию ВІМ при проектировании и анализе оросительных сетей
- Изучить результаты ВІМ-проектирования оросительной сети, позволяя студентам получить знания, применимые к любой трубопроводной системе

Модуль 7. Системы водоснабжения. Водотранспортные трубопроводы

- Определять основные гидравлические принципы работы крупных водотранспортных трубопроводов
- Разработать основы явления гидроудара
- Определять общие аспекты проектирования восходящих систем водоснабжения
- Определять основные критерии определения размеров
- Проанализировать решения по элементам защиты системы с использованием специализированного программного обеспечения для гидроударов
- Предлагать решения по вводу в эксплуатацию, техническому обслуживанию и эксплуатации вышестоящих систем снабжения
- Применять методологию BIM при проектировании и анализе распределительных систем верхнего бьефа

Модуль 8. Городской дренаж и проектирование

- Описать задачи санитарно-технического проектирования
- Изучить основы проектирования городских сетей водоотведения
- Разработать общие аспекты, составляющие городскую водоотводящую сеть
- Определять основные критерии определения размеров канализационных сетей.
- Проанализировать решения на основе моделирования канализационных сетей
- Предлагать решения проблем затопления городов на основе резервуаров для удержания дождевой воды
- Применять методологию ВІМ при проектировании и анализе городских дренажных сетей

Модуль 9. Устойчивая городская дренажная система (SUDS)

- Указать на предпосылки и текущие проблемы в дренаже современной городской застройки
- Определять типы SUDS в соответствии с их функциями
- Разрабатывать фундаментальные основы проектирования SUDS
- Проанализировать SUDS на предмет задержания, удержания, фильтрации, инфильтрации и очистки
- Определять основные параметры проектирования каждой типологии
- Определять использование каждого из них
- Применять навыки дизайна при использовании цифровых конструкций

Модуль 10. Очищение. Элементы и проектирование

- Проанализировать основные характеристики сточных вод
- Установить соответствующие процессы для очистки сточных вод
- Представить основные соображения по реализации установок очистки сточных вод
- Разработать принципиальную схему водоочистных сооружений
- Разработать простой проект традиционной водоочистительной станции
- Оценить образующиеся отходы и возможности их утилизации
- Применить полученные знания для создания цифрового проекта водоочистной станции

tech 16 | Компетенции

Общие профессиональные навыки

- Развивать новые знания в области процесса орошения, проблем, решений, инфраструктуры и новых технологий
- Определять основные элементы, входящие в состав оросительной сети, в соответствии с различными типологиями
- Разработать основные критерии для проектирования элементов, входящих в состав сети
- Проанализировать использование и применение ВІМ-методологии при разработке, моделировании и эксплуатации сетей
- Сформировать новые знания по основным направлениям поставок
- Определять основные элементы, составляющие системы снабжения и основные материалы
- Глубоко изучить представление о гидроударах и необходимых элементах защиты в системах подачи высокого давления
- Разработать основные критерии проектирования элементов, входящих в состав системы, а также их применение при моделировании с помощью компьютерных программ
- Проанализировать использование и применение методологии ВІМ при проектировании, моделировании и эксплуатации крупных трубопроводов

Профессиональные навыки

- Углубить знания в области интеграции методологии ВІМ на всех этапах управления проектом и объектом в гидротехнических инфраструктурах
- Приобрести знания о самом современном программном обеспечении ВІМ, применяемом для создания гидравлических инфраструктур с использованием ГИС, Civil 3D и Revit, чтобы получить продвинутую профессиональную подготовку пользователя
- Применять знания о рабочих процессах взаимодействия между различными инструментами ВІМ
- Развивать знания в области цифрового строительного проектирования и управления строительной информацией на строительных площадках, разрабатывая реальные проекты с использованием технологии ВІМ
- Определять основные устойчивые дренажные системы и их использование в городской застройке
- Определять фундаментальные основы и основные определения, связанные с SUDS
- ◆ Развивать новые знания в области санитарной техники, проблем, решений, инфраструктуры и новых технологий
- Определить основные элементы, составляющие городскую сеть водоотведения, и материалы, используемые в ней
- Установить основные критерии проектирования элементов, входящих в состав сети, а также их применение при моделировании с помощью компьютерных программ
- Проанализировать использование и применение методологии ВІМ при проектировании, моделировании и эксплуатации городских водоотводных сетей

Руководство

Г-н Гонсалес Гонсалес, Блас

- Руководитель технического институра Construcción Digital Bimous
- Управляющий директор в Tolvas Verdes Malacitanas S.A
- CEO в Andaluza de Traviesas
- Директор по проектированию и развитию компании GEA 21, S.A. Руководитель технической службы UTE Metro de Sevilla и соруководитель проектов строительства 1-й линии метрополитена Севильи
- CEO в Bética de Ingeniería S.A.L
- Преподаватель в нескольких университетских магистратурах, связанных с гражданским строительством, а также предметов в магистратуре по архитектуре в Университете Севильи
- Степень магистра в области гражданского строительства Политехнического университета Мадрида
- Степень магистра в области нового материаловедения и нанотехнологий Университета Севильи
- Степень магистра в области BIM-менеджмента в инфраструктуре и гражданском строительстве от EADIC Университет короля Хуана Карлоса

Преподаватели

Г-н Рубио Гонсалес, Карлос

- Руководитель инженерного отдела в TEAMBIMCIVIL S.L.
- Специалист в Межвузовском институте исследований системы земли в Андалусии Гранадского университета
- Инженер-строитель в компании TEAMBIMCIVIL S.L.
- Двойная степень магистра в области гражданского строительства и экологической гидравлики в Университете Гранады
- Степень магистра в области технологии и управления интегральным водным циклом в Университете Севильи
- Степень бакалавра в области гражданского строительства Университета Севильи с упоминанием гидрологии
- Преподаватель специализированных курсов по ВІМ-моделированию сетей водоснабжения и ирригации

