

Профессиональная магистерская специализация

Строительная инженерия

- » Формат: **онлайн**
- » Продолжительность: **2 года**
- » Учебное заведение: ТЕСН Технологический университет
- » Режим обучения: 16ч./неделя
- » Расписание: **по своему усмотрению**
- » Экзамены: **онлайн**

 ${\tt Be6\text{-}доступ:}\ www.techtitute.com/ru/engineering/advanced-master-degree/advanced-master-degree-construction-engineering$

Оглавление

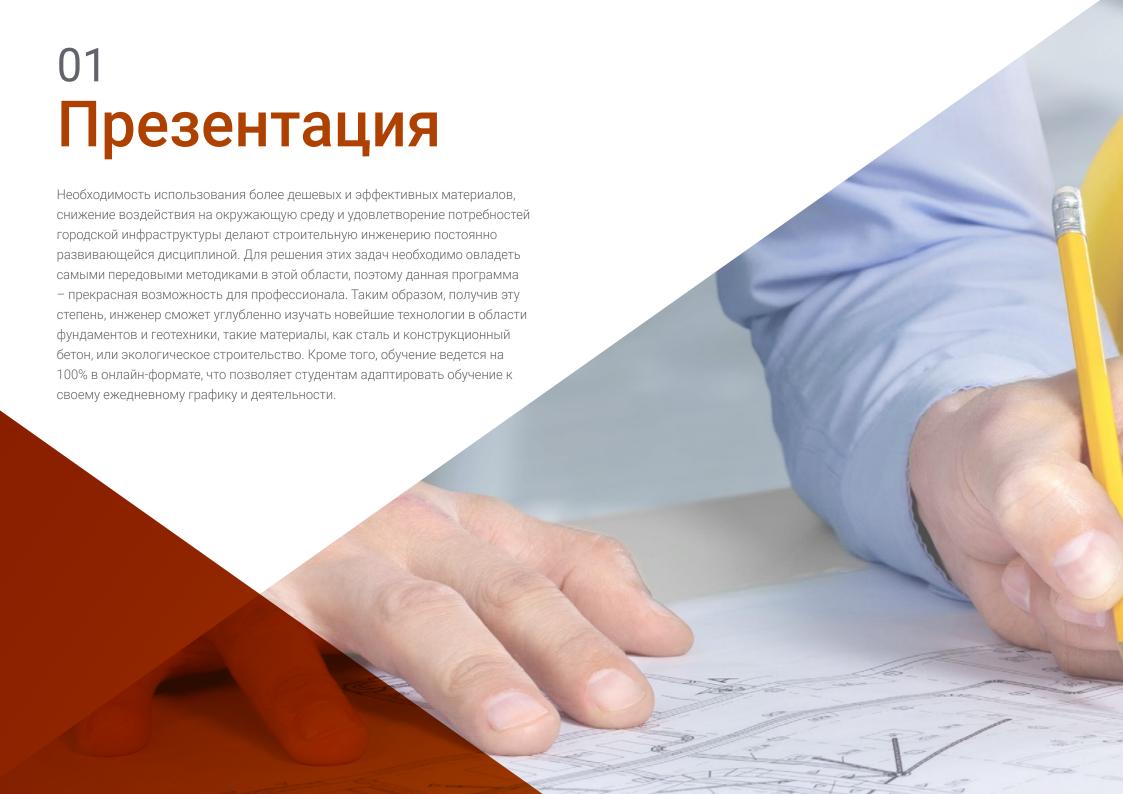
 О1
 02

 Презентация
 Цели

 стр. 4
 04

 Компетенции
 Руководство курса

 стр. 20
 Структура и содержание


 стр. 26

Методология

стр. 44

Квалификация

стр. 52

tech 06 | Презентация

Перед строительной отраслью стоит ряд все более сложных задач, таких как необходимость снижения воздействия на окружающую среду, рациональное использование ресурсов и повышение безопасности труда на рабочих местах. Для решения этих задач Профессиональная магистерская специализация в строительной инженерии предоставляет студентам возможность погрузиться в самые передовые методы и инструменты строительного проектирования.

Программа охватывает такие аспекты, как управление строительными проектами, строительная инженерия и экологическое строительство. В области управления проектами изучаются такие методы, как стратегическое планирование, управление рисками и мониторинг сложных проектов. В области строительной инженерии основное внимание уделяется проектированию стальных и бетонных конструкций, а также анализу и расчету сейсмических нагрузок. Что касается экологического строительства, то здесь рассматриваются методы и процедуры, позволяющие снизить воздействие зданий на окружающую среду, например, выбор материалов и энергосберегающих технологий.

Кроме того, обучение Профессиональной магистерской специализации ведется в 100% онлайн-формате, что позволяет студентам участвовать в программе из любой точки мира и адаптировать обучение к своему графику и темпу жизни. Одним словом, Профессиональная магистерская специализация в строительной инженерии предлагает инженерам-строителям углубленную и специализированную подготовку, которая позволит им успешно и эффективно решать современные задачи отрасли для достижения наилучших результатов.

Данная **Профессиональная магистерская специализация в области Строительная инженерия** содержит самую полную и современную образовательную программу на рынке. Основными особенностями обучения являются:

- Разбор практических кейсов, представленных экспертами в области строительной инженерии
- Наглядное, схематичное и исключительно практическое содержание курса предоставляет научную и практическую информацию по тем дисциплинам, которые необходимы для осуществления профессиональной деятельности
- Практические упражнения для самооценки, контроля и улучшения успеваемости
- Особое внимание уделяется инновационным методикам в строительной инженерии
- Теоретические занятия, вопросы эксперту, дискуссионные форумы по спорным темам и самостоятельная работа
- Учебные материалы курса доступны с любого стационарного или мобильного устройства с выходом в Интернет

100% онлайн-методика этой программы позволит вам учиться в своем собственном темпе, не отрываясь от повседневной работы"

Презентация | 07 tech

Практические кейсы, интерактивные конспекты, технические видеоматериалы... В вашем распоряжении будут самые современные мультимедийные ресурсы, представленные на образовательном рынке"

В преподавательский состав входят профессионалы в области инженерии, которые привносят в программу свой опыт работы, а также признанные специалисты из ведущих сообществ и престижных университетов.

Мультимедийное содержание программы, разработанное с использованием новейших образовательных технологий, позволит специалисту пройти обучение с учетом ситуации и контекста, то есть в интерактивной среде, которая обеспечит погружение в учебный процесс, запрограммированный на обучение в реальных ситуациях.

В центре внимания этой программы – проблемно-ориентированное обучение, с помощью которого студент должен попытаться решить различные ситуации профессиональной практики, возникающие в течение учебной программы. Для этого специалисту будет помогать инновационная интерактивная видеосистема, созданная признанными и опытными специалистами.

Методика Relearning, используемая в данной программе, позволит вам максимально эффективно использовать каждую минуту учебного времени, так как она разработана с целью повышения эффективности учебного процесса.

Данное обучение станет знаменательной датой в вашей профессиональной карьере: не раздумывайте и поступайте.

tech 10|Цели

Общие цели

- Самостоятельно освоить новые знания и методы, подходящие для гражданского строительства
- Подробно ознакомиться с природой, характеристиками и эксплуатационными свойствами новых строительных материалов, которые были исследованы в последние годы
- Понимать и использовать инженерный язык и терминологию гражданского строительства
- Расширить научно-технический кругозор по профессии технического инженера по благоустройству со знанием функций консультирования, анализа, проектирования, расчета, проекта, строительства, технического обслуживания, консервации и эксплуатации
- Проводить комплексный анализ различных видов строительных материалов
- Углубить знания в области методов определения характеристик различных строительных материалов
- Выявлять новые технологии, применяемые в материаловедении
- Осуществлять правильную утилизацию отходов
- Управлять с инженерной точки зрения качеством и производством материалов для строительной площадки
- Применять новые технологии в производстве более экологичных строительных материалов
- Обновлять и расширять знания о новых тенденциях и материалах, применяемых в строительстве

Модуль 1. Проекты

- Применять все новейшие знания и методы для реализации контрактов, соблюдая все соответствующие административные процессы
- Применять правила охраны труда и техники безопасности на всех этапах проектирования и строительства
- Разрабатывать линейные работы с соблюдением действующих правил и выбором конкретной и наиболее подходящей техники для каждого конкретного случая
- Применять все инструменты, необходимые для строительства гидротехнических сооружений
- Развивать морские работы, учитывая особенности каждого сооружения и последние тенденции в области НИОКР
- Выполнять задачи, необходимые для завершения проекта (расчет и закрытие работ), а также мониторинг проекта

Модуль 2. Механика жидкостей и гидравлика

- Понимать общие понятия физики жидкости и решать связанные с ней задачи
- Знать основные характеристики жидкостей и их особенности поведения при различных условиях
- Уметь объяснить такое поведение с помощью основных уравнений гидродинамики
- Знать определяющие уравнения
- Овладеть навыками работы с уравнениями Навье-Стокса

Модуль 3. Анализ структуры

- Анализировать и понимать, как характеристики структур влияют на их поведение
- Применять знания о прочностных характеристиках конструкций для определения их размеров в соответствии с действующими нормами и с использованием аналитических и численных методов расчета
- Определять основные напряжения в сечениях конструкций: Осевые и сдвигающие силы, изгибающие и крутящие моменты
- Определять эпюры напряжений

Модуль 4. Геотехника и фундаменты

- Понять факторы, влияющие на проектирование и поведение фундаментов мелкого заложения
- Проанализировать тенденции в различных международных стандартах проектирования, учитывая их различия с точки зрения критериев, а также различные используемые коэффициенты безопасности
- Проводить анализ чувствительности поведения фундаментов при воздействии данного типа нагрузок
- Определять различные виды улучшения уже используемых фундаментов, классифицируя их в зависимости от типа фундамента, грунта, на котором он расположен, и давности его постройки
- Проводить сравнительный анализ затрат на использование данного типа фундаментов и их влияние на остальные части конструкции
- Определить наиболее распространенные типы разрушения поверхностных фундаментов и наиболее эффективные меры по их устранению

tech 12 | Цели

Модуль 5. Строительные материалы и их применение

- Изучить науку о бетоне: Свежее и затвердевшее состояние. Характеристики в свежем состоянии, механические свойства в затвердевшем состоянии, поведение при напряжении и деформации, модуль деформации и коэффициент Пуассона, ползучесть, разрушение. Размерная стабильность, усадка
- Проанализировать наиболее важные характеристики специальных бетонов различных существующих типологий, будь то бетоны на основе фиброволокна, легкие, самоуплотняющиеся и т.д
- Изучить различные технологии получения аддитивных смесей
- Проводить типовые испытания строительных материалов и уметь выполнять необходимые процедуры

Модуль 6. Механика деформируемого твердого тела

- Анализировать и понимать, как характеристики структур влияют на их поведение
- Применять знания о прочностных характеристиках конструкций для определения их размеров в соответствии с действующими нормами и с использованием аналитических и численных методов расчета

