

Специализированная магистратура

Системы железнодорожного транспорта

- » Формат: **онлайн**
- » Продолжительность: 12 месяцев
- » Учебное заведение: **ТЕСН Технологический университет**
- » Расписание: по своему усмотрению
- » Экзамены: онлайн

 ${\tt Be6\text{-}goctyn:}\ www.techtitute.com/ru/engineering/professional-master-degree/master-railroad-systems$

Оглавление

 О1
 02

 Презентация
 Цели

 03
 04

 Компетенции
 Руководство курса

 стр. 14
 Структура и содержание

 стр. 24

 06
 07

Методология

стр. 42

Квалификация

стр. 34

tech 06 | Презентация

Железная дорога родилась не в результате спонтанной идеи, а после длительного процесса, начавшегося в 17 веке для более эффективной транспортировки угля. В те времена рельсы были сделаны из деревянных балок, которые поддерживались и прибивались к шпалам. Со временем эта система развивалась и получила большую поддержку со стороны правительств государств. Это помогло ей стать экологически устойчивым видом транспорта, который пользуется большим спросом в современной промышленности. Таким образом, фундаментальным требованием для инженеров в этой области становится продолжение академического образования и специализация в области с большой международной проекцией.

Эта Специализированная магистратура изучает проектирование и эксплуатацию железных дорог с традиционной технической и эксплуатационной точки зрения, но с учетом современного международного контекста, который устанавливает новые специфические требования к профессионалам в этом секторе. Особое внимание уделяется новым тенденциям и технологиям на железнодорожном транспорте, чтобы повысить его техническую эффективность и пользу для общества. Кроме того, предлагается анализ новых требований безопасности, которые существенно влияют на проектирование и эксплуатацию железнодорожных систем.

Программа применима ко всем географическим районам железных дорог и имеет четкое международное измерение. Так или иначе, учитываются конкретные аспекты железнодорожных сетей, проектов и услуг, которые представляют собой выдающийся эталон в железнодорожной сфере и поэтому представляют большой интерес для студента. Эта Специализированная магистратура была разработана с практической точки зрения, чтобы ее содержание можно было непосредственно применять в различных профессиональных областях железнодорожной промышленности.

Новые технологии играют важную роль в этой программе. Железнодорожный сектор требует профессионалов, которые, уже обладая техническими знаниями в традиционных аспектах сектора, понимают новые задачи, стоящие перед железной дорогой.

Поэтому в данную программу включены специальные модули по исследованиям, разработкам и инновациям, а также цифровой трансформации, что является ключевыми элементами новой стратегии, которой предстоит следовать.

Данная Специализированная магистратура в области систем железнодорожного транспорта содержит самую полную и современную образовательную программу на рынке. Основными особенностями обучения являются:

- Возможность получить больше профессиональных навыков в сфере железнодорожного транспорта
- Обновить и сфокусировать стратегии своих компаний в этих условиях
- Предъявить новые требования к процессам приобретения технологий
- Включить добавленную стоимость в технические проекты, которые будут разрабатываться компаниями и организациями
- Наглядное, схематичное и исключительно практичное содержание курса предоставляет научную и практическую информацию по тем дисциплинам, которые необходимы для профессиональной практики
- Применение практических заданий для самопроверки и улучшения обучения
- Особое внимание уделяется инновационным методологиям
- Теоретические занятия, вопросы эксперту, дискуссионные форумы по спорным вопросам и самостоятельные работы
- Доступ к учебным материалам с любого стационарного или мобильного устройства с выходом в интернет

Благодаря наглядному и практическому содержанию эта программа дает студенту все знания, необходимые в повседневной работе"

Презентация | 07 tech

Вы получите программу, применимую во всех географических регионах железной дороги и, следовательно, с четкой международной проекцией"

В преподавательский состав программы входят профессионалы в данной области, которые применяют в процессе обучения как собственный опыт, так и опыт признанных специалистов из ведущих научных сообществ и престижных университетов.

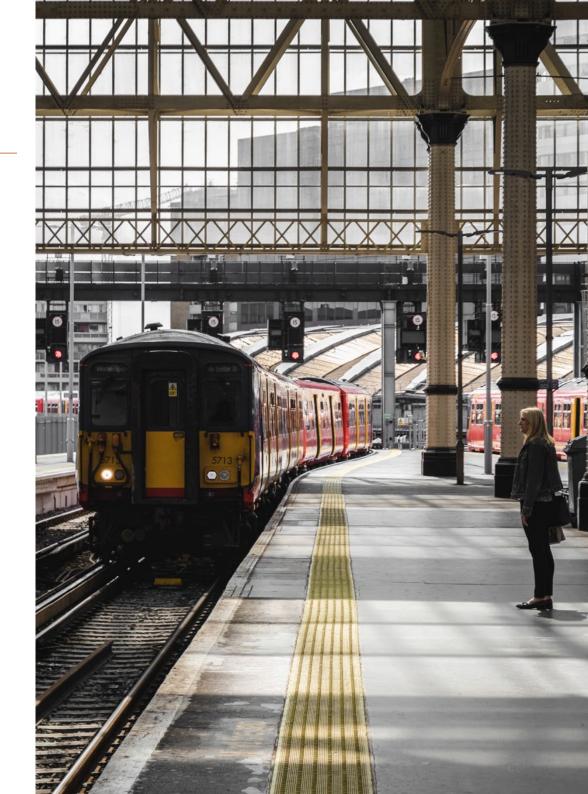
Мультимедийное содержание программы, разработанное с использованием новейших образовательных технологий, позволит специалисту проходить обучение с учетом контекста и ситуации, т.е. в симулированной среде, обеспечивающей иммерсивный учебный процесс, запрограммированный на обучение в реальных ситуациях.

Структура этой программы основана на проблемно-ориентированном обучении, с помощью которого специалист должен попытаться разрешить различные ситуации, возникшие во время обучения, опираясь на свой профессиональный опыт. Для этого практикующему будет помогать инновационная интерактивная видеосистема, созданная известными и опытными специалистами.

Станьте профессионалом в железнодорожном секторе, освоив технические навыки в традиционных аспектах этого сектора.

Применяйте новые концепции безопасного проектирования и модификации действующей железнодорожной системы в своей профессиональной сфере.

tech 10|Цели



Общие цели

- Углубиться в различные технические концепции железной дороги в ее различных областях
- Изучить технологические достижения, которые переживает железнодорожный сектор, в основном благодаря новой цифровой революции, не забывая о традиционных подходах, на которых основан этот вид транспорта
- Понять изменения в отрасли, которые вызвали спрос на новые технические требования
- Внедрять стратегии, основанные на технологических изменениях, возникших в секторе
- Обновить знания по всем аспектам и тенденциям в области железных дорог

Добейтесь целей, которые помогут вам развиваться в секторе, пользующемся большим спросом на мировом уровне, благодаря методологии, основанной на практических примерах"

Конкретные цели

Модуль 1. Железная дорога и ее проектирование в современном контексте

- Проанализировать положение железной дороги по отношению к другим видам транспорта, выявив ее основные преимущества и области для улучшения
- Углубить понимание существующих структур и организаций, на которых базируется железнодорожный сектор (регуляторы, железнодорожное управление, промышленность, институты, группы и т.д.)
- Подробно рассмотреть основные технологические тенденции, с которыми сталкивается сектор в настоящее время
- Углубить характеристики различных железнодорожных операционных систем, основные технические области в инфраструктуре и подвижном составе
- Установить техническое взаимодействие между инфраструктурой и подвижным составом, а также существующие технические критерии и ограничения для проектирования рельсовых систем
- Объяснить различные мировые рекомендации в отношении железнодорожных сетей, инфраструктур и технических проектов, оказывающих большое влияние на сектор