Г-н Педраса Мартинес, Орасио

- Специалист по дорожному покрытию и планировке в отделе разработки и управления проектами Агентства общественных работ регионального правительства Андалусии
- Специалист по планировке, земляному полотну и дорожному покрытию в проекте строительства дороги Сан-Мартин-де-Вальдейглесиас для Министерства развития
- Автор и руководитель нескольких проектов по ремонту дорог в провинциях Гранада-и-Хаэн
- Специалист по земляным работам, дорожным покрытиям и дренажу для тендерного проекта: Новая автодорога М-410
- Соавтор проекта строительства продолжения линии 2 метрополитена Малаги
- Автор проекта планировки двухполосной автодороги Olivar A-318
- Степень бакалавра в области гражданского строительства Университета Гранады
- ◆ Степень магистра ВІМ в области гражданского строительства в CivileВІМ в Севилье

tech 22 | Руководство курса

Г-жа Перес Вальесильос, Наталья

- Руководитель проекта по развитию трамвайной инфраструктуры в Алькала
- Специалист по гидравлике для инженерно-строительного проекта с OPWP (Oman Power and Water Procurement Company)
- Специалист по гидравлике на этапе тендера на строительство сети питьевого водоснабжения комплекса городской застройки с компанией ACWA Power
- Руководитель проекта по предварительному проектированию водозабора, насосной станции, трубопроводов и станции водоподготовки в Дакке
- Сотрудник по подготовке проектов водохозяйственных работ с URCI CONSULTORES, S.L
- Координатор проекта по системе производства, транспортировки и распределения питьевой воды в Ла-Конкордии, Аргентина
- Степень бакалавра в области гражданского строительства Е.Т.S.I.C.C.Р. в Гранаде

Г-н Гарсия Ромеро, Франсиско

- Технический директор в TEAMBIMCIVIL, S.L. Севилья
- Временно исполняющий обязанности гражданского служащего старшего факультета инженеров-строителей 2003 г.
- Временно замещающий профессор в области проектов, связанный с кафедрой строительной инженерии и инженерных проектов ETSI в Севилье
- Степень бакалавра в области гражданского строительства Университета Севильи
- Степень магистра в области гражданского строительства Университета Севильи
- Степень магистра в области наук по строительной инженерии Миланского политехнического института
- Специалист по ВІМ-моделированию кафедры СА1 Университета Севильи

Г-жа Провинсиаль Гальардо, Ольга

- Руководитель инженерного отдела в TEAMBIMCIVIL S.L
- Инженер-строитель в TEAMBIMCIVIL S.L
- Степень бакалавра в области инженерного дела в Университет Севильи
- Степень магистра в области гражданского строительства Университета Валенсия
- Специалист по BIM-моделированию кафедры CA1 Университета Севильи
- Преподаватель специализированных курсов по BIM-технологиям применительно к гидротехническим сооружениям в Институте цифровых строительных технологий BIOMOUS

Д-р Эрнандес Санчес, Сильвестр

- Менеджер по управлению инфраструктурой в Андалусии
- Руководитель службы планирования и статистики Главного управления планирования регионального министерства общественных работ и транспорта
- Руководитель службы планирования и статистики Главного управления планирования регионального министерства общественных работ и транспорта
- Руководитель отдела технического надзора в отделении главного управления планирования регионального министерства общественных работ и транспорта
- Докторская степень на отделении проектного инженерного дела Севильской школы промышленного инженерного дела
- Инженер-строитель Университета Гранады
- Лектор и докладчик на различных курсах и конгрессах, посвященных картографии и топографии дорожных работ

tech 26 | Структура и содержание

Модуль 1. Гидрология и гидравлика для гражданского строительства

- 1.1. Поверхностная и городская гидрология
 - 1.1.1. Осадки
 - 1.1.2. Инфильтрация
 - 1.1.3. Грунтовые воды
 - 1.1.4. Скорость потока. Кривые продолжительности и массы
 - 1.1.5. Функции распределения вероятностей, используемые в гидрологии
 - 1.1.6. Анализ частоты засух
 - 1.1.7. Стохастические процессы. Модели временного ряда
- 1.2. Дожди. Соотнесение осадков и стока
 - 1.2.1. Расчетный ливень
 - 1.2.2. Исторический анализ максимальных интенсивностей осадков
 - 1.2.3. Гидрографы паводков
- 1.3. Гидрологические параметры водосборных площадей
 - 1.3.1. Типичный гидрограф
 - 1.3.2. Единичный гидрограф
 - 1.3.3. Безразмерные гидрографы
 - 1.3.4. Треугольные гидрографы
- 1.4. Определение расходных потоков
 - 1.4.1. Паводковый поток
 - 1.4.2. Переход водохранилищ
 - 1.4.3. Переход в естественных водостоках
- 1.5. Гидрологическое моделирование
 - 1.5.1. Метод Темеса
 - 1.5.2. Рациональный метод
 - 1.5.3. Метод кривой SCS
 - 1.5.4. Метод Хортона
- 1.6. Гидравлическое моделирование
 - 1.6.1. Гидромеханика
 - 1.6.2. Потоки и течения
 - 1.6.3. Движения в гидравлических инфраструктурах

- Трубопроводы прямого потока. Гидравлические основания
 - 1.7.1. Поток воды в трубопроводах
 - 1.7.2. Классификация потоков в каналах
 - 1.7.3. Состояния потока
- 1.8. Свойства потока в открытых каналах
 - 1.8.1. Типы открытых каналов
 - 1.8.2. Геометрия искусственного канала
 - 1.8.3. Элементы раздела канала
 - 1.8.4. Распределение скоростей и давления в каналах
 - 1.8.5. Энергия потока в открытых каналах
 - 1.8.6. Критическое состояние потока
 - .8.7. Локальные феномены. Гидравлический прыжок
- 1.9. Равномерное движение в каналах
 - 1.9.1. Характеристики равномерного потока
 - 1.9.2. Уравнение равномерным потоком
 - 1.9.3. Общие формулы для равномерного движения в каналах
- 1.10. Разнородные движения
 - 1.10.1. Постепенно изменяющееся движение в реках и ручьях
 - 1.10.2. Распространение волн
 - 1.10.3. Давление и динамические силы
 - 1.10.4. Волны и гидроудары
 - 1.10.5. Закрытие клапанов. Постепенное, быстрое и мгновенное