Модуль 7. Строительные процедуры I

- Приобрести глубокие знания о различных видах существующей обработки земли
- Проанализировать спектр существующих типологий и их соответствие улучшению различных свойств
- Иметь точные знания о переменных, присутствующих в процессах улучшения земель путем инъекций. Расход, требования, преимущества и недостатки
- Представить в обширном виде обработку щебеночными колоннами как элементов обработки грунта, относительно мало используемых, но имеющих заметное техническое применение
- Представить подробную информацию об обработке почвы химическими препаратами и замораживании, как малоизвестных методах, но с очень хорошим точечным применением
- Определить применение предварительной нагрузки (предварительной консолидации), которая рассматривалась в предыдущем модуле, в качестве элемента обработки почвы для ускорения эволюции поведения почвы
- Расширить знания об одном из наиболее часто используемых видов обработки грунта при подземных работах, таком как зонты из микросвай, определив области применения, отличные от обычных, и особенности процесса
- Подробно рассмотреть обеззараживание почвы как процесс улучшения земель, определив типологии, которые могут быть использованы

Модуль 8. Конструкционная сталь

- Проектировать, планировать, строить и обслуживать железобетонные и стальные конструкции на основе знания основ поведения этих конструкций
- Анализировать и понимать, как характеристики структур влияют на их поведение
- Применять знания о прочностных характеристиках конструкций для определения их размеров в соответствии с действующими нормами и с использованием аналитических и численных методов расчета

Модуль 9. Конструкционный бетон

- Анализировать и понимать, как характеристики структур влияют на их поведение
- Применять знания о прочностных характеристиках конструкций для определения их размеров в соответствии с действующими нормами и с использованием аналитических и численных методов расчета

Модуль 10. Строительство

- Обучить применению необходимого законодательства при осуществлении профессиональной деятельности технического инженера общественных работ
- Понимать проектирование, расчеты, строительство и обслуживание строительных работ с точки зрения конструкции, отделки, установок и оборудования

Модуль 11. Наука и технология материалов на основе цемента

- Изучить науку о бетоне: Свежее и затвердевшее состояние. Характеристики в свежем состоянии, механические свойства в затвердевшем состоянии, поведение при напряжении и деформации, модуль деформации и коэффициент Пуассона, ползучесть, разрушение. Размерная стабильность, усадка
- Подробно ознакомиться с природой, характеристиками и эксплуатационными свойствами специальных бетонов, которые были исследованы в последние годы
- Разработать и изготовить специальные бетоны в соответствии с особенностями дозировки и их технологическими свойствами
- Проанализировать наиболее важные характеристики специальных бетонов различных существующих типологий, будь то бетоны на основе фиброволокна, легкие, самоуплотняющиеся и т.д
- Изучить различные технологии получения аддитивных смесей
- Проводить типовые испытания строительных материалов и уметь выполнять необходимые процедуры

Модуль 12. Прочность, защита и срок службы материалов

- Проанализировать понятие долговечности строительных материалов и его связь с понятием устойчивости
- Выявить основные причины изменения изучаемых строительных материалов
- Анализировать взаимодействие материалов с окружающей средой, в которую они погружены, и их влияние на долговечность
- Определить основные несовместимости между строительными материалами
- Установить наиболее подходящие методы определения характеристик для исследования долговечности каждого материала
- Освоить различные варианты обеспечения долговечности конструкций
- Представить математические модели для оценки срока службы

Модуль 13. Новые материалы и инновации в инженерии и строительстве

- Проанализировать различные материалы, используемые при строительстве и содержании дорог
- Изучить различные компоненты, из которых состоят дороги, дренаж, дорожное покрытие, слои основания и покрытия, а также способы обработки поверхности
- Дать подробную информацию о производстве и укладке асфальтобетонных смесей

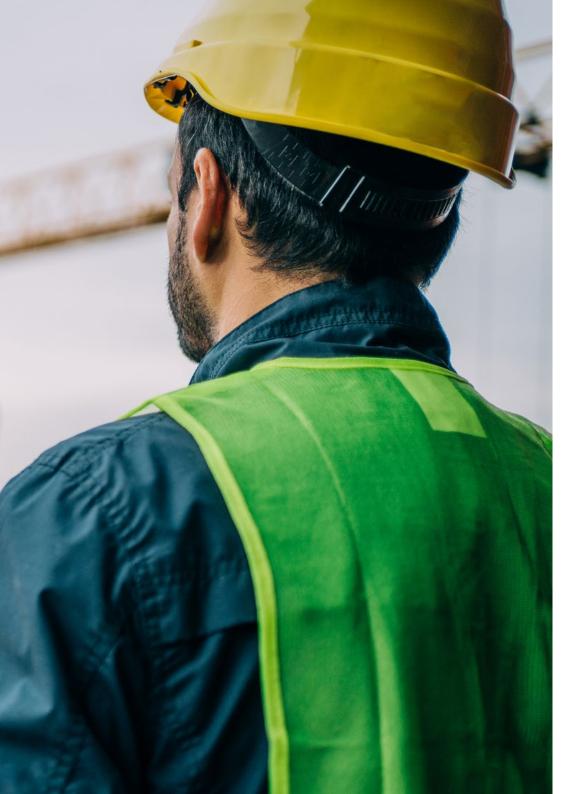
Модуль 14. Металлические материалы

- Ознакомиться с различными металлическими материалами и их типологией
- Анализировать изгибные характеристики стали и их регулирование
- Подробно ознакомиться со свойствами и наиболее важными характеристиками стали как строительного материала

tech 14 | Цели

Модуль 15. Утилизация строительных отходов (CDW)

- Получить подробные знания об экологичных материалах, углеродном следе, жизненном цикле и т.д
- Различать нормативные документы и важность утилизации CDW
- Обсудить вопросы, связанные с циркулярной экономикой и сокращением отходов у источника их образования, а также вопросы, связанные с растущей потребностью в применении экологичных материалов в строительных работах
- Определять и использовать в проектах экологичные материалы

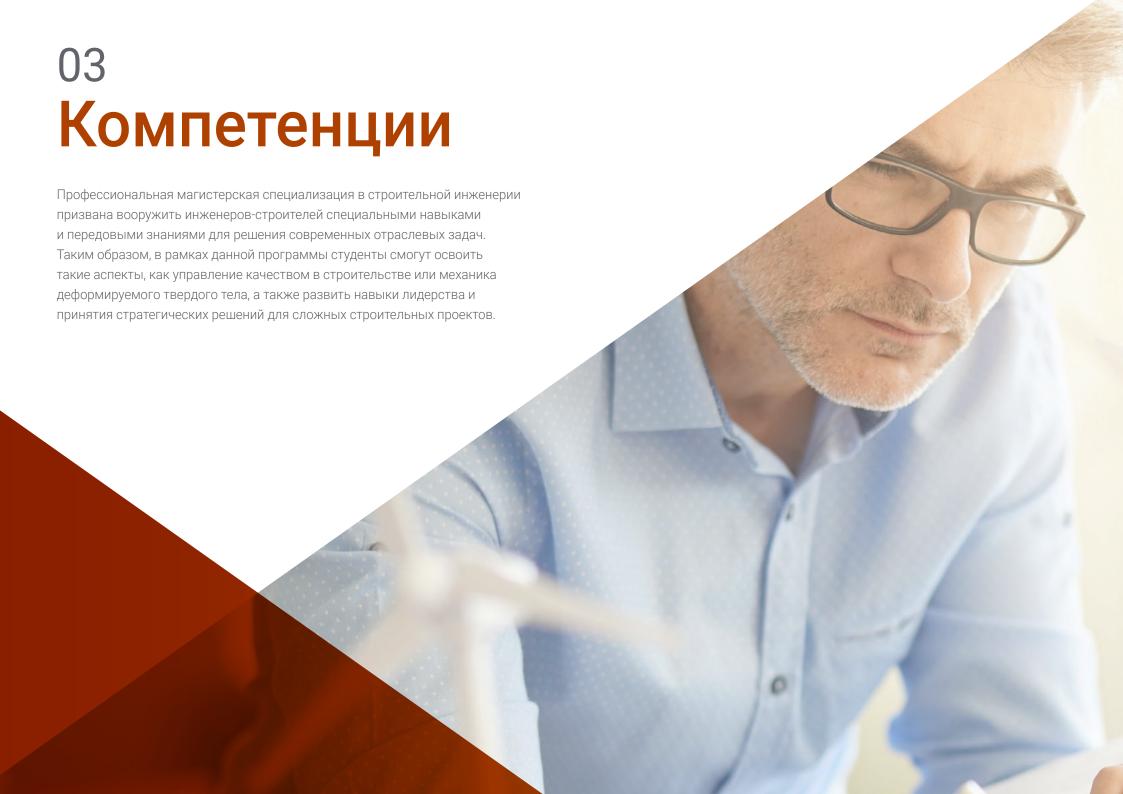

Модуль 16. Дорожные покрытия, тротуары и битумные смеси

- Установить классификацию грунтов и их несущую способность при проведении работ на площадках
- Знать различные слои и процесс подготовки и укладки строительной площадки
- Разложить вяжущие и связующие вещества для приготовления битумных эмульсий
- Ознакомиться с методами обработки поверхностей и их рисками с точки зрения грунтования, адгезии и отверждения
- Получить глубокое понимание процесса изготовления и укладки асфальтобетонных смесей

Модуль 17. Прочие строительные материалы

- Определять и характеризовать различные теплоизоляционные строительные материалы
- Знать основные преимущества использования инновационных строительных материалов с точки зрения энергосбережения и эффективности
- Выявить основные принципы производства и подробно рассказать о новых материалах будущего
- Проанализировать основы перспективных и интеллектуальных материалов для таких отраслей, как автомобилестроение, строительство, аэрокосмическая промышленность и др
- Создать новые разработки в области нанотехнологий

Модуль 18. Индустриализация и сейсмостойкое строительство


- Анализировать и оценивать современные методы определения характеристик строительных систем
- Анализировать и понимать, как характеристики структур влияют на их поведение
- Углубленно изучить основы поведения железобетонных конструкций и уметь разрабатывать, проектировать, строить и эксплуатировать конструкции этого типа

Модуль 19. Микроструктурная характеристика материалов

- Дать подробное описание различных методов и оборудования, используемых для химической, минералогической и петрофизической характеристики строительного материала
- Создать основу для современных методов определения характеристик материалов, в частности, оптической микроскопии, сканирующей электронной микроскопии, просвечивающей электронной микроскопии, рентгеновской дифракции, рентгеновской флуоресценции и т.д
- Овладеть навыками оценки и интерпретации данных, полученных с помощью научных методов и процедур

Модуль 20. Управление качеством: Подходы и инструменты

- Определять понятия, связанные с качеством, методы работы, направленные на минимизацию возникновения дефектов, а также международно признанные системы управления качеством
- Применять полученные знания в управлении строительными работами путем создания форматов, разработанных для систематизации мониторинга различных рабочих подразделений
- Составить и разработать системы менеджмента качества для составления, применения, внедрения и актуализации руководств по качеству и планов качества

tech 18 | Компетенции

Общие профессиональные навыки

- Поддерживать, сохранять и эксплуатировать инфраструктуру в сфере своей деятельности
- Проектировать, планировать, возводить и эксплуатировать железобетонные и стальные конструкции на основе знания основ поведения этих конструкций
- Комплексно применять анализ различных видов строительных материалов
- Выявлять новые технологии, применяемые в материаловедении
- Уметь глобально управлять различными материалами с точки зрения качества и производства работ
- Выявлять новые технологии производства строительных материалов, которые являются более экологичными