Модуль 2. Энергия электрической тяги

- Провести исчерпывающий анализ основных технических аспектов использования энергии электрической тяги на железных дорогах, выделив наиболее важные этапы и их текущую ситуацию
- Подробно описать технические характеристики установок, связанных с тяговой электроэнергией, в соответствии с различными системами железных дорог
- Углубиться в специфические аспекты, связанные с электрическим торможением в поездах и его стратегическим значением на уровне железнодорожной инфраструктуры

- Установить технические характеристики различных компонентов, составляющих железнодорожную электрическую систему, включая подробный анализ железнодорожной электрической системы
- Рассмотреть особенности электрификации на постоянном и однофазном переменном токе, подчеркнув их эксплуатационные преимущества и недостатки
- Проанализировать характеристики, которыми должен обладать инженерный проект, связанный с установками электрической тяги
- Ориентировать студента на практическое применение представленного содержания

Модуль 3. Управление, команды и сигнализация (УКС)

- Четко и структурированно объяснять основные технические аспекты установок, связанных с железнодорожным управлением, командами и сигнализацией
- Подробно описать технические характеристики различных компонентов, составляющих систему УКС
- Детальное рассмотреть специфические характеристики систем сигнализации ERTMS и CBTC как новейших стандартизированных систем в современных условиях
- Подробно обсудить технические характеристики установок УКС в соответствии с различными железнодорожными системами
- Проанализировать характеристики, которыми должен обладать инженерный проект, связанный с установкой УКС
- Ориентировать студента на практическое применение представленного содержания

tech 12 | Цели

Модуль 4. Телекоммуникации

- Определить основные технические аспекты железнодорожных телекоммуникаций в настоящее время
- Подробно описать технические характеристики различных компонентов, составляющих фиксированную железнодорожную электросвязь
- Изучить технические характеристики различных компонентов, составляющих железнодорожную мобильную электросвязь, включая будущий переход на стандарт FRMCS
- Осмыслить, как железнодорожные телекоммуникации в настоящее время сосредоточены на коммерческом бизнесе, где третьи стороны используют собственную инфраструктуру железной дороги
- Проанализировать характеристики, которыми должен обладать инженерный проект, связанный с телекоммуникационными установками
- Ориентировать студента на практическое применение представленного содержания

Модуль 5. Гражданская инфраструктура

- Детально проанализировать происходящие динамические явления, чтобы определить конструктивные параметры платформы и других компонентов
- Подробно описать технические характеристики различных компонентов подсистемы инфраструктуры, таких как платформа, туннели, мосты и виадуки
- Подробно рассмотреть характеристики трассы как основного компонента гражданской инфраструктуры Учитывая ее традиционную типологию в виде таблицы, различные элементы, из которых она состоит, будут проанализированы по очереди
- Установить характеристики стрелок и переездов, шпал и поворотных аппаратов, а также других вспомогательных элементов, связанных с эксплуатацией пути
- Рассмотреть технические характеристики гражданской инфраструктуры в соответствии с различными железнодорожными системами

- Интегрировать концепцию устойчивости инфраструктуры к внешним событиям, анализируя ее текущее значение в стратегии компаний по управлению железнодорожной инфраструктурой
- Ориентировать студента на практическое применение представленного содержания

Модуль 6. Подвижной состав

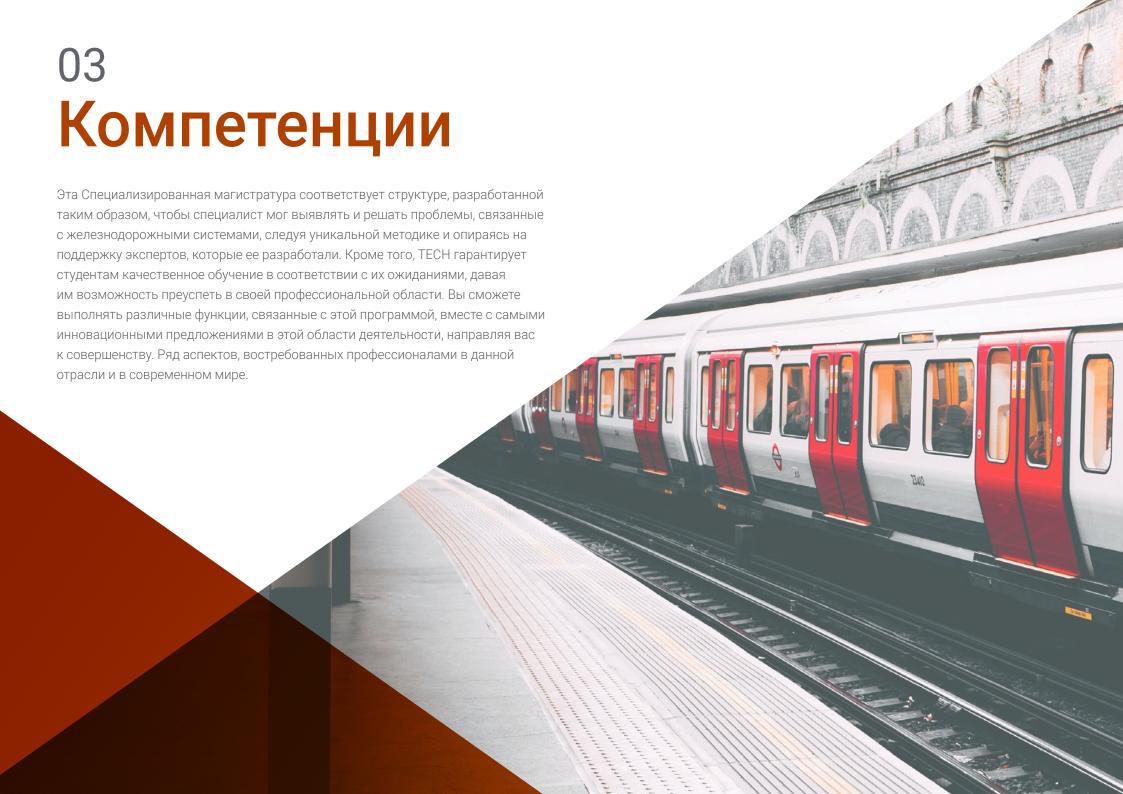
- Углубленно изучить основные технические аспекты рельсовых транспортных средств
- Четко и структурированно объяснить технические характеристики различных компонентов, составляющих железнодорожный подвижной состав
- Подробно описать технические характеристики динамики железных дорог с точки зрения подвижного состава
- Проанализировать аспекты, определяющие техническое обслуживание железнодорожного транспорта
- Ориентировать студента на практическое применение представленного содержания

Модуль 7. Риски и безопасность

- Задуматься о современной важности этого аспекта в железнодорожной технике и эксплуатации
- Подробно описать различные элементы процесса управления рисками и безопасностью
- Подробно изучить различные этапы, которые необходимо выполнить для применения процесса при проектировании системы или в случае ее модификации, когда она уже находится в эксплуатации
- Применять на практике изученные концепции в реальных делах

Модуль 8. Эксплуатация

- Установить основные технические аспекты текущей деятельности по эксплуатации железных дорог
- Подробно описать основные факторы, влияющие на регулирование железнодорожных перевозок, включая соответствующие анализы пропускной способности
- Проанализировать особенности пассажирских и грузовых железнодорожных перевозок
- Учесть экономические критерии, которые в настоящее время определяют управление железнодорожными компаниями, как в отношении компаний по управлению инфраструктурой, так и в отношении компаний железнодорожного транспорта
- Задуматься о важности потребления энергии в железнодорожном секторе и о том, как меры по повышению энергоэффективности должны быть включены в бизнесстратегию, анализируя при этом каждую из этих мер
- Подробно описать управление различными оперативными инцидентами с помощью планов, ресурсов и центров принятия решений
- Проанализировать сферу безопасности и гражданской обороны в железнодорожном секторе, подробно описав различные планы, ресурсы и центры принятия решений