Модуль 2. Дамбы, водозабор и водоочистка. Элементы и проектирование

- 2.1. Системы хранения воды
 - 2.1.1. Вода. Системы хранения
 - 2.1.2. Поверхностное и подземное хранение
 - 2.1.3. Проблемы загрязнения воды
- 2.2. Забор поверхностных вод
 - 2.2.1. Забор дождевых вод
 - 2.2.2. Водозаборные бассейны в водотоках
 - 2.2.3. Водозаборы в озерах и водохранилищах

0.0	00600		
2.3.		грунтовых вод	
		Грунтовые воды	
		Защита водоносных горизонтов	
		Расчет скважин	
2.4.	Плотины		
	2.4.1.	Типология дамб	
		Главные элементы дамб	
		Предварительные исследования	
2.5.	Водосливы и водосборы		
		Типология	
		Исследование паводков	
	2.5.3.	Основные элементы	
2.6.	Строительство дамб		
	2.6.1.	Отвод реки	
	2.6.2.	Строительство перемычек и перекрытие русла реки	
	2.6.3.	Строительные соображения для плотин различных типологий	
2.7.	Очистка воды		
	2.7.1.	Очистка воды	
	2.7.2.	Процессы лечения	
	2.7.3.	Приборы для обработки	
2.8.	Процессы обработки питьевой воды		
	2.8.1.	Физико-химическая очистка	
	2.8.2.	Добавки для очистки питьевой воды	
	2.8.3.	Дезинфекция.	
2.9.	Вспомогательные продукты обработки воды		
	2.9.1.	Природа осадков	
	2.9.2.	Процессы лечения	
	2.9.3.	Конечное назначение осадков	
2.10.	Плотины как система генерации возобновляемой энергии		
	2.10.1.	Генерация с возобновляемыми источниками энергии	
	2.10.2.	Водохранилища и насосные станции как источник чистой генерации энергии	

2.10.3. Международное регулирование энергетики

Модуль 3. Моделирование плотин

- 3.1. Цифровая конструкция
 - 3.1.1. Цифровая конструкция
 - 3.1.2. Информационные модели сооружений
 - 3.1.3. Технология ВІМ
- 3.2. Моделирование дамб. Civil 3D
 - 3.2.1. Интерфейс Civil 3D
 - 3.2.2. Рабочее пространство
 - 3.2.3. Настройка шаблонов
- 3.3. Изучение участка
 - 3.3.1. Предварительный анализ участка
 - 3.3.2. Подготовка модели в Civil 3D
 - 3.3.3. Изучение альтернатив
- 3.4. Стратегия модели в Civil 3D
 - 3.4.1. Рабочий процесс
 - 3.4.2. Модель линейных работ в Civil 3D
 - 3.4.3. Стратегия моделирования дамб из грунтовых материалов
 - 3.4.4. Стратегия моделирования гравитационных плотин
- 3.5. Создание узлов тела плотины
 - 3.5.1. Методы их создания
 - 3.5.2. Выбор профиля
 - 3.5.3. Создание подсборок из типового профиля
- 3.6. Производство линейных работ на гравитационной плотине
 - 3.6.1. Уклон проекта
 - 3.6.2. Создание линейных работ
 - 3.6.3. Параметры и поверхность линейных работ
 - 3.6.4. Контроль правильной работы при сборке
- 3.7. Дополнительные работы
 - 3.7.1. Водосливы плотины
 - 3.7.2. Пути гребня плотины
 - 3.7.3 Внутренние галереи

tech 28 | Структура и содержание

- 3.8. Параметризация в Civil 3D
 - 3.8.1. Типы свойства в зависимости от их происхождения
 - 3.8.2. Типы свойств в зависимости от формата данных
 - 3.8.3. Создание заданных пользователем параметров
- 3.9. Разработка модели плотины в Revit
 - 3.9.1. Подготовка модели в Revit
 - 3.9.2. Программа Dynamo для создания твердых тел из Civil 3D в Revit
 - 3.9.3. Работа с программой Dynamo
- 3.10. Модель гравитационной плотины в Revit
 - 3.10.1. Тело плотины
 - 3.10.2. Конструктивные подразделения
 - 3.10.3. Установки управления и маневрирования

Модуль 4. Каналы и речные протоки. Элементы и проектирование

- 4.1. Свойства потоков в открытых каналах. Гидравлические основания
 - 4.1.1. Классификация потоков в каналах
 - 4.1.2. Типы открытых каналов
 - 4.1.3. Геометрия искусственного канала
 - 4.1.4. Элементы раздела канала
 - 4.1.5. Распределение скоростей и давления в каналах
 - 4.1.6. Энергия потока в открытых каналах
 - 4.1.7. Критическое состояние потока
 - 4.1.8. Локальные феномены. Гидравлический прыжок
- 4.2. Формирование русловых потоков
 - 4.2.1. Равномерное движение в каналах
 - 4.2.2. Постепенно изменяющийся поток в каналах
 - 4.2.3. Характеристики постепенно изменяющегося движения в каналах
 - 4.2.4. Общая формула для изменения осадки
 - 4.2.5. Случаи постепенного изменения движения