Получив Профессиональную магистерскую специализацию, вы приобретете необходимые инструменты для руководства и управления устойчивыми и эффективными строительными проектами"

Профессиональные навыки

- Анализировать напряжение
- Разрабатывать и изготавливать специальные бетоны в соответствии с особенностями дозировки и их технологическими свойствами
- Распознавать различные действия, присутствующие в фундаментах мелкого заложения, как запрашивающие, так и способствующие устойчивости элемента
- Составлять проекты строительства с использованием новейших компьютерных инструментов
- Осуществлять контроль бюджета, затрат, закупок, планирования и сертификации проекта
- Выполнять контракты на консервацию и техническое обслуживание
- Выявлять и устранять возможные повреждения инфраструктуры
- Уметь углубленно изучать основные аспекты бетона, детально разбираться в его природе, характеристиках и представлениях
- Разрабатывать и изготавливать специальные виды бетона, отвечающие конкретным требованиям строительной площадки
- Получить знания о различных металлических материалах и их характеристиках
- Понимать понятие долговечности строительных материалов и ее связь с устойчивостью, выявлять основные причины изменения
- Получить необходимые навыки для определения основных несовместимостей между строительными материалами
- Освоить различные варианты обеспечения долговечности конструкций

- Обсудить вопросы, связанные с циркулярной экономикой и сокращением отходов их образования, а также вопросы, связанные с растущей потребностью в применении экологичных материалов в строительных работах
- Узнать, как использовать отходы экологически чистых материалов и как их безопасно применять в дальнейшей работе
- Углубленно изучить инновации в области новых материалов, а также конкурентные преимущества, которые они дают, их защиту и финансирование
- Получить оптимальное представление об основных инновациях в материалах и строительных процедурах в различных секторах инноваций, инкорпорированных из других производственных секторов в строительный сектор
- Получить оптимальную подготовку, позволяющую определить основные принципы производства и подробно рассказать о новых материалах будущего
- Обладать глубоким и детальным пониманием основ динамики железобетонных конструкций и способностью проектировать, планировать, строить и обслуживать железобетонные конструкции
- Создать основы современных методов определения характеристик материалов, в частности, оптической микроскопии, сканирующей электронной микроскопии, просвечивающей электронной микроскопии, рентгеновской дифракции, рентгеновской флуоресценции и др
- Определять понятия, связанные с качеством, методы работы, направленные на минимизацию возникновения дефектов, а также международно признанные системы управления качеством

04 Руководство курса

Преподавательский состав Профессиональной магистерской специализации в области строительной инженерии состоит из специалистов, имеющих большой опыт работы в национальных и международных строительных проектах. Преподаватели – инженеры-строители, архитекторы и другие специалисты строительной отрасли, имеющие большой опыт управления крупными проектами, проектирования и инженерии сложных сооружений, внедрения инновационных технологий в области экологического строительства.

Руководство

Д-р Мираньо Бельмонте, Исабель де ла Пас

- Научный сотрудник Группы перспективных строительных наук и технологий
- Докторская степень в области архитектуры Политехнического университета Картахены
- Степень магистра в области строительства со специализацией в области технологий, Политехнический университет Валенсии
- Инженер-строитель, окончил Университет Камило Хосе Села

Преподаватели

Д-р Бенито Саорин, Франсиско Хавьер

- Технический архитектор, исполняющий обязанности факультативного управляющего и координатора по охране труда и технике безопасности
- Муниципальный технический специалист в мэрии Рикоте. Мурсия
- Специалист по НИОКР в области строительных материалов и строительных работ
- Научный сотрудник и член Группы передовых строительных наук и технологий Политехнического университета Картахены
- Редактор журналов, индексируемых JCR
- Докторская степень в области архитектуры, строительства, градостроительства и ландшафтной архитектуры Политехнического университета Валенсии
- Степень магистра в области строительства с технологической специализацией Политехнического университета Валенсии

Г-н Мартинес Пачеко, Виктор

- Архитектор в Martínez Pacheco Arquitectura
- Научный сотрудник компании Cementos Cruz по разработке материалов и технологическим инновациям
- Руководитель подразделения аддитивного 3D-производства
- Преподаватель программ высшего образования в рамках своей специальности
- Докторская степень в области технологии и моделированию в области гражданского, горного и экологического строительства Политехнического университета Картахены
- Степень магистра делового администрирования Европейской школы бизнеса в Барселоне
- Степень бакалавра архитектуры Политехнического университета Картахены

Г-н Родригес Лопес, Карлос Луис

- Начальник отдела материалов в Центре строительных технологий региона Мурсия
- Координатор направления "Устойчивое строительство и изменение климата" в СТСОN
- Технический специалист отдела проектов компании PM Arquitectura и Gestión SL
- Инженер-строитель Политехнического университета Картахены
- Доктор в области строительной инженерии, специализирующийся на строительных материалах и экологическом строительстве
- Докторская степень Университета Аликанте
- Специалист по разработке новых материалов, строительных изделий и анализе строительной патологии
- Степень магистра в области материаловедения, водного и почвенного строительства: Экологическое строительство Университета Аликанте
- Публикации статей в международных конференциях и высокоэффективных журналах по различным направлениям строительных материалов

Г-н Искьердо Нуньес, Хосе Висенте

- Научный сотрудник лаборатории характеризации AIMPLAS
- Научный сотрудник Института водного хозяйства и природообустройства (IIAMA)
- Технический специалист по HИОКР в компании Aguas de Valencia
- Техник в лаборатории AIDICO
- Преподаватель средней школы
- Степень бакалавра по химии, полученная в Университете Валенсии
- Степень магистра в области экологической инженерии, полученная в Политехническом университете Валенсии
- Диплом о повышении квалификации в области инструментального и прикладного анализа Университета Валенсии

Д-р Эрнандес Перес, Мириам

- Инженер в области строительства дорог, каналов и портов в Центре строительных технологий Мурсия
- Технический специалист по HИОКР в зоне материалов в Центре строительных технологий. Мурсия
- Технический инженер в компании Servicios Comunitarios de Molina, AO
- Инженер в центре строительных технологий. Мурсия
- Исследователь в области устойчивого строительства и устойчивых систем городского водоотвода
- Кандидат наук в области материаловедения, строительной и наземной техники: Экологическое строительство Университета Аликанте
- Степень бакалавра в области гражданского строительства с двойной специализацией гидрология и гражданское строительство
- Степень магистра в области гражданского строительства со специализацией в области транспортной инженерии, городского планирования и планирования землепользования

Д-р Парра Коста, Карлос Хосе

- Главный исследователь группы перспективных строительных наук и технологий
- Руководитель кафедры архитектуры и строительных технологий Политехнического университета Картахены
- Архитектор СРС Arquitectura, собственная студия
- Доктор архитектуры Политехнического университета Валенсии
- Университетская специализация в области метода конечных элементов
- Официальная сертификация в области передачи знаний и инноваций от Национальной комиссии по оценке исследовательской деятельности

tech 24 | Руководство курса

Г-н Дель Посо Мартин, Хорхе

- Инженер-строитель, занимающийся оценкой и мониторингом проектов по НИОКР
- Технический аналитик и аудитор проектов в Министерстве науки и инноваций Испании
- Технический директор компании Bovis Lend Lease
- Менеджер по производству в компании Dragados
- Представитель по строительным работам в PACADAR
- Степень магистра в области инженерно-строительных исследований в Университете Кантабрии
- Диплом по специальности "Бизнес-исследования", полученный в Национальном университете дистанционного образования
- Инженер-строитель дорог, каналов и портов Университета Кантабрии

Д-р Муньос Санчес, Мария Белен

- Консультант по инновациям и экологичности строительных материалов
- Исследователь полимеров в компании POLYMAT
- Докторская степень в области инженерии материалов и устойчивых процессов Университета Страны Басков
- Инженер-химик Университета Эстремадуры
- Степень магистра в области научных исследований по специальности "Химия" Университета Эстремадуры
- Большой опыт проведения НИОКР в области материалов и переработки отходов для создания инновационных строительных материалов
- Соавтор научных статей, опубликованных в международных журналах
- Выступал на международных конгрессах по возобновляемым источникам энергии и экологии



Г-жа Лопес. Ливиа

- Специалист по качеству и сертификации
- Лаборант физико-механической лаборатории AIMPLAS Instituto Tecnológico del Plástico
- Менеджер по качеству в AIDICO Институт технического строительства
- Лаборант в компании Cementos La Unión, AO
- Степень бакалавра по химии Университета Валенсии
- Степень магистра в области качества и безопасности пищевых продуктов Университета Валенсии
- Программа интеграции и развития менеджмента в Фонде Anant
- Курс ХАССП в области безопасности, качества и сохранности пищевых продуктов Университета Саламанки

Д-р Наварро, Арсенио

- Начальник группы по строительству и возобновляемым источникам энергии компании AIMPLAS
- Кандидат наук, старший научный сотрудник AIMPLAS
- Техник физико-механического отдела в AIMPLAS
- Техник по сборке в "Prefabricados Lufort" 000
- Руководитель проекта в компании "MAT Service" 000
- Доцент Политехнического университета Валенсии
- Доктор в области промышленного производства Политехнического университета Валенсии
- Технический архитектор Политехнического университета Валенсиb
- Инженер-строитель и инженер по материалам Политехнического университета Валенсии
- Степень магистра в области машиностроения и материаловедения, Политехнического университета Валенсии

tech 28 | Структура и содержание

Модуль 1. Проекты

- 1.1. Этапы разработки и проектирования проекта
 - 1.1.1. Анализ проблематики
 - 1.1.2. Разработка решения
 - 1.1.3. Анализ нормативно-правовой базы
 - 1.1.4. Проектирование и разработка решения
- 1.2. Знание проблемы
 - 1.2.1. Координация с клиентом
 - 1.2.2. Исследование физической среды
 - 1.2.3. Анализ социальной среды
 - 1.2.4. Анализ экономической среды
 - 1.2.5. Анализ экологической обстановки (ДВОС)
- 1.3. Разработка решения
 - 1.3.1. Концептуальное проектирование
 - 1.3.2. Изучение альтернатив
 - 1.3.3. Предварительная инженерия
 - 1.3.4. Предварительный экономический анализ
 - 1.3.5. Согласование проекта с клиентом (затраты-продажи)
- 1.4. Координация с клиентом
 - 1.4.1. Исследование земельной собственности
 - 1.4.2. Экономическое обоснование проекта
 - 1.4.3. Анализ экологической целесообразности проекта
- 1.5. Нормативно-правовая база
 - 1.5.1. Общие положения
 - 1.5.2. Правила структурного проектирования
 - 1.5.3. Экологические нормы
 - 1.5.4. Водные нормативы