Модуль 9. Научно-исследовательские и опытно-конструкторские работы (HИОКР)

- Определять значение разработки бизнес-стратегии, основанной на исследованиях, разработках и инновациях в железнодорожных технологиях, выявлении новых технологических задач
- Проанализировать текущую ситуацию в отношении программ исследований, разработок и инноваций, а также различные политики и стратегии с точки зрения продвижения и финансирования

- Уделить особое внимание различным фазам и этапам процесса исследований, разработок и инноваций, включая управление полученными конечными результатами
- Подробно описать по каждой анализируемой технической области особенности исследований, разработок и инноваций, выделив основные направления работы, связанные с ними инициативы и существующие рабочие группы
- Решить проблему наиболее деструктивных железнодорожных систем, т.е. тех, которые не используют традиционные методы для своей работы, такие как системы магнитной левитации, и тех, которые основаны на новой концепции *Hyperloop*

Модуль 10. Цифровая революция в железнодорожной отрасли

- Осмыслить технологическую эволюцию железной дороги, включая новую цифровую революцию, которую она переживает в настоящее время
- Проанализировать различные цифровые технологии, применимые к железнодорожному сектору, особенно подробно остановившись на наиболее стратегически важных из них
- Освоить применение новых цифровых технологий в различных областях железной дороги, определяя связанные с этим улучшения: тяговая энергия, пассажирские станции, железнодорожная логистика, техническое обслуживание и управление движением
- Осмыслить важность кибербезопасности в железнодорожном секторе
- Проанализировать программы и стратегии цифровизации в различных мировых железных дорогах

tech 16 | Компетенции

Общие профессиональные навыки

- Освоить различные технические концепции, применяемые в железнодорожной сфере
- Применять полученные знания в технологических разработках и совершенствовать свои навыки решения проблем в современных и глобальных условиях в более широком отраслевом контексте
- Уметь интегрировать знания и получить глубокое представление о различных традиционных и современных подходах к управлению в железнодорожных системах
- Понять и осознать изменения в секторе, которые вызвали спрос на новые технические решения
- Уметь внедрять новые стратегии, основанные на технологических достижениях в этом секторе

Развивайте свою карьеру, пройдя эту программу, разработанную экспертами в области железнодорожных перевозок"

Профессиональные навыки

- Уметь анализировать положение железнодорожного транспорта по отношению к другим видам транспорта, изучив современные структуры и организации в этом секторе
- Разработать комплексный анализ основных технических аспектов электрической энергии и подробно описать технические характеристики установок электрической тяги
- Получить знания об особенностях электрификации на постоянном и переменном токе, подчеркнув их эксплуатационные преимущества и недостатки
- Развивать необходимые коммуникативные навыки для четкого и структурированного объяснения основных технических аспектов установок, связанных с железнодорожным управлением, командами и сигнализацией
- Подробно проанализировать характеристики, которыми должен обладать инженерный проект, связанный с установкой УКС
- Освоить определение основных технических аспектов железнодорожных коммуникаций в современном мире
- Углубить понимание технических характеристик различных компонентов железнодорожной мобильной электросвязи, включая будущий переход на стандарт FRMCS
- Сформировать представление о том, как железнодорожные телекоммуникации в настоящее время ориентированы на коммерческий бизнес, в котором третьи стороны используют саму железнодорожную инфраструктуру
- Проанализировать взаимодействие транспортного средства с гражданской инфраструктурой, принимая во внимание возникающие динамические явления, чтобы определить конструктивные параметры платформы и остальных компонентов

- Четко и структурированно проанализировать технические характеристики различных компонентов, составляющих железнодорожный подвижной состав
- В совершенстве овладеть различными нормативными документами, регулирующими внедрение железнодорожных процессов на различных системах и подсистемах, требующих изменений для обеспечения безопасности
- Определить экономические критерии, которые в настоящее время регулируют управление железнодорожными компаниями, как в отношении компаний по управлению инфраструктурой, так и в отношении компаний железнодорожного транспорта
- Понять важность энергопотребления в железнодорожном секторе и то, как различные принимаемые меры необходимы для улучшения бизнес-стратегии
- Проанализировать текущую ситуацию в отношении программ исследований, разработок и инноваций, а также различные политики и стратегии с точки зрения продвижения и финансирования
- Знать и подробно освещать различные фазы и этапы процесса исследований, разработок и инноваций, включая управление полученными конечными результатами
- Осмыслить технологическую эволюцию железной дороги, включая новую цифровую революцию, которую она переживает в настоящее время
- Освоить применение новых цифровых технологий в различных областях железной дороги, определяя связанные с этим улучшения

Руководство

Г-н Мартинес Асеведо, Хосе Конрадо

- Опыт работы в государственном железнодорожном секторе, различные должности в сфере строительства, эксплуатации и технологического развития высокоскоростных и обычных железнодорожных сетей Испании
- Руководитель проектов в области исследований, разработок и инноваций в Администрации железных дорог (Adif), государственной компании при Министерстве транспорта, мобильности и городской политики Испании (MITMA)
- Координатор более 90 технологических проектов и инициатив во всех областях железных дорог
- Инженер-технолог и магистр по специальности "Железнодорожные технологии и строительство и обслуживание железнодорожных инфраструктур"
- Преподаватель магистерских программ в области железных дорог в Папском университете Комильяса (ICAI) и Университете Кантабрии
- Член IEEE (Институт инженеров по электротехнике и электронике) и член редакционного совета журнала Electrification Magazine того же института (журнал, специализирующийся на электрификации транспорта)
- Член группы AENOR CTN 166 "Исследования, технологическое развитие и инновационная деятельность (I+D+I)"
- Представитель Adif в рабочих группах MITMA I+D+i и EGNSS (Galileo)
- Выступал на более чем 40 конгрессах и семинарах

Преподаватели

Г-н Моралес Аркеро, Рамон

- Руководитель направления "Трафик и операции" в отделе технического и оперативного управления RENFE
- MBA в области делового администрирования Национального дистанционного университета
- Диплом промышленного инженера Политехнического университета Мадрида
- Курс профессиональной подготовки в области железнодорожных технологий Национального дистанционного университета

Г-н де Бустос Ферреро, Давид

- Опыт работы в частном железнодорожном секторе. Работал на ведущих железнодорожных производителей и технологов, а также на компании, занимающиеся оценкой и сертификацией безопасности
- Занимаясь выполнением и управлением критически важных для безопасности проектов, в основном подвижного состава и систем сигнализации, на последнем этапе сосредоточился на разработке новых технологий силовых установок, таких как СПГ и Н2 (сжиженный природный газ и водород)
- Инженер-технолог и магистр MBA. Программа общего управления (PDG)