- 4.3. Геометрическое определение стандартного сечения
 - 4.3.1. Первоначальные аспекты
 - 4.3.2. Критерии разработки
 - 4.3.3. Облицовка каналов
 - 4.3.4. Ограждения в каналах
 - 4.3.5. Виды дренажа
- 4.4. Облицовка каналов бетоном
 - 4.4.1. Облицовка каналов бетоном
 - 4.4.2. Конструктивные аспекты
 - 4.4.3. Виды стыков в бетонных каналах
 - 4.4.4. Этапы строительства канала
- 4.5. Схема расположения каналов
 - 4.5.1. Схема расположения канала
 - 4.5.2. Акведуки
 - 4.5.3. Тоннели
 - 4.5.4. Сифоны
 - 4.5.5. Канализирование рек
- 4.6. Особые элементы в каналах
 - 4.6.1. Переходы между различными участками
 - 4.6.2. Песколовки
 - 4.6.3. Пассажировместимость
- 4.7. Регулирование в каналах
 - 4.7.1. Ворота с ручным управлением
 - 4.7.2. Перепускные клапаны с гидравлическим приводом
 - 4.7.3. Автоматические ворота с гидравлическим управлением
 - 4.7.4. Полигоны «утиный клюв»
- 4.8. Водостоки
 - 4.8.1. Разработка
 - 4.8.2. Водосборы с фиксированной кромкой
 - 4.8.3. Сифонные водосливы

Структура и содержание | 29 tech

- 4.9. HEC-RAS для моделирования свободных потоков
 - 4.9.1. HEC-RAS. Характеристики
 - 4.9.2. Ограничения при моделировании каналов
 - 4.9.3. Данные, необходимые для моделирования
 - 4.9.4. Полученные результаты
- 4.10. Стратегия моделирования
 - 4.10.1. Дизайн гражданского сооружения в шаблоне Civil 3D
 - 4.10.2. Продольные профили в Civil 3D
 - 4.10.3. Поперечные сечения в Civil 3D

Модуль 5. Резервуары, элементы и конструкция

- 5.1. Хранилища
 - 5.1.1. Резервуары
 - 5.1.2. Функция главного резервуара
 - 5.1.3. Другие применения
- 5.2. Классификация резервуаров
 - 5.2.1. В соответствии с доступом земли
 - 5.2.2. В соответствии со строительным процессом
 - 5.2.3. В соответствии с материалом
 - 5.2.4. В соответствии с их относительным положением в сети
- 5.3. Разработка резервуара
 - 5.3.1. Виды спроса и применение
 - 5.3.2. Требования к конструкции
 - 5.3.3. Топография
 - 5.3.4. Финансовые элементы
 - 5.3.5. Прочее
- 5.4. Определение размеров резервуара
 - 5.4.1. Уровень воды в резервуаре
 - 5.4.2. Высота листа воды
 - 5.4.3. Вместимость

- 5.5. Компоненты резервуаров
 - 5.5.1. Стенки корпуса
 - 5.5.2. Перегородки
 - 5.5.3. Подоконники
 - 5.5.4. Направляющие перегородки
 - 5.5.5. Крыша
 - 5.5.6. Стыки
 - 5.5.7. Ключевая камера
- б.б. Оборудование резервуаров
 - 5.6.1. Схема базовых установок
 - 5.6.2. Клапаны
 - 5.6.3. Водоотвод
 - 5.6.4. Элементы управления
- Обслуживание и содержание резервуаров
 - 5.7.1. Применяемые нормативные акты
 - 5.7.2. Чистка резервуаров
 - 5.7.3. Обслуживание резервуаров
- 5.8. Стратегия моделирования резервуара в Revit
 - 5.8.1. Среда моделирования в Revit
 - 5.8.2. Ориентировочные уровни и плоскости
 - 5.8.3. Семьи в Revit
- 5.9. Информация по эксплуатированию. Набор параметров резервуаров
 - 5.9.1. Наборы настроек
 - 5.9.2. Применение PSET к BIM-объектам
 - 5.9.3. Экспорт свойств. Атрибуты в базы данных
- 5.10. Управление с помощью средств визуализации
 - 5.10.1. Программное обеспечение для визуализации моделей
 - 5.10.2. Потребности в информации
 - 5.10.3. BIMDATA Viewer IO

tech 30 | Структура и содержание

Модуль 6. Орошение. Элементы и проектирование

- 6.1. Сети орошения
 - 6.1.1. Сеть орошения
 - 6.1.2. Физические характеристики почвы
 - 6.1.3. Влияющие на орошение факторы
 - 6.1.4. Запас почвенной воды
 - 6.1.5. Оросительные нормы
 - 6.1.6. Потребности сельскохозяйственных культур в воде
- 6.2. Виды орошения
 - 6.2.1. Гравитационное орошение
 - 6.2.2. Спринклерное орошение (дождевание)
 - 6.2.3. Капельное орошение
- 6.3. Напорные сети. Гидравлические основания
 - 6.3.1. Энергия потока
 - 5.3.2. Уравнение Бернулли
 - 6.3.3. Потери энергии в трубах
- 6.4. Сети спринклерного орошения. Характеристики
 - 6.4.1. Спринклеры
 - 6.4.2. Типы систем
 - 6.4.3. Гидравлические характеристики спринклеров
 - 6.4.4. Распределение спринклеков в конвенциональных системах
 - 6.4.5. Унификация и эффективность
- 6.5. Масштаб сетей спринклерного орошения
 - 6.5.1. Критерии разработки
 - 6.5.2. Боковые ответвления
 - 6.5.3. Распределительная сеть
- 6.6. Сети капельного орошения
 - 6.6.1. Компоненты системы
 - 6.6.2. Унификация и эффективность
 - 6.6.3. Схема установки
 - 6.6.4. Микросплинлеры

- 6.7. Масштаб сетей капельного орошения
 - 6.7.1. Критерии разработки
 - 6.7.2. Боковые ответвления
 - 6.7.3. Обводная труба
 - 6.7.4. Распределительный трубопровод
- 6.8. Моделирование сетей орошения в Civil 3D
 - 6.8.1. Каталог элементов
 - 6.8.2. Моделирование сети
 - 6.8.3. Профиль сети орошения
- 6.9. Моделирование сетей удержания в Civil 3D
 - 6.9.1. Выравнивание элементов
 - 6.9.2. Конструкция основания
 - 6.9.3. Измерения объема
- 6.10. Поставляемая продукция сети орошения
 - 6.10.1. Чертежи выравнивания плана
 - 6.10.2. Чертежи плана и профиля
 - 6.10.3. Поперечные сечения и измерения