- 1.6. Предстартовая инженерия
 - 1.6.1. Исследование участка или планировки
 - 1.6.2. Изучение типологий, которые будут использоваться
 - 1.6.3. Исследование решения перед упаковкой проекта
 - 1.6.4. Реализация модели проекта
 - 1.6.5. Скорректированный экономический анализ проекта
- 1.7. Анализ инструментов, которые будут использоваться
 - 1.7.1. Персональная команда, отвечающая за работу
 - 1.7.2. Необходимое оборудование
 - 1.7.3. Программное обеспечение, необходимое для составления проекта
 - 1.7.4. Субподряд обеспечение, необходимое для составления проекта
- 1.8. Полевые работы. Топография и геотехника
 - 1.8.1. Определение необходимых геодезических работ
 - 1.8.2. Определение необходимых геотехнических работ
 - 1.8.3. Субподрядные работы топография и геотехника
 - 1.8.4. Мониторинг работы топография и геотехника
 - 1.8.5. Анализ работы топография и геотехника
- 1.9. Составление проекта
 - 1.9.1. Составление ДВОС
 - 1.9.2. Составление и вычисление решения в геометрическом определении
 - 1.9.3. Составление и вычисление структурного проектного решения
 - 1.9.4. Составление и вычисление решения на этапе корректировки
 - 1.9.5. Составление приложений
 - 1.9.6. Составление планов
 - 1.9.7. Составление спецификаций
 - 1.9.8. Формирование бюджета
- 1.10. Внедрение ВІМ-модели в проекты
 - 1.10.1. Концепция ВІМ-модели
 - 1.10.2. Фазы ВІМ-модели
 - 1.10.3. Важность ВІМ-модели
 - 1.10.4. Необходимость ВІМ-модели для интернационализации проектов

Структура и содержание | 29 tech

Модуль 2. Механика жидкостей и гидравлика

- 2.1. Введение в физику жидкостей
 - 2.1.1. Нескользящее состояние
 - 2.1.2. Классификация жидкостей
 - 2.1.3. Система управления и объем
 - 2.1.4. Свойства жидкостей
 - 2.1.4.1. Плотность
 - 2.1.4.2. Удельный вес
 - 2.1.4.3. Давление паров
 - 2.1.4.4. Кавитация
 - 2.1.4.5. Удельная теплота
 - 2.1.4.6. Сжимаемость
 - 2.1.4.7. Скорость звука
 - 2.1.4.8. Вязкость
 - 2.1.4.9. Поверхностное натяжение
- 2.2. Статика и кинематика жидкостей
 - 2.2.1. Давление
 - 2.2.2. Устройства для измерения давления
 - 2.2.3. Гидростатические силы на погруженных поверхностях
 - 2.2.4. Плавучесть, устойчивость и движение твердого тела
 - 2.2.5. Лагранжево и эйлерово описание
 - 2.2.6. Модели потоков
 - 2.2.7. Кинематические натяжные устройства
 - 2.2.8. Вихревые потоки
 - 2.2.9. Вращаемость
 - 2.2.10. Теорема переноса Рейнольдса
- 2.3. Уравнения Бернулли и уравнения энергии
 - 2.3.1. Сохранение массы
 - 2.3.2. Механическая энергия и КПД
 - 2.3.3. Уравнение Бернулли
 - 2.3.4. Общее уравнение энергии
 - 2.3.5. Энергетический анализ стационарных потоков

- 2.4. Анализ жидкостей
 - 2.4.1. Уравнения сохранения линейного импульса
 - 2.4.2. Уравнения сохранения углового момента импульса
 - 2.4.3. Однородность размеров
 - 2.4.4. Метод переменного повторения
 - 2.5.5. Теорема Букингема и теорема Пи
- 2.5. Поток в трубопроводах
 - 2.5.1. Ламинарный и турбулентный поток
 - 2.5.2. Регион вхождения
 - 2.5.3. Незначительные потери
 - 2.5.4. Сети
- 2.6. Дифференциальный анализ и уравнения Навье-Стокса
 - 2.6.1. Сохранение массы
 - 2.6.2. Текущая функция
 - 2.6.3. Уравнение Коши
 - 2.6.4. Уравнение Навье-Стокса
 - 2.6.5. Безразмерные уравнения движения Навье-Стокса
 - 2.6.6. Поток Стокса
 - 2.6.7. Невязкое течение
 - 2.6.8. Ирротационный поток
 - 2.6.9. Теория пограничного слоя. Уравнение Клаузиуса
- 2.7. Внешний поток
 - 2.7.1. Тяга и подъемная сила
 - 2.7.2. Трение и давление
 - 2.7.3. Коэффициенты
 - 2.7.4. Цилиндры и сферы
 - 2.7.5. Аэродинамические профили
- 2.8. Сжимаемое течение
 - 2.8.1. Стагнационные свойства
 - 2.8.2. Одномерный изоэнтропийный поток
 - 2.8.3. Распылители
 - 2.8.4. Ударные волны
 - 2.8.5. Волны расширения
 - 2.8.6. Поток Рэлея
 - 287 Фанно-поток

tech 30 | Структура и содержание

2.9.	Поток в открытом канале			
	2.9.1.	Классификация		
	2.9.2.	Число Фруда		
	2.9.3.	Скорость волны		
	2.9.4.	Равномерный поток		
	2.9.5.	Постепенный вариационный поток		
		Быстро меняющийся поток		
		Гидравлический прыжок		
2.10.		гоновские жидкости		
		Стандартные потоки		
		Функции материала		
		Эксперименты		
		Обобщенная модель ньютоновской жидкости		
		Обобщенная линейная вязкоупругая модель линейной жидкости		
		Усовершенствованные конститутивные уравнения и реометр		
Модуль 3. Анализ структуры				
3.1.	Введение в структуры			
	3.1.1.	Определение и классификация структур		
	3.1.2.	Процесс проектирования, практические и идеальные структуры		
	3.1.3.	Эквивалентные системы сил		
	3.1.4.	Центры тяжести. Распределенные нагрузки		
	3.1.5.	Моменты инерции. Продукты инерции. Матрица инерции. Основные оси		
	3.1.6.	Баланс и устойчивость		
	3.1.7.	Аналитическая статика		
3.2.	Действия			
	3.2.1.	Введение		
	3.2.2.	Постоянные действия		
	3.2.3.	Переменные действия		
	3.2.4.	Случайные действия		
3.3.	Растяжение, сжатие и сдвиг			
	3.3.1.	Нормальное напряжение и линейная деформация		
	3.3.2.	Механические свойства материалов		
	3.3.3.	Линейная упругость, закон Гука и коэффициент Пуассона		
	3.3.4.	Касательное напряжение и угловая деформация		

3.4.	Уравнения равновесия и диаграммы напряжений		
	3.4.1.	Расчет сил и реакций	
	3.4.2.	Уравнения равновесия	
	3.4.3.	Уравнения совместимости	
	3.4.4.	Диаграмма напряжений	
3.5.	Осевые нагрузки на элементы		
	3.5.1.	Изменение длины аксиально нагруженных элементов	
	3.5.2.	Изменение длины неоднородных стержней	
	3.5.3.	Гиперстатические элементы	
	3.5.4.	Тепловые эффекты, смещения и предыдущие деформации	
3.6.	Кручение		
	3.6.1.	Крутильные прогибы в круглых стержнях	
	3.6.2.	Неравномерное кручение	
	3.6.3.	Чистые сдвиговые напряжения и деформации	
	3.6.4.	Связь между модулями упругости E и G	
	3.6.5.	Гиперстатическое кручение	
	3.6.6.	Тонкостенные трубы	
3.7.	Изгибающий момент и напряжение сдвига		
	3.7.1.	Типы балок, нагрузки и реакции	
	3.7.2.	Изгибающие моменты и поперечные силы	
	3.7.3.	Взаимосвязь между нагрузками, изгибающими моментами и поперечными силами	
	3.7.4.	Диаграммы изгибающего момента и сдвига	
3.8.	Анализ конструкций на гибкость (метод сил)		
	3.8.1.	Статическая классификация	
	3.8.2.	Принцип суперпозиции	
	3.8.3.	Определение гибкости	
	3.8.4.	Уравнения совместимости	
	3.8.5.	Общий порядок расчетов	
3.9.	Структурная безопасность. Метод предельных состояний		
	3.9.1.	Основные требования	
	3.9.2.	Причины отсутствия безопасности. Вероятность обрушения	
	3.9.3.	Предельные состояния	
	3.9.4.	Предельные состояния работоспособности при деформации	
	3.9.5.	Предельные состояния работоспособности по вибрации и трещинам	

Структура и содержание | 31 tech

- 3.10. Анализ конструкций на жесткость (метод перемещений)
 - 3.10.1. Основы
 - 3.10.2. Матрицы жесткости
 - 3.10.3. Узловые силы
 - 3.10.4. Расчет перемещения

Модуль 4. Геотехника и фундаменты

- 4.1. Подошва фундамента и фундаментальные плиты
 - 4.1.1. Наиболее распространенные типы фундамента
 - 4.1.2. Жесткие и гибкие фундаменты
 - 4.1.3. Большие фундаменты мелкого заложения
- 4.2. Критерии и нормы проектирования
 - 4.2.1. Факторы, влияющие на проектирование подошвы фундамента
 - 4.2.2. Элементы, включенные в международные правила заложения фундаментов
 - 4.2.3. Общее сравнение нормативных критериев для поверхностных фундаментов
- 4.3. Действия в отношении фундаментов
 - 4.3.1. Наиболее распространенные типы фундамента
 - 4.3.2. Жесткие и гибкие фундаменты
 - 4.3.3. Большие фундаменты мелкого заложения
- 4.4. Стабильность фундамента
 - 4.4.1. Несущие свойства грунта
 - 4.4.2. Сдвиг фундаментов по подошве
 - 4.4.3. Устойчивость при опрокидывании
- 4.5. Трение о грунт и улучшенная адгези
 - 4.5.1. Характеристики грунта, влияющие на трение между грунтом и конструкцией
 - 4.5.2. Трение между грунтом и конструкцией в зависимости от материала фундамента
 - 4.5.3. Методологии улучшения трения почвенного сцепления
- 4.6. Восстановление фундаментов. Закладка
 - 4.6.1. Необходимость ремонта фундамента
 - 4.6.2. Виды ремонтных работ
 - 4.6.3. Закладка фундаментов

- 4.7. Смещение в элементах фундамента
 - 4.7.1. Ограничение смещений в фундаментах мелкого заложения
 - 4.7.2. Учет смещения при расчете фундаментов мелкого заложения
 - 4.7.3. Расчет предполагаемых краткосрочных и долгосрочных перемещений
- 4.8. Сравнительные относительные затраты
 - 4.8.1. Примерная оценка стоимости фундамента
 - 4.8.2. Сравнение в зависимости от типа поверхностных оснований
 - 4.8.3. Предполагаемая стоимость ремонта
- 4.9. Альтернативные методы Котлован под фундамент
 - 4.9.1. Полузаглубленные фундаменты мелкого заложения
 - 4.9.2. Расчет и использование фундаментных блоков
 - 4.9.3. Ограничения и неопределенности методологии
- 4.10. Виды разрушения фундаментов мелкого заложения
 - 4.10.1. Классические отказы и потери мощности фундаментов мелкого заложения
 - 4.10.2. Предельная прочность фундаментов мелкого заложения
 - 4.10.3. Общие мощности и коэффициенты безопасности