Д-р Мартинес Льедо, Мариано

- Опыт работы в государственном железнодорожном секторе, различные должности в сфере деятельности, ввода в эксплуатацию, эксплуатации и технологического развития высокоскоростных и обычных железнодорожных сетей Испании
- Руководитель отдела технологического контроля в Администрации железных дорог (Adif), государственной компании при Министерстве транспорта, мобильности и городской политики Испании (MITMA)
- Доктор испанской филологии, специализирующийся на прикладной лингвистике (докторская диссертация:
 Специализированный язык железных дорог) и магистр в области международного стратегического менеджмента. Различные специализированные курсы по технологическому наблюдению и конкурентной разведке
- Внутренний инструктор в области железнодорожных НИОКР (Программа подготовки технических специалистов)
- Международный инструктор в области эксплуатации, управления движением и железнодорожных инноваций (Марокко, Мексика, Франция).
- Преподаватель магистерской программы по международному стратегическому менеджменту, предлагаемой Adif, Indra и Политехническим университетом Мадрида
- Выступал на различных конференциях и семинарах с докладами по терминологии и прикладной лингвистике железных дорог

tech 22 | Руководство курса

Г-н Гарсиа Руис, Мариано

- Руководитель отдела телекоммуникаций в Главном управлении по сохранению и техническому обслуживанию в Администрации железных дорог (Adif), государственной компании при Министерстве транспорта, мобильности и городской политики Испании (MITMA)
- Опыт работы в железнодорожном секторе, различные ответственные должности в различных проектах и строительных работах на испанской сети высокоскоростных железных дорог: Мобильные телекоммуникации GSM-R на высокоскоростных линиях Мадрид-Ллейда, Кордова-Малага и Мадрид-Валенсия-Альбасете-Аликанте; стационарная и мобильная связь GSM-R на высокоскоростных линиях Мадрид-Толедо и Мадрид-Сеговия-Вальядолид
- Ответственный за обслуживание и эксплуатацию установок операторов фиксированной связи, мобильной связи GSM-R, дистанционного управления энергией и общественной мобильной телефонии в высокоскоростной сети Испании
- Инженер по телекоммуникациям и магистр в области строительства и технического обслуживания железнодорожной инфраструктуры



Г-н Фернандес Гаго, Анхель

- Техник по контролю, управлению и сигнализации в Администрации инфраструктурных железных дорог (Adif), государственной компании при Министерстве транспорта, мобильности и городской политики Испании (МІТМА)
- Директор проектов по управлению, командам и сигнализации, включая: удаление телефонных блокировок, установку автоматических блокировок, стандартизацию и модернизацию блокировок и блокираторов, а также воздействие на подсистему УКС в результате реализации инфраструктурных проектов
- Руководитель отдела анализа и изучения систем блокировки на основе альтернативных технологий на конвенциональной сети Adif. Кейс-стади, Касерес-Валенсия, Алькантара
- Инженер-технолог и магистр в области инженерии и управления наземным транспортом

Комплексная, обновленная и высокоэффективная программа - возможность совершить скачок в вашей трудовой деятельности и конкурировать среди лучших в отрасли"

tech 26 | Структура и содержание

Модуль 1. Железная дорога и ее разработка в современном контексте

- 1.1. Железная дорога в транспортной сфере
 - 1.1.1. Ее положение и конкуренция с другими видами транспорта
 - 1.1.2. Секторальный анализ
 - 1.1.3. Финансирование
 - 1.1.4. Специализированный язык и железнодорожная терминология
- 1.2. Организация
 - 1.2.1. Регулирующие и надзорные органы
 - 1.2.2. Индустрия
 - 1.2.3. Менеджеры инфраструктуры
 - 1.2.4. Предприятия железнодорожного транспорта
 - 1.2.5. Учреждения и ассоциации
- 1.3. Новые тенденции и стратегии
 - 1.3.1. Взаимозаменяемость различных технологических систем
 - 1.3.2. На пути к цифровизации: железная дорога 4.0
 - 1.3.3. Новая модель общественного обслуживания
- 1.4. Описание услуг железнодорожного транспорта
 - 1.4.1. Городские службы
 - 1.4.2. Услуги на средних и дальних расстояниях
 - 1.4.3. Высокоскоростные услуги
 - 1.4.4. Услуги грузоперевозок
- 1.5. Классификация и основные системы инфраструктуры
 - 1.5.1. Энергия электрической тяги
 - 1.5.2. Контроль, команды и сигнализация
 - 1.5.3. Телекоммуникации
 - 1.5.4. Инфраструктура гражданского сектора
- 1.6. Классификация и основные системы подвижного состава
 - 1.6.1. Основные типы
 - 1.6.2. Тяга
 - 1.6.3. Торможение
 - 1.6.4. Контроль, команды и сигнализация
 - 165 Качение

- 1.7. Взаимодействие между транспортным средством и инфраструктурой
 - 1.7.1. Различные виды взаимодействия
 - 1.7.2. Техническая совместимость транспортного средства с инфраструктурой
 - 1.7.3. Проблема ширины колеи и ее основные решения
- 1.8. Железнодорожные технические критерии и ограничения
 - 1.8.1. Максимальная скорость движения
 - 1.8.2. Типология подвижного состава
 - 1.8.3. Транспортная способность
 - 1.8.4. Взаимосвязь между различными подсистемами
- 1.9. Глобальные эталонные кейсы
 - 1.9.1. Железнодорожные сети и службы
 - 1.9.2. Строящаяся и эксплуатируемая инфраструктура
 - 1.9.3. Технологические проекты

Модуль 2. Энергия электрической тяги

- 2.1. Электроэнергетика и железные дороги
 - 2.1.1. Силовой полупроводник
 - 2.1.2. Электрическое напряжение и ток на железной дороге
 - 2.1.3. Общая оценка электрификации железных дорог в мире
- 2.2. Взаимосвязь между железнодорожными службами и электрификацией
 - 2.2.1. Городские службы
 - 2.2.2. Междугородные перевозки
 - 2.2.3. Высокоскоростные услуги
- 2.3. Электрификация и торможение поезда
 - 2.3.1. Производительность электрического тормоза на уровне тяги
 - 2.3.2. Производительность электрического тормоза на уровне инфраструктуры
 - 2.3.3. Общее влияние электрического рекуперативного тормоза
- 2.4. Система электроснабжения железной дороги
 - 2.4.1. Составные элементы
 - 2.4.2. Электрическая среда
 - 2.4.3. TPS (Traction Power System)

- 2.5. TPS (Traction Power System)
 - 2.5.1. Компоненты
 - 2.5.2. Типы TPS в зависимости от электрической рабочей частоты
 - 2.5.3. Контроль SCADA
- 2.6. Тяговая электрическая подстанция (ТЭП)
 - 2.6.1. Функция
 - 2.6.2. Виды.
 - 2.6.3. Структура и компоненты
 - 2.6.4. Электрические соединения
- 2.7. Линия передачи (ЛП)
 - 2.7.1. Функция
 - 2.7.2. Виды.
 - 2.7.3. Структура и компоненты
 - 2.7.4. Сбор электрической энергии поездом
 - 2.7.5. Воздушная эластичная линия электропередачи (цепная линия)
 - 2.7.6. Жесткая воздушная линия электропередачи
- 2.8. Железнодорожная электросистема постоянного тока
 - 2.8.1. Специфические особенности
 - 2.8.2. Технические параметры
 - 2.8.3. Эксплуатация
- 2.9. Однофазная железнодорожная электрическая система переменного тока
 - 2.9.1. Специфические особенности
 - 2.9.2. Технические параметры
 - 2.9.3. Нарушения и основные решения
 - 2.9.4. Эксплуатация
- 2.10. Инженерный проект
 - 2.10.1. Содержание проекта
 - 2.10.2. Планирование, реализация и ввод в эксплуатацию

Модуль 3. Управление, команды и сигнализация (УКС)