Модуль 7. Системы водоснабжения. Водотранспортные трубопроводы

- 7.1. Типы систем водоснабжения
 - 7.1.1. Гравитационные конвейерные системы
 - 7.1.2. Напорные конвейерные системы
 - 7.1.3. Компоненты
- 7.2. Разработка систем водоснабжения
 - 7.2.1. Схема расположения в плане
 - 7.2.2. Профиль вождения
 - 7.2.3. Заглубленные трубопроводы
 - 7.2.4. Головные, средние и хвостовые резервуары
 - 7.2.5. Элементы

7.3. Определение размеров системы

- 7.3.1. Масштаб и временное распределение спроса
- 7.3.2. Расчетные скорости потока
- 7.3.3. Критерии разработки
- 7.3.4. Механический расчет трубопроводов

7.4. Потери напора в трубопроводах

- 7.4.1. Линейные потери
- 7.4.2. Локализованные потери
- 7.4.3. Экономический диаметр

7.5. Тоннельные трубопроводы

- 7.5.1. Состояние нагрузок на породный массив
- 7.5.2. Деформация выемки
- 7.5.3. Подшипник
- 7.5.4. Тоннели со свободным потоком
- 7.5.5. Напорные тоннели

7.6. Единичные элементы

- 7.6.1. Подъемные станции
- 7.6.2. Гидравлическое исследование подъемника
- 7.6.3. Работа сифонов
- 7.6.4. Расчет и проектирование сифона

7.7. Конструктивная защита трубопровода

- 7.7.1. Гидроудар
- 7.7.2. Расчет гидроударов в трубопроводах
- 7.7.3. Элементы защиты от гидроударов

7.8. Другие средства защиты

- 7.8.1. Катодная защита
- 7.8.2. Покрытия
- 7.8.3. Виды покрытий для трубопроводов
- 7.8.4. Клапаны и присоски

Структура и содержание | 31

- 7.9. Материалы в системах водоснабжения
 - 7.9.1. Нормативные документы и критерии отбора
 - 7.9.2. Трубы из ковкого чугуна
 - 7.9.3. Стальные трубы со спиральной сваркой
 - 7.9.4. Трубы из железобетона и заранее напряженного бетона
 - 7.9.5. Пластиковые трубы
 - 7.9.6. Другие материалы
 - 7.9.7. Контроль качества материалов
- 7.10. Соединительные, рабочие и регулирующие элементы
 - 7.10.1. Типы соединений и элементов
 - 7.10.2. Клапаны
 - 7.10.3. Воздушные клапаны или присоски
 - 7.10.4. Дополнительные элементы

Модуль 8. Городской дренаж и проектирование

- 8.1. Канализационные сети
 - 8.1.1. Канализационная сеть
 - 8.1.2. Типология канализационных сетеЙ
 - 8.1.3. Схема сети
- 8.2. Элементы сети
 - 8.2.1. Трубопроводы
 - 8.2.2. Смотровые колодцы
 - 8.2.3. Соединения
 - 8.2.4. Элементы поверхностного водосбора
 - 8.2.5. Водостоки
- 8.3. Материалы в водоотводных сетях
 - 8.3.1. Критерии отбора
 - 8.3.2. Бетонный трубопровод
 - 8.3.3. Бетонный трубопровод
 - 8.3.4. Трубы из полиэфира, армированного стекловолокном
- 8.4. Геотехника в гидравлических канализационных работах
 - 8.4.1. Этапы разведывательной кампании
 - 8.4.2. Наиболее распространенные испытания
 - 8.4.3. Расчетные параметры и устойчивость траншей для канализационных коллекторов