Модуль 5. Строительные материалы и их применение

- 5.1. Цемент
 - 5.1.1. Цемент и реакции гидратации: состав цемента и процесс его производства. Соединения большинства, соединения меньшинства
 - 5.1.2. Процессы гидратации. Характеристики гидратированных продуктов. Материалы, альтернативные цементу
 - 5.1.3. Инновации и новые продукты
- 5.2. Минометы
 - 5.2.1. Свойства
 - 5.2.2. Производство, виды и области применения
 - 5.2.3. Новые материалы
- 5.3. Высокопрочный бетон
 - 5.3.1. Композиция
 - 5.3.2. Свойства и характеристики
 - 3.3.5. Новые разработки

tech 32 | Структура и содержание

- 5.4. Самоуплотняющийся бетон
 - 5.4.1. Сущность и характеристики его компонентов
 - 5.4.2. Дозирование, изготовление, транспортировка и монтаж на объекте
 - 5.4.3. Характеристики бетона
- 5.5. Легкий бетон
 - 5.5.1. Композиция
 - 5.5.2. Свойства и характеристики
 - 5.5.3. Новые разработки
- 5.6. Волокнистые и многофункциональные бетоны
 - 5.6.1. Материалы, используемые в производстве
 - 5.6.2. Свойства
 - 5.6.3. Дизайны
- 5.7. Самовосстанавливающиеся и самоочищающиеся бетоны
 - 5.7.1. Композиция
 - 5.7.2. Свойства и характеристики
 - 5.7.3. Новые разработки
- 5.8. Другие материалы на основе цемента (жидкие, антибактериальные, биологические...)
 - 5.8.1. Композиция
 - 5.8.2. Свойства и характеристики
 - 5.8.3. Новые разработки
- 5.9. Разрушающий и неразрушающий контроль характеристик
 - 5.9.1. Характеристика материалов
 - 5.9.2. Деструктивные методы. Свежее и затвердевшее состояния
 - 5.9.3. Неразрушающие методы и процедуры, применяемые к строительным материалам и конструкциям конструктивные сооружения
- 5.10. Добавочные смеси
 - 5.10.1. Добавочные смеси
 - 5.10.2. Преимущества и недостатки
 - 5.10.3. Устойчивое развитие

Модуль 6. Механика деформируемого твердого тела

- 6.1. Основные понятия
 - 6.1.1. Строительная инженерия
 - 6.1.2. Концепция непрерывной среды
 - 6.1.3. Поверхностные и объемные силы
 - 6.1.4. Лагранжева и эйлерова подходы
 - б.1.5. Законы движения Эйлера
 - 6.1.6. Интегральные теоремы
- 6.2. Деформации
 - 6.2.1. Деформация: понятие и основные измерения
 - 6.2.2. Область перемещения
 - 6.2.3. Гипотеза малых перемещений
 - 5.2.4. Кинематические уравнения. Тензор деформации
- 6.3. Кинематические связи
 - 6.3.1. Деформационное состояние вблизи какой-либо точки
 - 6.3.2. Физическая интерпретация компонент тензора деформаций
 - 6.3.3. Основные деформации и их направления
 - 6.3.4. Деформация тела кубической формы
 - 6.3.5. Удлинение кривой и изменение объема тела
 - 6.3.6. Уравнения совместимости
- 6.4. Напряжения и статические зависимости
 - 6.4.1. Понятие напряжения
 - 6.4.2. Взаимосвязь между напряженностью и внешними силами
 - 6.4.3. Анализ локальных напряжений
 - 6.4.4. Круг Мора
- 6.5. Конститутивные отношения
 - 6.5.1. Понятие идеальной ролевой модели
 - 6.5.2. Одноосные отклики и одномерные идеальные модели
 - 6.5.3. Классификация моделей поведения
 - 6.5.4. Обобщенный закон Гука
 - 6.5.5. Упругие константы
 - 6.5.6. Энергия деформации и дополнительная энергия
 - 6.5.7. Пределы упругой модели

Структура и содержание | 33 tech

- 6.6. Задача по теории упругости
 - 6.6.1. Линейная упругость и задача по теории упругости
 - 6.6.2. Локальная формулировка задачи по теории упругости
 - 6.6.3. Общая формулировка задачи по теории упругости
 - 6.6.4. Общие результаты
- 6.7. Теория балок: основные предположения и результаты I
 - 6.7.1. Производные теории
 - 6.7.2. Балка: определения и классификации
 - 6.7.3. Дополнительные гипотезы
 - 6.7.4. Анализ кинематики
- 6.8. Теория балок: фундаментальные предположения и результаты II
 - 6.8.1. Статический анализ
 - 6.8.2. Уравнение состояния
 - 6.8.3. Энергия деформации
 - 6.8.4. Формулировка задачи о жесткости
- 6.9. Сгибание и растяжение
 - 6.9.1. Интерпретация результатов
 - 6.9.2. Оценка ненаправленных перемещений
 - 6.9.3. Оценка нормальных напряжений
 - 6.9.4. Оценка сдвиговых напряжений при изгибе
- 6.10. Теория балок: кручение
 - 6.10.1. Введение
 - 6.10.2. Закон кручения Кулона
 - 6.10.3. Кручение Сен-Венана
 - 6.10.4. Введение в понятие «неравномерное кручение»

Модуль 7. Строительные процедуры I

- 7.1. Цели Движение и улучшение имущества
 - 7.1.1. Улучшение внутренних и глобальных свойств
 - 7.1.2. Практические цели
 - 7.1.3. Улучшение динамического поведения
- 7.2. Система впрыска высокого давления
 - 7.2.1. Мелиорации земель методом высоконапорной инъекции
 - 7.2.2. Характеристики струйной цементации грунтов
 - 7.2.3. Давления впрыска

- 7.3. Щебеночные колонны
 - 7.3.1. Использование щебеночных колонн
 - 7.3.2. Количественная оценка улучшений земельных владений
 - 7.3.3. Показания и противопоказания к использованию
- 7.4. Улучшение путем пропитки и химической инъекции
 - 7.4.1. Характеристики инъекций пропитки
 - 7.4.2. Характеристики химических инъекций
 - 7.4.3. Ограничения метода
- 7.5. Заморозка
 - 7.5.1. Технические и технологические аспекты
 - 7.5.2. Различные материалы и свойства
 - 7.5.3. Области применения и ограничения
- 7.6. Предварительная загрузка, консолидация и уплотнение
 - 7.6.1. Предварительная загрузка
 - 7.6.2. Дренажная загрузка
 - 7.6.3. Контроль в ходе выполнения
- 7.7. Улучшение за счет дренажа и откачки воды
 - 7.7.1. Временный дренаж и откачка воды
 - 7.7.2. Коммунальные услуги и количественное улучшение свойств
 - 7.7.3. Поведение после восстановления
- 7.8. Зонты из микросвай
 - 7.8.1. Исполнение и ограничения
 - 7.8.2. Устойчивость
 - 7.8.3. Свай под экран и цементированные оголовки свай
- 7.9. Сравнение долгосрочных показателей
 - 7.9.1. Сравнительный анализ методик обработки земли
 - 7.9.2. Методы воздействия в соответствии с их практическим применением
 - 7.9.3. Комбинированное воздействие
- 7.10. Обеззараживание почвы
 - 7.10.1. Физико-химические процессы
 - 7.10.2. Биологические процессы
 - 7.10.3. Тепловые процессы

tech 34 | Структура и содержание

Модуль 8. Конструкционная сталь

- 8.1. Введение в проектирование металлоконструкций
 - 8.1.1. Преимущества стали как конструкционного материала
 - 8.1.2. Недостатки стали как конструкционного материала
 - 8.1.3. Первые области применения железа и стали
 - 8.1.4. Стальные профили
 - 8.1.5. Напряженно-деформированное состояние конструкционной стали
 - 8.1.6. Современная конструкционная сталь
 - 8.1.7. Использование высокопрочной стали
- 8.2. Общие принципы проектирования и строительства стальных конструкций
 - 8.2.1. Общие принципы проектирования и строительства стальных конструкций
 - 8.2.2. Работы по структурному проектированию
 - 8.2.3. Обязанности
 - 8.2.4. Технические условия и строительные нормы
 - 8.2.5. Экономичный дизайн
- 8.3. Расчетные базы и модели структурного анализа
 - 8.3.1. Основа расчета
 - 8.3.2. Модели структурного анализа
 - 8.3.3. Определение площадей
 - 8.3.4. Разделы
- 8.4. Предельные состояния I
 - 8.4.1. Общие сведения. Предельное состояние прочности секций
 - 8.4.2. Предельное состояние равновесия
 - 8.4.3. Предельное состояние прочности секций
 - 8.4.4. Осевая сила
 - 8.4.5. Изгибающий момент
 - 8.4.6. Напряжение сдвига
 - 8.4.7. Кручение
- 8.5. Предельные состояния II
 - 8.5.1. Предельное состояние неустойчивости
 - 8.5.2. Элементы, подверженные сжатию
 - 8.5.3. Элементы, подверженные изгибу
 - 8.5.4. Элементы, подверженные сжатию и изгибу

- 8.6. Предельное состояние III
 - 8.6.1. Предельное состояние жесткости
 - 8.6.2. Элементы с продольной жесткостью
 - 8.6.3. Смятие полотна при сдвиге
 - 8.6.4. Устойчивость полотна к поперечным сосредоточенным нагрузкам
 - 8.6.5. Вмятина в полотне, вызванная сжатием крыла
 - 8.6.6. Ребра жесткости
- 8.7. Предельные состояния работоспособности
 - 8.7.1. Общие сведения
 - 8.7.2. Предельные состояния деформации
 - 8.7.3. Предельное состояние вибрации
 - 8.7.4. Предельное состояние поперечных деформаций в тонких панелях
 - 8.7.5. Предельное состояние локальных пластификаторов
- 8.8. Средства соединения: винты
 - 8.8.1. Средства соединения: Общие положения и классификации
 - 3.8.2. Болтовые соединения Часть 1: Общие сведения. Типы винтов и конструктивные схемы
 - 8.8.3. Болтовые соединения Часть 2: Расчет
- 8.9. Способы крепления: сварка
 - 8.9.1. Сварные соединения Часть 1: Общие сведения. Классификация и дефекты
 - 8.9.2. Сварные соединения Часть 2: Конструктивные схемы и остаточные напряжения
 - 8.9.3. Сварные соединения Часть 3: Расчет
 - 8.9.4. Проектирование соединений балок и колонн
 - 8.9.5. Опорные устройства и столбчатые фундаменты
- 8.10. Огнестойкие стальные конструкции
 - 8.10.1. Общие положения
 - 8.10.2. Механические и косвенные воздействия
 - 8.10.3. Свойства материалов, подверженных действию огня
 - 8.10.4. Испытания на прочность призматических элементов, подверженных действию огня
 - 8.10.5. Проверка прочности соединений
 - 8.10.6. Расчет температуры стали

Структура и содержание | 35 tech

Модуль 9. Конструкционный бетон

- 9.1. Введение
 - 9.1.1. Введение в предмет
 - 9.1.2. Исторические заметки о бетоне
 - 9.1.3. Механическое поведение бетона
 - 9.1.4. Совместное поведение стали и бетона, которое привело к его успешному использованию в качестве композиционного материала
- 9.2. Основа проекта
 - 9.2.1. Действия
 - 9.2.2. Характеристики материалов: бетон и сталь
 - 9.2.3. Расчетные базы, ориентированные на долговечность
- 9.3. Структурный анализ
 - 9.3.1. Модели структурного анализа
 - 9.3.2. Данные, необходимые для линейного, пластического или нелинейного моделирования
 - 9.3.3. Материалы и геометрия
 - 9.3.4. Влияние предварительного напряжения
 - 9.3.5. Расчет сечений, находящихся в эксплуатации
 - 9.3.6. Усадка и ползучесть
- 9.4. Срок службы и техническое обслуживание железобетона
 - 9.4.1. Долговечность бетона
 - 9.4.2. Разрушение бетонного массива
 - 9.4.3. Коррозия стали
 - 9.4.4. Определение агрессивных факторов на бетон
 - 9.4.5. Защитные меры
 - 9.4.6. Техническое обслуживание бетонных конструкций
- 9.5. Расчеты предельных состояний работоспособности
 - 9.5.1. Граничные состояния
 - 9.5.2. Понятие и метод
 - 9.5.3. Проверка требований к трещинообразованию
 - 9.5.4. Проверка требований к деформации