- 3.1. УКС и железные дороги
 - 3.1.1. Развитие
 - 3.1.2. Безопасность железнодорожного транспорта
 - 3.1.3. Значение RAMS
 - 3.1.4. Операционная совместимость железных дорог
 - 3.1.5. Компоненты подсистемы УКС
- 3.2. Сцепление
 - 3.2.1. Развитие
 - 3.2.2. Принцип работы
 - 3.2.3. Виды.
 - 3.2.4. Другие элементы
 - 3.2.5. Программа эксплуатации
 - 3.2.6. Будущее развитие
- 3.3. Блокировка
 - 3.3.1. Развитие
 - 3.3.2. Виды
 - 3.3.3. Транспортная способность и блокировка
 - 3.3.4. Критерии разработки
 - 3.3.5. Коммуникация блокировки
 - 3.3.6. Конкретные применения
- 3.4. Определение поездов
 - 3.4.1. Путевые схемы
 - 3.4.2. Счетчики осей
 - 3.4.3. Критерии разработки
 - 3.4.4. Другие технологии
- 3.5. Элементы поля
 - 3.5.1. Путевые приборы
 - 3.5.2. Сигналы
 - 3.5.3. Системы защиты переездов
 - 3.5.4. Детекторы поддержки эксплуатации

tech 28 | Структура и содержание

3.6. Системы защиты поезда

	3.6.1.	Развитие
	3.6.2.	Виды
	3.6.3.	Встраиваемые системы
	3.6.4.	ATP
	3.6.5.	ATO
	3.6.6.	Критерии разработки
	3.6.7.	Будущее развитие
3.7.	Система ERTMS	
	3.7.1.	Развитие
	3.7.2.	Регламент
	3.7.3.	Структура и компоненты
	3.7.4.	Уровни
	3.7.5.	Режимы работы
	3.7.6.	Критерии разработки
3.8.	Система CBTC	
	3.8.1.	Разработки
	3.8.2.	Регламент
	3.8.3.	Структура и компоненты
	3.8.4.	Режимы работы
	3.8.5.	Критерии разработки
3.9.	Взаимосвязь между железнодорожными услугами и УКС	
	3.9.1.	Городские службы
	3.9.2.	Междугородные перевозки
	3.9.3.	Высокоскоростные услуги
3.10.	Инженерные проекты	
	3.10.1.	Содержание проекта
	3.10.2.	Планирование, реализация и ввод в эксплуатацию

Модуль 4. Телекоммуникации

- 4.1. Железнодорожные телекоммуникации
 - 4.1.1. Безопасность и доступность телекоммуникационных систем
 - 4.1.2. Классификация железнодорожных телекоммуникационных систем
 - 4.1.3. Конвергенция в ІР-сетях
- 4.2. Средства передачи
 - 4.2.1. Медные кабели
 - 4.2.2. Радиосвязь
 - 4.2.3. Оптическое волокно
- 4.3. Сети транспорта и доступа
 - 4.3.1. Цифровая передача
 - 4.3.2. Система PDH
 - 4.3.3. Система SDH
 - 4.3.4. Развитие систем
- 4.4. Сети голосовой коммутации
 - 4.4.1. Традиционная телефонная связь
 - 4.4.2. Коммутируемая телефонная связь
 - 4.4.3. Передача голоса по IP
 - 4.4.4. Структура голосовой сети
 - 4.4.5. План нумерации
- 4.5. ІР-сети передачи данных
 - 4.5.1. Основы. Модель OSI
 - 4.5.2. Сети с пакетной коммутацией
 - 4.5.3. Локальные сети Ethernet
 - 4.5.4. Сети IP/MPLS
- 4.6. Мобильная связь
 - 4.6.1. Основы мобильной связи
 - 4.6.2. Аналоговая связь земля-поезд
 - 4.6.3. Системы Wi-Fi
 - 4.6.4. Системы TETRA

Структура и содержание | 29 tech

- 4.7. Мобильная связь GSM-R
 - 4.7.1. Специфические характеристики GSM-R vs. GSM (2G)
 - 4.7.2. Структура
 - 4.7.3. Управление вызовами
 - 4.7.4. Проектирование сетей высокой доступности
 - 5.7.4. ERTMS L2: GSM-R + ETCS L2
 - 4.7.6. Эволюция GSM-R до 5G (FRMCS)
- 4.8. Эксплуатация и надзор за телекоммуникационными сетями
 - 4.8.1. Модель ISO TMNS
 - 4.8.2. Стандартные протоколы и собственные менеджеры
 - 4.8.3. Централизованные системы управления
 - 4.8.4. Предоставление услуг
- 4.9. Телекоммуникационные услуги и клиенты в железнодорожной среде
 - 4.9.1. Железнодорожные услуги и потребители
 - 4.9.2. Фиксированные телекоммуникации
 - 4.9.3. Мобильные телекоммуникации
 - 4.9.4. Инженерный проект
 - 4.9.5. Содержание проекта
 - 4.9.6. Планирование, реализация и ввод в эксплуатацию

Модуль 5. Гражданская инфраструктура

- 5.1. Приближение к характеристикам гражданской железнодорожной инфраструктуры
 - 5.1.1. Взаимодействие инфраструктуры с транспортным средством
 - 5.1.2. Общая динамика железнодорожного транспорта
 - 5.1.3. Параметры проектирования инфраструктуры
- 5.2. Железнодорожная платформа
 - 5.2.1. Конфигурация платформы
 - 5.2.2. Типология
 - 5.2.3. Слои железнодорожных сидений
- 5.3. Мосты
 - 5.3.1. Типология
 - 5.3.2. Технические характеристики
 - 5.3.3. Взаимодействие с транспортным средством

- 5.4. Туннели
 - 5.4.1. Типология
 - 5.4.2. Технические характеристики
 - 5.4.3. Взаимодействие с транспортным средством
 - 5.4.4. Особенности аэродинамики
 - 5.4.5. Специфика безопасности и защиты населения
- 5.5. Колея на балласте
 - 5.5.1. Типология
 - 5.5.2. Путь качения
 - 5.5.3. Другие члены семьи
 - 5.5.4. Феномен flying-ballast
- 5.6. Путь на плите
 - 5.6.1. Типология
 - 5.6.2. Компоненты
 - 5.6.3. Переход от безбалластного пути к пути с балластом
- 5.7. Путевые приборы
 - 5.7.1. Типология
 - 5.7.2. Разъезды и переезды
 - 5.7.3. Расширительное оборудование
- 5.8. Другие вспомогательные элементы
 - 5.8.1. Буферы и зоны торможения
 - 5.8.2. Многофункциональные шлагбаумы
 - 5.8.3. Устройства изменения ширины
 - 5.8.4. Весы
- 5.9. Взаимосвязь между железнодорожными услугами и гражданской инфраструктурой
 - 5.9.1. Городские службы
 - 5.9.2. Междугородные перевозки
 - 5.9.3. Высокоскоростные услуги
- 5.10. Устойчивость инфраструктуры к экстремальным явлениям
 - 5.10.1. Климатические явления
 - 5.10.2. Оползни
 - 5.10.3. Землетрясения

tech 30 | Структура и содержание

Модуль 6. Подвижной состав

- 6.1. Рельсовые транспортные средства
 - 6.1.1. Развитие
 - 6.1.2. Классификация
 - 6.1.3. Функциональные части
- 6.2. Взаимодействие колеса и рельса
 - 6.2.1. Колесные пары и оси
 - 6.2.2. Тележки и стойки
 - 6.2.3. Колесная направляющая
 - 6.2.4. Наклон
 - 6.2.5. Системы переменной ширины
- 6.3. Динамика железнодорожного транспорта
 - 6.3.1. Уравнения движения
 - 6.3.2. Тяговые кривые
 - 6.3.3. Соблюдение
 - 6.3.4. Подвеска
 - 6.3.5. Аэродинамика в высокоскоростных поездах
- 6.4. Корпус, кабина, двери, туалет и дизайн интерьера
 - 6.4.1. Корпус
 - 6.4.2. Кабина пилотов
 - 6.4.3. Двери, туалет и дизайн интерьера
- 6.5. Электрические цепи высокого и низкого напряжения
 - 6.5.1. Пантограф
 - 6.5.2. Распределительные устройства и трансформаторы высокого напряжения
 - 6.5.3. Структура схемы высокого напряжения
 - 6.5.4. Преобразователь SSAA и батареи
 - 6.5.5. Структура схемы низкого напряжения
- 6.6. Электрическая тяга
 - 6.6.1. Тяговая цепь
 - 6.6.2. Электрические тяговые двигатели
 - 6.6.3. Статические преобразователи
 - 6.6.4. Фильтр высокого напряжения