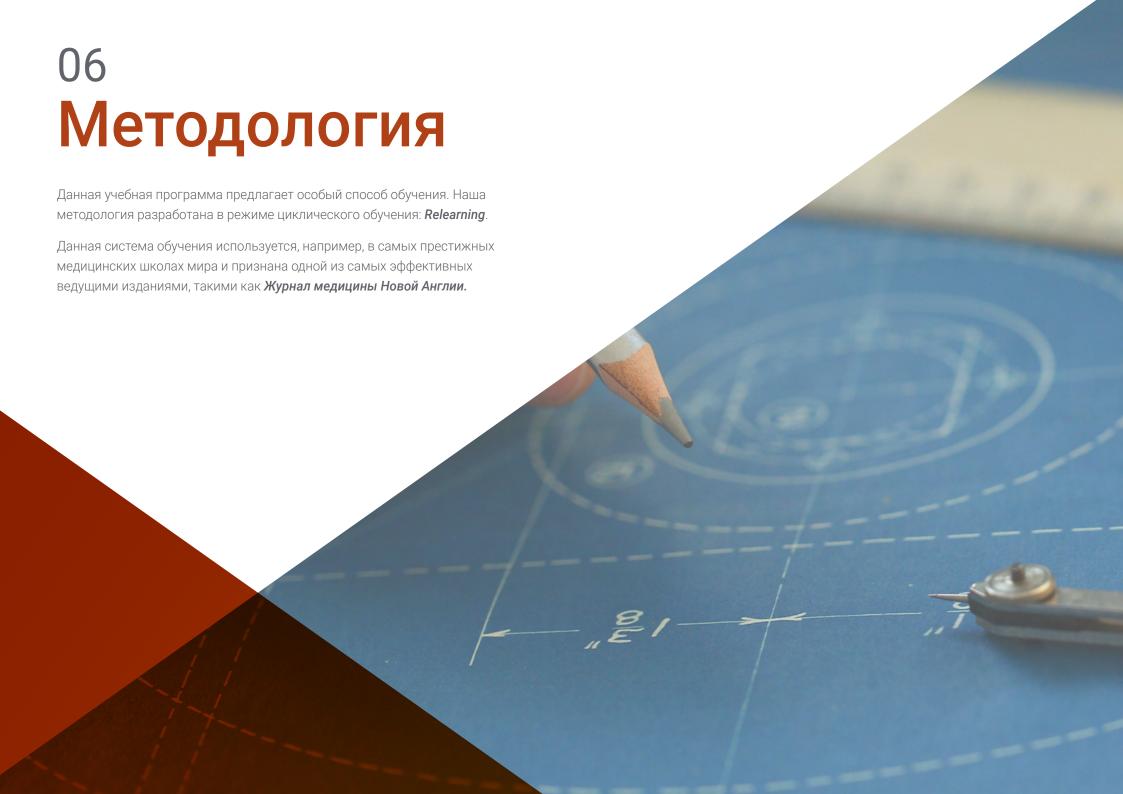
tech 32 | Структура и содержание

8.5.	Критерии в расчете масштабов			
	8.5.1.	Критерии проектирования		
	8.5.2.	Главные факторы в проектировании		
	8.5.3.	Параметры и переменные проектирования		
8.6.	Определение размеров канализационных сетей			
	8.6.1.	Городская гидрология		
	8.6.2.	Фундаментальные уравнения		
	8.6.3.	Критерии функционирования		
8.7.	Симуляция канализационных сетей в SWWM			
	8.7.1.	Элементы сети		
	8.7.2.	Водосборная площадь		
	8.7.3.	Расчетное количество осадков		
	8.7.4.	Гидравлический профиль водоводов		
	8.7.5.	Результаты		
8.8.	Подпорные хранилища			
	8.8.1.	Планирование и местоположение		
	8.8.2.	Системы очистки		
	8.8.3.	Вспомогательные элементы		
8.9.	Моделирование канализационных сетей в Civil 3D			
	8.9.1.	Рабочий процесс в Civil 3D		
	8.9.2.	Инструменты для создания сетей		
	8.9.3.	Создание сети		
8.10.	Анализ сети с помощью анализа ливневых и санитарных систем (SSA)			
	8.10.1.	Экспорт сети Civil 3D в SSA		
	8.10.2.	Гидролого-гидравлическое моделирование сети		
	8.10.3.	Гидравлические расчеты		

8.10.4. Полученные результаты

Модуль 9. Устойчивая городская дренажная система (SUDS)

- 9.1. Устойчивая городская дренажная система (SUDS)
 - 9.1.1. Уплотнение грунта
 - 9.1.2. Климатические изменения
 - 9.1.3. Система устойчивого дренажа
- 9.2. Виды устойчивых городских дренажных систем (SUDS)
 - 9.2.1. Транспортировка
 - 9.2.2. Фильтрация и инфильтрация
 - 9.2.3. Удержание и повторное использование
- 9.3. Условия и уровни вмешательства
 - 9.3.1. Факторы, присущие принимающей среде
 - 9.3.2. Физические факторы
 - 9.3.3. Факторы, связанные с землепользованием
 - 9.3.4. Социально-окружающие факторы
 - 9.3.5. Возможности управления сточными водами в городах
 - 9.3.6. Выбор систем устойчивого городского дренажа (SUDS)
- 9.4. Основные принципы проектирования SUDS
 - 9.4.1. Количество воды
 - 9.4.2. Качество воды
 - 9.4.3. Прочее
 - 9.4.4. Типологии в зависимости от их основных функций
- 9.5. Устойчивая городская дренажная система (SUDS) задержки и удержания
 - 9.5.1. Задерживающие и инфильтрационные бассейны
 - 9.5.2. Растительные покровы
 - 9.5.3. Цистерны или резервуары для дождевой воды
- 9.6. Устойчивые городские дренажные системы (SUDS) для инфильтрации
 - 9.6.1. Фильтрующие полосы
 - 9.6.2. Дренажные канавы
 - 9.6.3. Песчаные фильтры
 - 9.6.4. Водопроницаемые тротуары


Структура и содержание | 33 tech

- 9.7. Устойчивые городские дренажные системы (SUDS) для инфильтрации
 - 9.7.1. Структурные пробковые дубы
 - 9.7.2. Сады. Дождевые стены
 - 9.7.3. Колодцы и инфильтрационные канавы
 - 9.7.4. Решетчатые резервуары
- 9.8. Устойчивые городские дренажные системы (SUDS) для очистки
 - 9.8.1. Затопленные клумбы
 - 9.8.2. Растительные канавы
 - 9.8.3. Искусственные водно-болотные угодья и пруды
- 9.9. Параметрические модели инфильтрационных участков в Civil 3D
 - 9.9.1. Каталог параметрических секций
 - 9.9.2. Биорезервуар
 - 9.9.3. Дождевой сад
 - 9.9.4. Водопроницаемое покрытие
 - 9.9.5. Водопроницаемые тротуары
 - 9.9.6. Прочее
- 9.10. Моделирование систем устойчивого городского дренажа (SUDS) в Civil 3D
 - 9.10.1. BIM-моделирование SUDS в Civil 3D
 - 9.10.2. Создание модели для сборки
 - 9.10.3. Создание линейных работ

Модуль 10. Очищение. Элементы и проектирование

- 10.1. Сточные воды
 - 10.1.1. Бытовые воды
 - 10.1.2. Промышленные воды
 - 10.1.3. Особые загрязняющие вещества
- 10.2. Процессы очистки
 - 10.2.1. Физические процессы
 - 10.2.2. Химические процессы
 - 10.2.3. Биологические процессы
- 10.3. Критерии отбора в соответствии с качеством разряда
 - 10.3.1. Использование воды
 - 10.3.2. Выполнение процессов очистки
 - 10.3.3. Соображения о внедрении