- 9.6. Расчеты, связанные с последними лимитирующими отчетами
 - 9.6.1. Прочностное поведение линейных железобетонных элементов
 - 9.6.2. Изгиб и осевое перемещение
 - 9.6.3. Расчет эффектов второго порядка при осевой нагрузке
 - 9.6.4. Резка
 - 9.6.5. Линия, обозначающая уровень выемки или насыпи
 - 9.6.6. Кручение
 - 9.6.7. Области D
- 9.7. Критерии определения размеров
 - 9.7.1. Типичные случаи применения
 - 9.7.2. Узел
 - 9.7.3. Кронштейн
 - 9.7.4. Балка с большими гранями
 - 9.7.5. Концентрированная нагрузка
 - 9.7.6. Изменение размеров балок и колонн
- 9.8. Типовые структурные элементы
 - 9.8.1. Балка
 - 9.8.2. Опорная колонна
 - 9.8.3. Плита
 - 9.8.4. Элементы фундамента
 - 9.8.5. Введение в предварительно напряженный бетон
- 9.9. Конструктивные положения
 - 9.9.1. Общие сведения и номенклатура
 - 9.9.2. Покрытия
 - 9.9.3. Крючки
 - 9.9.4. Минимальные диаметры
- 9.10. Исполнение из бетона
 - 9.10.1. Общие критерии
 - 9.10.2. Процессы, предшествующие бетонированию
 - 9.10.3. Обработка, сборка и установка арматуры
 - 9.10.4. Производство и укладка бетона
 - 9.10.5. Процессы после бетонирования
 - 9.10.6. Сборные элементы
 - 9.10.7. Экологические аспекты

tech 36 | Структура и содержание

Модуль 10. Строительство

- 10.1. Введение
 - 10.1.1. Введение в строительство
 - 10.1.2. Понятие и важность
 - 10.1.3. Функции и части здания
 - 10.1.4. Технические нормативные документы
- 10.2. Предыдущие операции
 - 10.2.1. Фундаменты мелкого заложения
 - 10.2.2. Фундаменты глубокого заложения
 - 10.2.3. Подпорные стены
 - 10.2.4. Стены подвального помещения
- 10.3. Решения для несущих стен
 - 10.3.1. Для заводов
 - 10.3.2. Для бетона
 - 10.3.3. Оптимизированные решения
 - 10.3.4. Готовые решения
- 10.4. Структуры
 - 10.4.1. Конструкции перекрытий
 - 10.4.2. Статические структурные системы
 - 10.4.3. Однонаправленные плиты
 - 10.4.4. Вафельная плита
- 10.5. Строительные установки І
 - 10.5.1. Сантехника
 - 10.5.2. Водоснабжение
 - 10.5.3. Санитарная обработка
 - 10.5.4. Водоотведение
- 10.6. Строительные установки II
 - 10.6.1. Электрические установки
 - 10.6.2. Отопление
- 10.7. Корпуса и отделка І
 - 10.7.1. Введение
 - 10.7.2. Физическая защита здания
 - 10.7.3. Энергоэффективность
 - 10.7.4. Защита от шума
 - 10.7.5. Радиационная защита

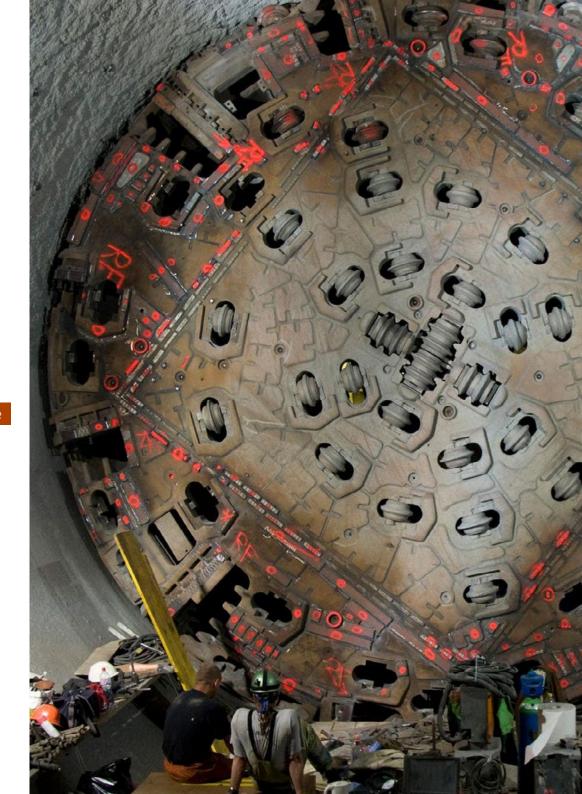
- 10.8. Корпуса и отделка II
 - 10.8.1. Плоские кровли
 - 10.8.2. Скатные кровли
 - 10.8.3. Вертикальные корпуса
 - 10.8.4. Внутренние перегородки
 - 10.8.5. Перегородки, столярные изделия, остекление и крылья
 - 10.8.6. Покрытия
- 10.9. Фасады
 - 10.9.1. Керамика
 - 10.9.2. Бетонные блоки
 - 10.9.3. Панели
 - 10.9.4. Навесные стены
 - 10.9.5. Модульная конструкция
- 10.10. Эксплуатация зданий
 - 10.10.1. Критерии и концепции эксплуатации зданий
 - 10.10.2. Классификации по эксплуатации зданий
 - 10.10.3. Расходы на содержание здания
 - 10.10.4. Расходы на содержание и использование оборудования
 - 10.10.5. Преимущества эксплуатации зданий

Модуль 11. Наука и технология материалов на основе цемента

- 11.1. Цемент
 - 11.1.1. Цемент и реакции гидратации: состав цемента и процесс его производства. Соединения большинства, соединения меньшинства
 - 11.1.2. Процессы гидратации. Характеристики гидратированных продуктов. Материалы, альтернативные цементу
 - 11.1.3. Инновации и новые продукты
- 11.2. Минометы
 - 11.2.1. Свойства
 - 11.2.2. Производство, виды и области применения
 - 11.2.3. Новые материалы
- 11.3. Высокопрочный бетон
 - 11.3.1. Композиция
 - 11.3.2. Свойства и характеристики
 - 11.3.3. Новые разработки

- 11.4. Самоуплотняющийся бетон
 - 11.4.1. Сущность и характеристики его компонентов
 - 11.4.2. Дозирование, изготовление, транспортировка и монтаж на объекте
 - 11.4.3. Характеристики бетона
- 11.5. Легкий бетон
 - 11.5.1. Композиция
 - 11.5.2. Свойства и характеристики
 - 11.5.3. Новые разработки
- 11.6. Волокнистый и многофункциональный бетон
 - 11.6.1. Материалы, используемые в производстве
 - 11.6.2. Свойства
 - 11.6.3. Дизайны
- 11.7. Самовосстанавливающийся и самоочищающийся бетон
 - 11.7.1. Композиция
 - 11.7.2. Свойства и характеристики
 - 11.7.3. Новые разработки
- 11.8. Другие материалы на основе цемента (жидкие, антибактериальные, биологические...)
 - 11.8.1. Композиция
 - 11.8.2. Свойства и характеристики
 - 11.8.3. Новые разработки
- 11.9. Разрушающий и неразрушающий контроль характеристик
 - 11.9.1. Характеристика материалов
 - 11.9.2. Деструктивные методы. Свежее и затвердевшее состояния
 - 11.9.3. Неразрушающие методы и процедуры, применяемые к строительным материалам и конструкциям конструктивные сооружения
- 11.10. Добавочные смеси
 - 11.10.1. Добавочные смеси
 - 11.10.2. Преимущества и недостатки
 - 11.10.3. wУстойчивость

Модуль 12. Прочность, защита и срок службы материалов


- 12.1. Долговечность железобетона
 - 12.1.1. Виды повреждений
 - 12.1.2. Факторы
 - 12.1.3. Наиболее распространенные повреждения
- 12.2. Долговечность материалов на основе цемента 1. Процессы разрушения бетона
 - 12.2.1. Холодный климат
 - 12.2.2. Морская вода
 - 12.2.3. Сульфатное воздействие
- 12.3. Долговечность материалов на основе цемента 2. Процессы разрушения бетона
 - 12.3.1. Аридно-щелочная реакция
 - 12.3.2. Кислотные воздействия и агрессивные ионы
 - 12.3.3. Чистая вода
- 12.4. Коррозия арматуры І
 - 12.4.1. Коррозионные процессы в металлах
 - 12.4.2. Виды коррозии
 - 12.4.3. Пассивный
 - 12.4.4. Важность проблемы
 - 12.4.5. Поведение стали в бетоне
 - 12.4.6. Коррозионные эффекты стали, заделанной в бетон
- 12.5. Коррозия арматуры II
 - 12.5.1. Карбонатная коррозия бетона
 - 12.5.2. Коррозия вследствие проникновения хлоридов
 - 12.5.3. Коррозия под напряжением
 - 12.5.4. Факторы, влияющие на скорость коррозии
- 12.6. Модели со сроком службы
 - 12.6.1. Срок эксплуатации
 - 12.6.2. Карбонизация
 - 12.6.3. Хлориды

tech 38 | Структура и содержание

- 12.7. Долговечность в регулировании
 - 12.7.1. EHE-08
 - 12.7.2. Европейская
 - 12.7.3. Структурный код
- 12.8. Оценка срока службы новых проектов и существующих структур
 - 12.8.1. Новый проект
 - 12.8.2. Остаточный срок службы
 - 12.8.3. Приложения
- 12.9. Проектирование и исполнение долговечных конструкций
 - 12.9.1. Выбор материалов
 - 12.9.2. Критерии дозировки
 - 12.9.3. Защита арматуры от коррозии
- 12.10. Испытания, контроль качества на месте и ремонт
 - 12.10.1. Контрольные испытания на объекте
 - 12.10.2. Контроль исполнения
 - 12.10.3. Испытания коррозионных конструкций
 - 12.10.4. Основы ремонта

Модуль 13. Новые материалы и инновации в инженерии и строительстве

- 13.1. Инновация
 - 13.1.1. Инновация. Поощрения. Новые продукты и их распространение
 - 13.1.2. Защита инноваций
 - 13.1.3. Финансирование инноваций
- 13.2. Дороги I
 - 13.2.1. Циркулярная экономика с использованием новых материалов
 - 13.2.2. Самовосстанавливающиеся дороги
 - 13.2.3. Обеззараживание средства для дорог
- 13.3. Дороги II
 - 13.3.1. Производство энергии на дорогах
 - 13.3.2. Пересечения с дикими животными. фрагментация экосистем
 - 13.3.3. ІоТ и цифровизация на дорогах
- 13.4. Дороги III
 - 13.4.1. Безопасные дороги
 - 13.4.2. Противошумные дороги и "шумные" дороги
 - 13.4.3. Теплоизоляция дорог в городах