- б.7. Дизельный привод, дизель-электрический привод и гибридный привод
 - 6.7.1. Дизельный привод
 - 6.7.2. Дизель-электрический привод
 - 6.7.3. Гибридный привод
- 6.8. Тормозная система
 - 6.8.1. Автоматический рабочий тормоз
 - 6.8.2. Электрический тормоз
 - 6.8.3. Стояночный тормоз
 - 6.8.4. Вспомогательный тормоз
- 6.9. Системы сигнализации, системы связи и системы контроля и диагностики
 - 6.9.1. Системы ATP ERTMS/ETCS
 - 6.9.2. Системы связи Поезд Земля GSM-R
 - 6.9.3. Системы управления и диагностика Сеть TCN
- 6.10. Техническое обслуживание железнодорожного транспорта
 - 6.10.1. Объекты технического обслуживания железнодорожного транспорта
 - 6.10.2. Мероприятия по техническому обслуживанию
 - 6.10.3. Организации, отвечающие за техническое обслуживание

Модуль 7. Риски и безопасность

- 7.1. Жизненный цикл железнодорожных проектов
 - 7.1.1. Стадии жизненного цикла
 - 7.1.2. Деятельность по обеспечению безопасности
 - 7.1.3. Деятельность RAM надежность, доступность и ремонтопригодность
- 7.2. Управление безопасностью RAMS
 - 7.2.1. Управление безопасностью
 - 7.2.2. Функциональная безопасность
 - 7.2.3. Управление качеством
- 7.3. Управление рисками
 - 7.3.1. Выявление и анализ рисков
 - 7.3.2. Классификация опасностей и распределение рисков
 - 7.3.3. Критерии принятия риска

Структура и содержание | 31 tech

- 7.4. Функциональная безопасность
 - 7.4.1. Функции безопасности
 - 7.4.2. Требования к безопасности
 - 7.4.3. Уровень целостности безопасности SIL
- 7.5. Индикаторы RAM
 - 7.5.1. Надежность
 - 7.5.2. Доступность
 - 7.5.3. Ремонтопригодность
- 7.6. Процесс проверки и утверждения
 - 7.6.1. Методологии V&V-технологии
 - 7.6.2. Проверка дизайна
 - 7.6.3. Инспекции и испытания
- 7.7. Safety Case
 - 7.7.1. Структура Safety Case
 - 7.7.2. Свидетельства безопасности
 - 7.7.3. Safety Case и условия применения
- 7.8. Управление RAMS эксплуатация и обслуживание
 - 7.8.1. Оперативные показатели RAMS
 - 7.8.2. Управление модификациями
 - 7.8.3. Документация о модификациях
- 7.9. Процесс сертификации и независимая оценка
 - 7.9.1. Независимая оценка безопасности ISA и ASBO
 - 7.9.2. Оценка соответствия NOBO и DEBO
 - 7.9.3. Разрешение на ввод в эксплуатацию

Модуль 8. Эксплуатация

- 8.1. Эксплуатация железнодорожного транспорта
 - 8.1.1. Функции, рассматриваемые в области эксплуатации железных дорог
 - 8.1.2. Спрос на пассажирский транспорт
 - 8.1.3. Спрос на грузовые перевозки

- 8.2. Регулирование движения
 - 8.2.1. Принципы регулирования железнодорожных перевозок
 - 8.2.2. Правила движения
 - 8.2.3. Расчет маршрутов
 - 8.2.4. Центр управления движением
- 8.3. Пропускная способность
 - 8.3.1. Анализ пропускной способности линии
 - 8.3.2. Распределение пропускной способности
 - 8.3.3. Введение сети
- 8.4. Пассажирские перевозки
 - 8.4.1. Планирование обслуживания
 - 8.4.2. Выявление ограничений и сдерживающих факторов в работе
 - 8.4.3. Пассажирские станции
- 8.5. Услуги грузоперевозок
 - 8.5.1. Планирование обслуживания
 - 8.5.2. Выявление ограничений и сдерживающих факторов в работе
 - 8.5.3. Товарный терминал
 - 8.5.4. Особенности грузовых перевозок на высокоскоростных линиях
- 8.6. Экономика железнодорожной системы
 - 8.6.1. Экономика железных дорог в современном контексте
 - 8.6.2. Экономика управления инфраструктурой
 - 8.6.3. Экономика сервисной деятельности
- 3.7. Эксплуатация железных дорог с точки зрения энергопотребления
 - 8.7.1. Энергопотребление и выбросы, связанные с железнодорожными перевозками
 - 8.7.2. Энергетический менеджмент в железнодорожных компаниях
 - 8.7.3. Потребление энергии на высокоскоростных линиях
- 8.8. Энергоэффективность
 - 8.8.1. Стратегии снижения энергопотребления тяги
 - 8.8.2. Эффективное проектирование инфраструктуры
 - 8.8.3. Использование регенерированной электрической энергии в тяге
 - 8.8.4. Эффективное управление

tech 32 | Структура и содержание

- 8.9. Управление инцидентами
 - 8.9.1. План действий в непредвиденных ситуациях
 - 8.9.2. Центр управления инцидентами
 - 8.9.3. Конкретный анализ метеорологических явлений
- 8.10. Безопасность и защита населения
 - 8.10.1. Планы самозащиты
 - 8.10.2. Конкретные объекты в этой области
 - 8.10.3. Центр управления безопасностью

Модуль 9. Научно-исследовательские и опытно-конструкторские работы (НИОКР)

- 9.1. Текущий контекст НИОКР в железнодорожном секторе
 - 9.1.1. Европейский импульс
 - 9.1.2. Европейские исследовательские программы Shift2Rail и ERJU
 - 9.1.3. Ситуация и перспективы в других странах и регионах мира
- 9.2. Фазы процесса НИОКР
 - 9.2.1. Инновационные модели
 - 9.2.2. Проекты НИОКР
 - 9.2.3. Технологический интеллект
 - 9.2.4. Стратегия НИОКР
 - 9.2.5. Испытательные стенды
- 9.3. Технологические проблемы железных дорог
 - 9.3.1. Традиционные и будущие проблемы
 - 9.3.2. Взаимодействие железных дорог с точки зрения НИОКР
 - 9.3.3. Цифровая революция в железнодорожном секторе
- 9.4. НИОКР в области энергии электрической тяги
 - 9.4.1. Текущие и планируемые направления НИОКР
 - 9.4.2. Технологические инициативы, на которые следует обратить особое внимание
 - 9.4.3. Основные исследовательские группы в данной области