- 10.4. Предварительная очистка
 - 10.4.1. Элементы
 - 10.4.2. Параметры разработки
 - 10.4.3. Производительность
- 10.5. Первичное лечение
 - 10.5.1. Элементы
 - 10.5.2. Параметры разработки
 - 10.5.3. Производительность
- 10.6. Вторичная очистка
 - 10.6.1. Биологическое очищение
 - 10.6.2. Элементы
 - 10.6.3. Параметры разработки
 - 10.6.4. Производительность
- 10.7. Третичная очистка
 - 10.7.1. Элементы
 - 10.7.2. Параметры разработки
 - 10.7.3. Производительность
- 10.8. Осадок: Производство, обработка и применение
 - 10.8.1. Производство и системы обработки шлама
 - 10.8.2. Параметры разработки
 - 10.8.3. Производительность
- 10.9. Вспомогательные системы и современные тенденции
 - 10.9.1. Инструментарий и контроль станции по водоочистки
 - 10.9.2. Дезодорация
 - 10.9.3. Когенерация, ТЭЦ
- 10.10. Моделирование станции по водоочистки
 - 10.10.1. BIM-моделирование станции по водоочистки
 - 10.10.2. Использование биогаза, полученного в результате биологических процессов водоочистки
 - 10.10.3. Применение осадка

tech 36 | Методология

Исследование кейсов для контекстуализации всего содержания

Наша программа предлагает революционный метод развития навыков и знаний. Наша цель - укрепить компетенции в условиях меняющейся среды, конкуренции и высоких требований.

С ТЕСН вы сможете познакомиться со способом обучения, который опровергает основы традиционных методов образования в университетах по всему миру"

Вы получите доступ к системе обучения, основанной на повторении, с естественным и прогрессивным обучением по всему учебному плану.

В ходе совместной деятельности и рассмотрения реальных кейсов студент научится разрешать сложные ситуации в реальной бизнес-среде.

Инновационный и отличный от других метод обучения

Эта программа ТЕСН - интенсивная программа обучения, созданная с нуля, которая предлагает самые сложные задачи и решения в этой области на международном уровне. Благодаря этой методологии ускоряется личностный и профессиональный рост, делая решающий шаг на пути к успеху. Метод кейсов, составляющий основу данного содержания, обеспечивает следование самым современным экономическим, социальным и профессиональным реалиям.

Наша программа готовит вас к решению новых задач в условиях неопределенности и достижению успеха в карьере"

Метод кейсов является наиболее широко используемой системой обучения лучшими преподавателями в мире. Разработанный в 1912 году для того, чтобы студенты-юристы могли изучать право не только на основе теоретического содержания, метод кейсов заключается в том, что им представляются реальные сложные ситуации для принятия обоснованных решений и ценностных суждений о том, как их разрешить. В 1924 году он был установлен в качестве стандартного метода обучения в Гарвардском университете.

Что должен делать профессионал в определенной ситуации? Именно с этим вопросом мы сталкиваемся при использовании кейс-метода - метода обучения, ориентированного на действие. На протяжении всей программы студенты будут сталкиваться с многочисленными реальными случаями из жизни. Им придется интегрировать все свои знания, исследовать, аргументировать и защищать свои идеи и решения.

Методология Relearning

ТЕСН эффективно объединяет метод кейсов с системой 100% онлайн-обучения, основанной на повторении, которая сочетает 8 различных дидактических элементов в каждом уроке.

Мы улучшаем метод кейсов с помощью лучшего метода 100% онлайн-обучения: *Relearning*.

В 2019 году мы достигли лучших результатов обучения среди всех онлайн-университетов в мире.

В ТЕСН вы будете учитесь по передовой методике, разработанной для подготовки руководителей будущего. Этот метод, играющий ведущую роль в мировой педагогике, называется Relearning.

Наш университет - единственный вуз, имеющий лицензию на использование этого успешного метода. В 2019 году нам удалось повысить общий уровень удовлетворенности наших студентов (качество преподавания, качество материалов, структура курса, цели...) по отношению к показателям лучшего онлайн-университета.

Методология | 39 **tech**

В нашей программе обучение не является линейным процессом, а происходит по спирали (мы учимся, разучиваемся, забываем и заново учимся). Поэтому мы дополняем каждый из этих элементов по концентрическому принципу. Благодаря этой методике более 650 000 выпускников университетов добились беспрецедентного успеха в таких разных областях, как биохимия, генетика, хирургия, международное право, управленческие навыки, спортивная наука, философия, право, инженерное дело, журналистика, история, финансовые рынки и инструменты. Наша методология преподавания разработана в среде с высокими требованиями к уровню подготовки, с университетским контингентом студентов с высоким социально-экономическим уровнем и средним возрастом 43,5 года.

Методика Relearning позволит вам учиться с меньшими усилиями и большей эффективностью, все больше вовлекая вас в процесс обучения, развивая критическое мышление, отстаивая аргументы и противопоставляя мнения, что непосредственно приведет к успеху.

Согласно последним научным данным в области нейронауки, мы не только знаем, как организовать информацию, идеи, образы и воспоминания, но и знаем, что место и контекст, в котором мы что-то узнали, имеют фундаментальное значение для нашей способности запомнить это и сохранить в гиппокампе, чтобы удержать в долгосрочной памяти.

Таким образом, в рамках так называемого нейрокогнитивного контекстнозависимого электронного обучения, различные элементы нашей программы связаны с контекстом, в котором участник развивает свою профессиональную практику. В рамках этой программы вы получаете доступ к лучшим учебным материалам, подготовленным специально для вас:

Учебный материал

Все дидактические материалы создаются преподавателями специально для студентов этого курса, чтобы они были действительно четко сформулированными и полезными.

Затем вся информация переводится в аудиовизуальный формат, создавая дистанционный рабочий метод ТЕСН. Все это осуществляется с применением новейших технологий, обеспечивающих высокое качество каждого из представленных материалов.

Мастер-классы

Существуют научные данные о пользе экспертного наблюдения третьей стороны.

Так называемый метод обучения у эксперта укрепляет знания и память, а также формирует уверенность в наших будущих сложных решениях.

Практика навыков и компетенций

Студенты будут осуществлять деятельность по развитию конкретных компетенций и навыков в каждой предметной области. Практика и динамика приобретения и развития навыков и способностей, необходимых специалисту в рамках глобализации, в которой мы живем.