Структура и содержание | 39 **tech**

- 13.5. Железные дороги
 - 13.5.1. Новые альтернативные материалы от балласта
 - 13.5.2. Плавучесть баласта
 - 13.5.3. Ликвидация катенариев на железнодорожных путях
- 13.6. Подземные работы и тоннели
 - 13.6.1. Выемка грунта и орудий
 - 13.6.2. RMR (ROCK MASS RATING)
 - 13.6.3. Тоннелепроходческие машины
- 13.7. Возобновляемые источники энергии І
 - 13.7.1. Солнечная фотовольтаика
 - 13.7.2. Солнечная тепловая энергия
 - 13.7.3. Ветровые электростанции
- 13.8. Возобновляемые источники энергии II
 - 13.8.1. Морское дело
 - 13.8.2. Гидроэлектростанция
 - 13.8.3. Геотермальная электростанция
- 13.9. Морские работы
 - 13.9.1. Новые материалы и формы в морских стенах
 - 13.9.2. Новые материалы и формы в морских дамбах
 - 13.9.3. Прогнозирование климата океана
- 13.10. Внедрение инноваций из других отраслей в строительство
 - 13.10.1. LIDAR (LASER IMAGING DETECTION AND RANGING)
 - 13.10.2. Дроны
 - 13.10.3. Интернет вещей (IoT)

Модуль 14. Металлические материалы

- 14.1. Металлические материалы: виды и сплавы
 - 14.1.1. Металл
 - 14.1.2. Черные сплавы
 - 14.1.3. Цветные сплавы
- 14.2. Сплавы черных металлов
 - 14.2.1. Создание
 - 14.2.2. Обработка
 - 14.2.3. Конструкция и типы

- 14.3. Сплавы черных металлов. Сталь и чугун
 - 14.3.1. Кортеновая сталь
 - 14.3.2. Нержавеющая сталь
 - 14.3.3. Углеродистая сталь
 - 14.3.4. Литейное производство
- 14.4. Сплавы черных металлов. Стальная продукция
 - 14.4.1. Горячекатаный прокат
 - 14.4.2. Зарубежные профили
 - 14.4.3. Холоднодеформированные профили
 - 14.4.4. Прочая продукция, используемая в металлоконструкциях
- 14.5. Сплав черных металлов механические характеристики стали
 - 14.5.1. Диаграмма напряжение-деформация
 - 14.5.2. Упрощенные Е диаграммы
 - 14.5.3. Процесс погрузки и разгрузки
- 14.6. Сварные соединения
 - 14.6.1. Методы резки
 - 14.6.2. Виды сварных соединений
 - 14.6.3. Электродуговая сварка
 - 14.6.4. Филейная сварка
- 14.7. Сплавы цветных металлов. Алюминий и его сплавы
 - 14.7.1. Свойства алюминия и его сплавов
 - 14.7.2. Термическая обработка и механизмы закалки
 - 14.7.3. Обозначение и стандартизация алюминиевых сплавов
 - 14.7.4. Алюминиевые сплавы для ковки и литья
- 14.8. Сплавы цветных металлов. Медь и ее сплавы
 - 14.8.1. Чистая медь
 - 14.8.2. Классификация, свойства и применение
 - 14.8.3. Латунь, бронза, мельхиор-алюминий, мельхиор-кремний и мельхиор-никель
 - 14.8.4. Альпаки
- 14.9. Сплавы цветных металлов. Титан и его сплавы
 - 14.9.1. Характеристики и свойства коммерчески чистого титана
 - 14.9.2. Наиболее часто используемые титановые сплавы
 - 14.9.3. Термическая обработка титана и титановых сплавов

tech 40 | Структура и содержание

- 14.10. Сплавы цветных металлов легкие сплавы и суперсплавы
 - 14.10.1. Магний и его сплавы. Суперсплавы
 - 14.10.2. Свойства и применение
 - 14.10.3. Суперсплавы на основе никеля, кобальта и железа

Модуль 15. Утилизация строительных отходов (ОСС)

- 15.1. Декарбонизация
 - 15.1.1. Экологичность строительных материалов
 - 15.1.2. Циркулярная экономика
 - 15.1.3. Углеродный след
 - 15.1.4. Методология и анализ оценки жизненного цикла
- 15.2. Отходы от строительства и сноса (ОСС)
 - 15.2.1. OCC
 - 15.2.2. Текущая ситуация
 - 15.2.3. Проблема ОСС
- 15.3. Характеристика ОСС
 - 15.3.1. Опасные отходы
 - 15.3.2. Неопасные отходы
 - 15.3.3. Городские отходы
 - 15.3.4. ЕКО строительства и сноса зданий
- 15.4. Управление ОСС I
 - 15.4.1. Общие правила
 - 15.4.2. Опасные отходы
 - 15.4.3. Неопасные отходы
 - 15.4.4. Твердые отходы, грунты и камни
- 15.5. Управление ОСС II
 - 15.5.1. Повторное использование
 - 15.5.2. Переработка
 - 15.5.3. Регенерация энергии. утилизация
 - 15.5.4. Административное управление ОСС
- 15.6. Правовая база для ОСС. Экологическая политика
 - 15.6.1. Окружающая среда
 - 15.6.2. Нормативные документы
 - 15.6.3. Обязательства

- 15.7. Свойства ОСС
 - 15.7.1. Классификация
 - 15.7.2. Свойства
 - 15.7.3. Применение и инновации с помощью ОСС
- 15.8. Инновация. Оптимизация использования ресурсов. Из других промышленных, сельскохозяйственных и коммунальных отходов
 - 15.8.1. Дополнительный материал. тройные и бинарные смеси
 - 15.8.3. Геополимеры
 - 15.8.4. Бетонные и асфальтовые смеси
 - 15.8.5. Другие виды использования
- 15.9. Воздействие на окружающую среду
 - 15.9.1. Анализ
 - 15.9.2. Воздействие от ОСС
 - 15.9.3. Принятые меры, идентификация и оценка стоимости
- 15.10. Разрушенные пространства
 - 15.10.1. Полигон
 - 15.10.2. Землепользование
 - 15.10.3. План мониторинга, поддержания и восстановления территории

Модуль 16. Дорожные покрытия, тротуары и битумные смеси

- 16.1. Дренаж и дренажные системы
 - 16.1.1. Элементы подземного дренажа
 - 16.1.2. Дренаж дорожного покрытия
 - 16.1.3. Дренаж земляных работ
- 16.2. Эспланады
 - 16.2.1. Классификация грунтов
 - 16.2.2. Уплотнение грунта и его несущая способность
 - 16.2.3. Формирование эспланад
- 16.3. Базовые слои
 - 16.3.1. Гранулированные слои, природные заполнители, искусственные заполнители и дренирующие заполнители
 - 16.3.2. Поведенческие модели
 - 16.3.3. Процессы подготовки и ввода в эксплуатацию
- 16.4. Обработанный слой для оснований и подстилающих слоев
 - 16.4.1. Слои, обработанные цементом: грунт-цемент и щебень-цемент
 - 16.4.2. Слои, обработанные другими вяжущими
 - 16.4.3. Слои, обработанные битумными вяжущими веществами. Гравийная эмульсия

Структура и содержание | 41 tech

- 16.5. Вяжущие и связующие вещества
 - 16.5.1. Асфальтовые битумы
 - 16.5.2. Флюидизированные и флюидизированные битумы. модифицированные вяжущие вещества
 - 16.5.3. Битумные эмульсии
- 16.6. Агрегаты для слоев дорожных покрытий
 - 16.6.1. Источники заполнителей вторичные заполнители
 - 16.6.2. Природа
 - 16.6.3. Свойства
- 16.7. Обработка поверхности
 - 16.7.1. Грунтовочные, связующие и отверждающие аэрозоли
 - 16.7.2. Посыпка гравием
 - 16.7.3. Битумные суспензии и холодные микроагломераты
- 16.8. Битумные смеси
 - 16.8.1. Горячие асфальтовые смеси
 - 16.8.2. Теплые смеси
 - 16.8.3. Холодные асфальтовые смеси
- 16.9. Бетонные покрытия
 - 16.9.1. Виды жестких дорожных покрытий
 - 16.9.2. Бетонные плиты
 - 16.9.3. Соединения
- 16.10. Производство и укладка асфальтобетонных смесей
 - 16.10.1. Производство, ввод в эксплуатацию и контроль качества
 - 16.10.2. Сохранение, восстановление и обслуживание
 - 16.10.3. Характеристики поверхности дорожных покрытий

Модуль 17. Прочие строительные материалы,

- 17.1. Наноматериалы
 - 17.1.1. Нанотехнология
 - 17.1.2. Применение в строительных материалах
 - 17.1.3. Инновации и приложения
- 17.2. Пены
 - 17.2.1. Типы и структура
 - 17.2.2. Свойства
 - 17.2.3. Использование и инновации

- 17.3. Биомиметические материалы
 - 17.3.1. Характеристики
 - 17.3.2. Свойства
 - 17.3.3. Приложения
- 17.4. Метаматериалы
 - 17.4.1. Характеристики
 - 17.4.2. Свойства
 - 17.4.3. Приложения
- 17.5. Биогидрометаллургия
 - 17.5.1. Характеристики
 - 17.5.2. Технология восстановления
 - 17.5.3. Экологические преимущества
- 17.6. Самовосстанавливающиеся и фотолюминесцентные материалы
 - 17.6.1. Типы
 - 17.6.2. Свойства
 - 17.6.3. Приложения
- 17.7. Изоляционные и термоэлектрические материалы
 - 17.7.1. Энергоэффективность и устойчивость
 - 17.7.2. Типологии
 - 17.7.3. Инновации и новая структура
- 17.8. Керамика
 - 17.8.1. Свойства
 - 17.8.2. Классификация
 - 17.8.3. Инновации в этом секторе
- 17.9. Композиты и аэрогели
 - 17.9.1. Описание
 - 17.9.2. Образование
 - 17.9.3. Приложения
- 17.10. Другие материалы
 - 17.10.1. Каменные материалы
 - 17.10.2. Штукатурка
 - 17.10.3. Прочее

tech 42 | Структура и содержание

Модуль 18. Индустриализация и сейсмостойкое строительство

- 18.1. Индустриализация: сборное строительство
 - 18.1.1. Зарождение индустриализации в строительстве
 - 18.1.2. Готовые конструктивные системы
 - 18.1.3. Сборные строительные системы
- 18.2. Предварительно напряженный бетон
 - 18.2.1. Потери в напряжении
 - 18.2.3. Предельные состояния работоспособности
 - 18.2.4. Предельные состояния
 - 18.2.5. Сборные системы: предварительно напряженные плиты и балки с предварительно напряженной арматурой
- 18.3. Качество в горизонтальных строительных конструкциях
 - 18.3.1. Односторонние балочные перекрытия
 - 18.3.2. Односторонние перекрытия из пустотелых плит
 - 18.3.3. Однонаправленные ребристые плиты перекрытия из листового металла
 - 18.3.4. Вафельные плиты
 - 18.3.5. Сплошные плиты
- 18.4. Конструктивные системы высотных зданий
 - 18.4.1. Обзор небоскребов
 - 18.4.2. Ветровая нагрузка в высотных зданиях
 - 18.4.3. Материалы
 - 18.4.4. Структурные схемы
- 18.5. Динамическое поведение строительных конструкций, подверженных землетрясениям
 - 18.5.1. Системы с одной степенью свободы
 - 18.5.2. Системы с несколькими степенями свободы
 - 18.5.3. Сейсмическое воздействие
 - 18.5.4. Эвристическое проектирование сейсмостойких конструкций
- 18.6. Сложные геометрии в архитектуре
 - 18.6.1. Гиперболические параболоиды
 - 18.6.2. Растягивающиеся конструкции
 - 18.6.3. Пневматические или надувные конструкции