- 9.5. НИОКР в области УКС
 - 9.5.1. Текущие и планируемые направления НИОКР
 - 9.5.2. Технологические инициативы, на которые следует обратить особое внимание
 - 9.5.3. Основные исследовательские группы в данной области
- 9.6. НИОКР в области телекоммуникаций
 - 9.6.1. Текущие и планируемые направления НИОКР
 - 7.6.2. Технологические инициативы, на которые следует обратить особое внимание
 - 9.6.3. Основные исследовательские группы в данной области
- 9.7. НИОКР в области гражданской инфраструктуры
 - 9.7.1. Текущие и планируемые направления НИОКР
 - 9.7.2. Технологические инициативы, на которые следует обратить особое внимание
 - 9.7.3. Основные исследовательские группы в данной области
- 9.8. НИОКР в области подвижного состава
 - 9.8.1. Текущие и планируемые направления НИОКР
 - 9.8.2. Технологические инициативы, на которые следует обратить особое внимание
 - 9.8.3. Основные исследовательские группы в данной области
- 9.9. Результаты процесса НИОКР
 - 9.9.1. Защита результатов
 - 9.9.2. Передача технологий
 - 9.9.3. Внедрение в сервис
- 9.10. Новые системы железнодорожного транспорта
 - 9.10.1. Ситуация и перспективы
 - 9.10.2. Технология магнитной левитации
 - 9.10.3. Новая концепция *Hyperloop*

Модуль 10. Новая цифровая революция в железнодорожном транспорте

- 10.1. Четвертая железнодорожная революция
 - 10.1.1. Технологические разработки
 - 10.1.2. Применение цифровых технологий на железных дорогах
 - 10.1.3. Области применения в текущем контексте
- 10.2. Анализ ключевых технологий
 - 10.2.1. Система больших данных
 - 10.2.2. Cloud Computing
 - 10.2.3. Искусственный интеллект
 - 10.2.4. ІоТ и новая сенсоризация
 - 10.2.5. DAS
- 10.3. Применение в железнодорожной электрической сети
 - 10.3.1. Цель
 - 10.3.2. Функциональность
 - 10.3.3. Внедрение
- 10.4. Применение в техническом обслуживании
 - 10.4.1. Цель
 - 10.4.2. Функциональность
 - 10.4.3. Внедрение
- 10.5. Применение для пассажирских станций
 - 10.5.1. Цель
 - 10.5.2. Функциональность
 - 10.5.3. Внедрение
- 10.6. Применение в управлении железнодорожной логистикой
 - 10.6.1. Цель
 - 10.6.2. Функциональность
 - 10.6.3. Внедрение

- 10.7. Применение для управления железнодорожным движением
 - 10.7.1. Цель
 - 10.7.2. Функциональность
 - 10.7.3. Внедрение
- 10.8. Кибербезопасность на железных дорогах
 - 10.8.1. Цель
 - 10.8.2. Функциональность
 - 10.8.3. Внедрение
- 10.9. Пользовательский опыт
 - 10.9.1. Цель
 - 10.9.2. Функциональность
 - 10.9.3. Внедрение
- 10.10. Стратегии цифровизации на некоторых железных дорогах
 - 10.10.1. Немецкие железные дороги
 - 10.10.2. Французские железные дороги
 - 10.10.3. Японские железные дороги
 - 10.10.4. Другие железные дороги

Программа, разработанная экспертами с большим опытом, поможет вам достичь ваших карьерных целей в секторе железнодорожных систем"

tech 36 | Методология

Исследование кейсов для контекстуализации всего содержания

Наша программа предлагает революционный метод развития навыков и знаний. Наша цель - укрепить компетенции в условиях меняющейся среды, конкуренции и высоких требований.

С ТЕСН вы сможете познакомиться со способом обучения, который опровергает основы традиционных методов образования в университетах по всему миру"

Вы получите доступ к системе обучения, основанной на повторении, с естественным и прогрессивным обучением по всему учебному плану.

В ходе совместной деятельности и рассмотрения реальных кейсов студент научится разрешать сложные ситуации в реальной бизнес-среде.

Инновационный и отличный от других метод обучения

Эта программа TECH - интенсивная программа обучения, созданная с нуля, которая предлагает самые сложные задачи и решения в этой области на международном уровне. Благодаря этой методологии ускоряется личностный и профессиональный рост, делая решающий шаг на пути к успеху. Метод кейсов, составляющий основу данного содержания, обеспечивает следование самым современным экономическим, социальным и профессиональным реалиям.

Наша программа готовит вас к решению новых задач в условиях неопределенности и достижению успеха в карьере"

Метод кейсов является наиболее широко используемой системой обучения лучшими преподавателями в мире. Разработанный в 1912 году для того, чтобы студенты-юристы могли изучать право не только на основе теоретического содержания, метод кейсов заключается в том, что им представляются реальные сложные ситуации для принятия обоснованных решений и ценностных суждений о том, как их разрешить. В 1924 году он был установлен в качестве стандартного метода обучения в Гарвардском университете.

Что должен делать профессионал в определенной ситуации? Именно с этим вопросом мы сталкиваемся при использовании кейс-метода - метода обучения, ориентированного на действие. На протяжении всей программы студенты будут сталкиваться с многочисленными реальными случаями из жизни. Им придется интегрировать все свои знания, исследовать, аргументировать и защищать свои идеи и решения.

Методология Relearning

ТЕСН эффективно объединяет метод кейсов с системой 100% онлайн-обучения, основанной на повторении, которая сочетает 8 различных дидактических элементов в каждом уроке.

Мы улучшаем метод кейсов с помощью лучшего метода 100% онлайн-обучения: Relearning.

В 2019 году мы достигли лучших результатов обучения среди всех онлайнуниверситетов в мире.

В ТЕСН вы будете учитесь по передовой методике, разработанной для подготовки руководителей будущего. Этот метод, играющий ведущую роль в мировой педагогике, называется Relearning.

Наш университет - единственный вуз, имеющий лицензию на использование этого успешного метода. В 2019 году нам удалось повысить общий уровень удовлетворенности наших студентов (качество преподавания, качество материалов, структура курса, цели...) по отношению к показателям лучшего онлайнуниверситета.

Методология | 39 tech

В нашей программе обучение не является линейным процессом, а происходит по спирали (мы учимся, разучиваемся, забываем и заново учимся). Поэтому мы дополняем каждый из этих элементов по концентрическому принципу. Благодаря этой методике более 650 000 выпускников университетов добились беспрецедентного успеха в таких разных областях, как биохимия, генетика, хирургия, международное право, управленческие навыки, спортивная наука, философия, право, инженерное дело, журналистика, история, финансовые рынки и инструменты. Наша методология преподавания разработана в среде с высокими требованиями к уровню подготовки, с университетским контингентом студентов с высоким социально-экономическим уровнем и средним возрастом 43,5 года.

Методика Relearning позволит вам учиться с меньшими усилиями и большей эффективностью, все больше вовлекая вас в процесс обучения, развивая критическое мышление, отстаивая аргументы и противопоставляя мнения, что непосредственно приведет к успеху.

Согласно последним научным данным в области нейронауки, мы не только знаем, как организовать информацию, идеи, образы и воспоминания, но и знаем, что место и контекст, в котором мы что-то узнали, имеют фундаментальное значение для нашей способности запомнить это и сохранить в гиппокампе, чтобы удержать в долгосрочной памяти.

Таким образом, в рамках так называемого нейрокогнитивного контекстнозависимого электронного обучения, различные элементы нашей программы связаны с контекстом, в котором участник развивает свою профессиональную практику. В рамках этой программы вы получаете доступ к лучшим учебным материалам, подготовленным специально для вас:

Учебный материал

Все дидактические материалы создаются преподавателями специально для студентов этого курса, чтобы они были действительно четко сформулированными и полезными.