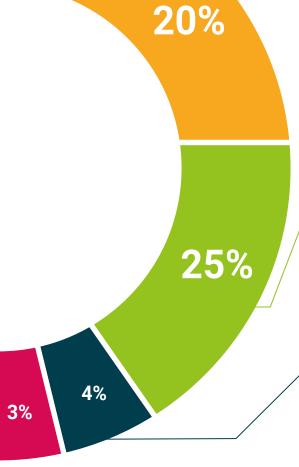
Дополнительная литература

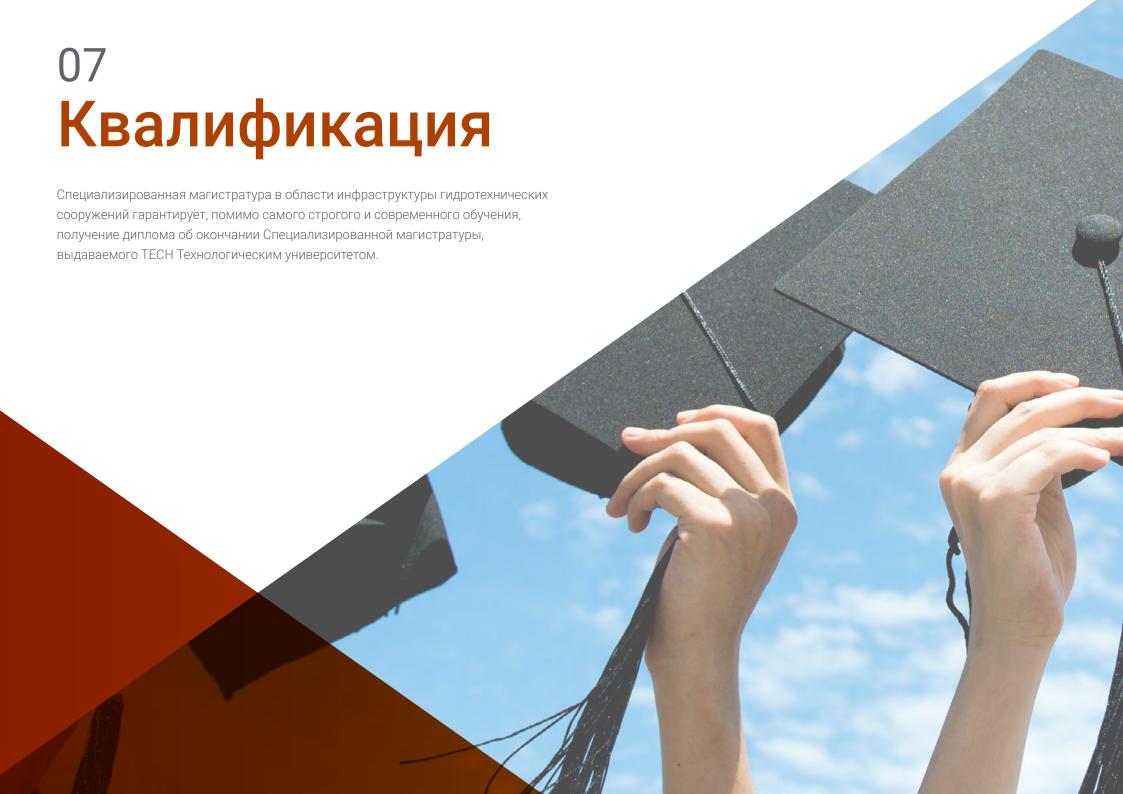
Новейшие статьи, консенсусные документы и международные руководства включены в список литературы курса. В виртуальной библиотеке ТЕСН студент будет иметь доступ ко всем материалам, необходимым для завершения обучения.

Методология | 41 tech

Метод дополнится подборкой лучших кейсов, выбранных специально для этой квалификации. Кейсы представляются, анализируются и преподаются лучшими специалистами на международной арене.

Интерактивные конспекты


Мы представляем содержание в привлекательной и динамичной мультимедийной форме, которая включает аудио, видео, изображения, диаграммы и концептуальные карты для закрепления знаний.


Эта уникальная обучающая система для представления мультимедийного содержания была отмечена компанией Microsoft как "Европейская история успеха".

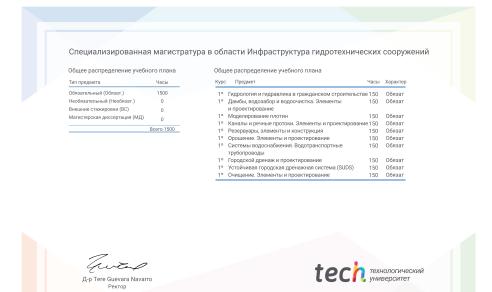
Тестирование и повторное тестирование

На протяжении всей программы мы периодически оцениваем и переоцениваем ваши знания с помощью оценочных и самооценочных упражнений: так вы сможете убедиться, что достигаете поставленных целей.

tech 44 | Квалификация

Данная **Специализированная магистратура в области инфраструктуры гидротехнических сооружений** содержит самую полную и современную научную программу на рынке.

После прохождения аттестации студент получит по почте* с подтверждением получения соответствующий диплом Специализированной магистратуры, выданный ТЕСН Технологическим университетом.


Диплом, выданный **TECH Технологическим университетом**, подтверждает квалификацию, полученную в Специализированной магистратуре, и соответствует требованиям, обычно предъявляемым биржами труда, конкурсными экзаменами и комитетами по оценке карьеры.

Диплом: **Специализированная магистратура в области инфраструктуры гидротехнических сооружений**

Формат: онлайн

Продолжительность: 12 месяцев

^{*}Гаагский апостиль. В случае, если студент потребует, чтобы на его диплом в бумажном формате был проставлен Гаагский апостиль, ТЕСН EDUCATION предпримет необходимые шаги для его получения за дополнительную плату.

tech технологический университет Специализированная

Специализированная магистратура Инфраструктура гидротехнических сооружений

- » Формат: **онлайн**
- » Продолжительность: 12 месяцев
- » Учебное заведение: TECH Технологический университет
- » Расписание: по своему усмотрению
- » Экзамены: **онлайн**