Затем вся информация переводится в аудиовизуальный формат, создавая дистанционный рабочий метод ТЕСН. Все это осуществляется с применением новейших технологий, обеспечивающих высокое качество каждого из представленных материалов.

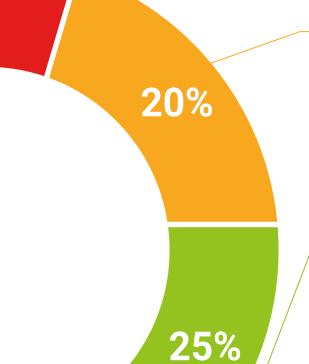
Мастер-классы

Существуют научные данные о пользе экспертного наблюдения третьей стороны.

Так называемый метод обучения у эксперта укрепляет знания и память, а также формирует уверенность в наших будущих сложных решениях.

Практика навыков и компетенций

Студенты будут осуществлять деятельность по развитию конкретных компетенций и навыков в каждой предметной области. Практика и динамика приобретения и развития навыков и способностей, необходимых специалисту в рамках глобализации, в которой мы живем.



Дополнительная литература

Новейшие статьи, консенсусные документы и международные руководства включены в список литературы курса. В виртуальной библиотеке ТЕСН студент будет иметь доступ ко всем материалам, необходимым для завершения обучения.

Методология | 41 tech

4%

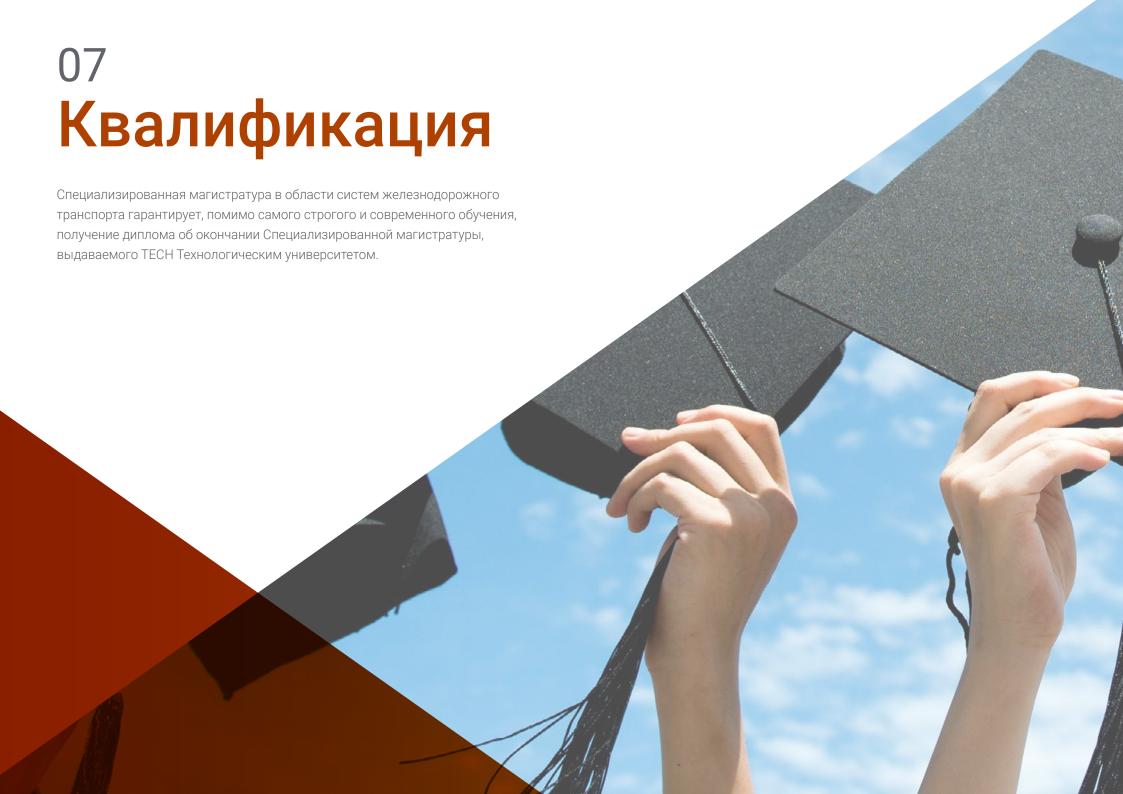
3%

Метод кейсов

Метод дополнится подборкой лучших кейсов, выбранных специально для этой квалификации. Кейсы представляются, анализируются и преподаются лучшими специалистами на международной арене.

Интерактивные конспекты

Мы представляем содержание в привлекательной и динамичной мультимедийной форме, которая включает аудио, видео, изображения, диаграммы и концептуальные карты для закрепления знаний.


Эта уникальная обучающая система для представления мультимедийного содержания была отмечена компанией Microsoft как "Европейская история успеха".

Тестирование и повторное тестирование

На протяжении всей программы мы периодически оцениваем и переоцениваем ваши знания с помощью оценочных и самооценочных упражнений: так вы сможете убедиться, что достигаете поставленных целей.

tech 44 | Квалификация

Данная **Специализированная магистратура в области систем железнодорожного транспорта** содержит самую полную и современную программу на рынке.

После прохождения аттестации студент получит по почте* с подтверждением получения соответствующий диплом Специализированной магистратуры, выданный ТЕСН Технологическим университетом.

Настоящий

ДИПЛОМ

Свидетельствует о том, что

С-н/Г-жа

Освоил(а) и успешно прошел(ла) аккредитацию программы

СПЕЦИАЛИЗИРОВАННАЯ МАГИСТРАТУРА

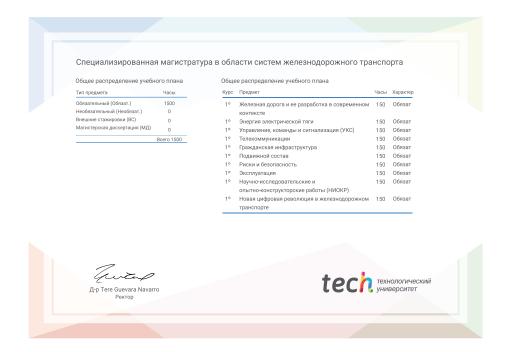
в области

СИСТЕМ ЖЕЛЕЗИНОВОРМНОГО ТРАНСПОРТА

Данный диплом специализированной программы, присуждаемый Университетом, соответствует 1500 учебным часам, с датой начала дд/мм/ггтг и датой окончания дд/мм/ггтг.

ТЕСН является частным высшим учебным заведением, признанным Министерством народного образования Мексики с 28 июня 2018 года.

17 июня 2020 г.


Дамада Дър Теге Guevara Navarro
Ректор
Ректор

Диплом, выданный **TECH Технологическим университетом**, подтверждает квалификацию, полученную в Специализированной магистратуре, и соответствует требованиям, обычно предъявляемым биржами труда, конкурсными экзаменами и комитетами по оценке карьеры.

Диплом: **Специализированная магистратура в области систем железнодорожного транспорта**

Формат: онлайн

Продолжительность: 12 месяцев

^{*}Гаагский апостиль. В случае, если студент потребует, чтобы на его диплом в бумажном формате был проставлен Гаагский апостиль, ТЕСН EDUCATION предпримет необходимые шаги для его получения за дополнительную плату.

Специализированная магистратура

Системы железнодорожного транспорта

- » Формат: **онлайн**
- » Продолжительность: 12 месяцев
- » Учебное заведение: **ТЕСН Технологический университет**
- » Расписание: по своему усмотрению
- » Экзамены: **онлайн**