- 18.7. Усиление бетонных конструкций
 - 18.7.1. Экспертиза
 - 18.7.2. Усиление колонн
 - 18.7.3. Усиление балок
- 18.8. Деревянные конструкции
 - 18.8.1. Сортировка древесины
 - 18.8.2. Определение размеров балок
 - 18.8.3. Определение размеров колонн
- 18.9. Автоматизация в конструкциях. ВІМ как инструмент мониторинга
 - 18.9.1. BIM
 - 18.9.2. Федеративные модели обмена ВІМ-файлами
 - 18.9.3. Новые системы формирования структуры и управления
- 18.10. Аддитивное производство методом 3D-печати
 - 18.10.1. Принципы 3D-печати
 - 18.10.2. 3D-печатные конструкционные системы
 - 18.10.3. Прочие системы

Модуль 19. Микроструктурная характеристика материалов

- 19.1. Оптические микроскопы
 - 19.1.1. Современные методы оптической микроскопии
 - 19.1.2. Принципы методики
 - 19.1.3. Топография и применение
- 19.2. Трансмиссионная электронная микроскопия (ТЭМ)
 - 19.2.1. Структура ТЭМ
 - 19.2.2. Дифракция электронов
 - 19.2.3. ТЭМ-изображения
- 19.3. Сканирующий электронный микроскоп (СЭМ)
 - 19.3.1. Характеристики СЭМ
 - 19.3.2. Рентгеноспектральный микроанализ
 - 19.3.3. Преимущества и недостатки
- 19.4. Сканирующая трансмиссионная электронная микроскопия (СТЭМ)
 - 19.4.1. CT9M
 - 19.4.2. Визуализация и томография
 - 19.4.3. EELS
- 19.5. Атомно-силовая микроскопия (АСМ)
 - 19.5.1. ACM
 - 19.5.2. Топографические режимы
 - 19.5.3. Электрические и магнитные характеристики образцов

Структура и содержание | 43 тест

19.6. Интрузионная пороз	иметрия ртути Н	Нg
--------------------------	-----------------	----

- 19.6.1. Пористость и пористая система
- 19.6.2. Оборудование и имущество
- 19.6.3. Анализ
- 19.7. Азотная порозиметрия
 - 19.7.1. Описание оборудования
 - 19.7.2. Свойства
 - 19.7.3. Анализ
- 19.8. Дифракция рентгеновских лучей (DRX)
 - 19.8.1. Генерация и характеристики DRX
 - 19.8.2. Подготовка образцов
 - 19.8.3. Анализ
- 19.9. Электроимпедансная спектроскопия (ЭИС)
 - 19.9.1. Методика
 - 19.9.2. Порядок действий
 - 19.9.3. Преимущества и недостатки
- 19.10. Другие интересные методики
 - 19.10.1. Термогравиметрия
 - 19.10.2. Флуоресценция
 - 19.10.3. Абсорбция изотермическая десорбция паров Н20

Модуль 20. Управление качеством: Подходы и инструменты

- 20.1. Качество в строительстве
 - 20.1.1. Качество. Принципы систем менеджмента качества (СМК)
 - 20.1.2. Документирование системы менеджмента качества
 - 20.1.3. Преимущества системы менеджмента качества
 - 20.1.4. Системы экологического менеджмента (СЭМ)
 - 20.1.5. Интегрированные системы менеджмента (ИСМ)
- 20.2. Ошибки
 - 20.2.1. Понятие ошибки, неисправности, дефекта и несоответствия
 - 20.2.2. Ошибки в технических процессах
 - 20.2.3. Ошибки в организации
 - 20.2.4. Ошибки в поведении человека
 - 20.2.5. Последствия ошибок

- 20.3. Причины
 - 20.3.1. Организационные
 - 20.3.2. Техники
 - 20.3.3. Человеческие факторы
- 20.4. Инструменты качества
 - 20.4.1. Глобальные
 - 20.4.2. Частичные
 - 20.4.3. ISO 9000:2008
- 20.5. Качество и его контроль в строительстве
 - 20.5.1. План контроля качества
 - 20.5.2. План качества предприятия
 - 20.5.3. Руководство по качеству предприятия
- 20.6. Лаборатория испытаний, калибровки, сертификации и аккредитации
 - 20.6.1. Стандартизация, аккредитация, сертификация
 - 20.6.2. Национальный орган по аккредитации (ENAC)
 - 20.6.3. Маркировка СЕ
 - 20.6.4. Преимущества аккредитации испытательных и аккредитационных лабораторий
- 20.7. Система управления качеством ISO 9001:2015
 - 20.7.1. Стандарт ИСО 17025
 - 20.7.2. Цель и область применения стандарта 17025
 - 20.7.3. Взаимосвязь между ISO 17025 и ISO 9001
- 20.8. Менеджмент и технические требования ISO 17025 I лаборатория
 - 20.8.1. Система менеджмента качества
 - 20.8.2. Контроль документации
 - 20.8.3. Работа с жалобами, корректирующие и предупреждающие действия
- 20.9. Управление лабораторией и технические требования ISO 17025 II
 - 20.9.1. Внутренние проверки
 - 20.9.2. Персонал, материально-техническая база и условия окружающей среды
 - 20.9.3. Методы испытаний, калибровка и проверка методов
- 20.10. Шаги, которые необходимо выполнить для получения аккредитации по ISO 17025
 - 20.10.1. Аккредитация испытательной и калибровочной лаборатории І
 - 20.10.2. Аккредитация испытательной и калибровочной лаборатории II
 - 20.10.3. Процесс аккредитации

tech 46 | Методология

Исследование кейсов для контекстуализации всего содержания

Наша программа предлагает революционный метод развития навыков и знаний. Наша цель - укрепить компетенции в условиях меняющейся среды, конкуренции и высоких требований.

С ТЕСН вы сможете познакомиться со способом обучения, который опровергает основы традиционных методов образования в университетах по всему миру"

Вы получите доступ к системе обучения, основанной на повторении, с естественным и прогрессивным обучением по всему учебному плану.

В ходе совместной деятельности и рассмотрения реальных кейсов студент научится разрешать сложные ситуации в реальной бизнес-среде.

Инновационный и отличный от других метод обучения

Эта программа ТЕСН - интенсивная программа обучения, созданная с нуля, которая предлагает самые сложные задачи и решения в этой области на международном уровне. Благодаря этой методологии ускоряется личностный и профессиональный рост, делая решающий шаг на пути к успеху. Метод кейсов, составляющий основу данного содержания, обеспечивает следование самым современным экономическим, социальным и профессиональным реалиям.

Наша программа готовит вас к решению новых задач в условиях неопределенности и достижению успеха в карьере"

Метод кейсов является наиболее широко используемой системой обучения лучшими преподавателями в мире. Разработанный в 1912 году для того, чтобы студенты-юристы могли изучать право не только на основе теоретического содержания, метод кейсов заключается в том, что им представляются реальные сложные ситуации для принятия обоснованных решений и ценностных суждений о том, как их разрешить. В 1924 году он был установлен в качестве стандартного метода обучения в Гарвардском университете.

Что должен делать профессионал в определенной ситуации? Именно с этим вопросом мы сталкиваемся при использовании кейс-метода - метода обучения, ориентированного на действие. На протяжении всей программы студенты будут сталкиваться с многочисленными реальными случаями из жизни. Им придется интегрировать все свои знания, исследовать, аргументировать и защищать свои идеи и решения.

tech 48 | Методология

Методология Relearning

ТЕСН эффективно объединяет метод кейсов с системой 100% онлайн-обучения, основанной на повторении, которая сочетает 8 различных дидактических элементов в каждом уроке.

Мы улучшаем метод кейсов с помощью лучшего метода 100% онлайн-обучения: *Relearning*.

В 2019 году мы достигли лучших результатов обучения среди всех онлайн-университетов в мире.

В ТЕСН вы будете учитесь по передовой методике, разработанной для подготовки руководителей будущего. Этот метод, играющий ведущую роль в мировой педагогике, называется *Relearning*.

Наш университет - единственный вуз, имеющий лицензию на использование этого успешного метода. В 2019 году нам удалось повысить общий уровень удовлетворенности наших студентов (качество преподавания, качество материалов, структура курса, цели...) по отношению к показателям лучшего онлайн-университета.

Методология | 49 **tech**

В нашей программе обучение не является линейным процессом, а происходит по спирали (мы учимся, разучиваемся, забываем и заново учимся). Поэтому мы дополняем каждый из этих элементов по концентрическому принципу. Благодаря этой методике более 650 000 выпускников университетов добились беспрецедентного успеха в таких разных областях, как биохимия, генетика, хирургия, международное право, управленческие навыки, спортивная наука, философия, право, инженерное дело, журналистика, история, финансовые рынки и инструменты. Наша методология преподавания разработана в среде с высокими требованиями к уровню подготовки, с университетским контингентом студентов с высоким социально-экономическим уровнем и средним возрастом 43,5 года.

Методика Relearning позволит вам учиться с меньшими усилиями и большей эффективностью, все больше вовлекая вас в процесс обучения, развивая критическое мышление, отстаивая аргументы и противопоставляя мнения, что непосредственно приведет к успеху.

Согласно последним научным данным в области нейронауки, мы не только знаем, как организовать информацию, идеи, образы и воспоминания, но и знаем, что место и контекст, в котором мы что-то узнали, имеют фундаментальное значение для нашей способности запомнить это и сохранить в гиппокампе, чтобы удержать в долгосрочной памяти.

Таким образом, в рамках так называемого нейрокогнитивного контекстнозависимого электронного обучения, различные элементы нашей программы связаны с контекстом, в котором участник развивает свою профессиональную практику. В рамках этой программы вы получаете доступ к лучшим учебным материалам, подготовленным специально для вас:

Учебный материал

Все дидактические материалы создаются преподавателями специально для студентов этого курса, чтобы они были действительно четко сформулированными и полезными.

Затем вся информация переводится в аудиовизуальный формат, создавая дистанционный рабочий метод ТЕСН. Все это осуществляется с применением новейших технологий, обеспечивающих высокое качество каждого из представленных материалов.

Мастер-классы

Существуют научные данные о пользе экспертного наблюдения третьей стороны.

Так называемый метод обучения у эксперта укрепляет знания и память, а также формирует уверенность в наших будущих сложных решениях.

Практика навыков и компетенций

Студенты будут осуществлять деятельность по развитию конкретных компетенций и навыков в каждой предметной области. Практика и динамика приобретения и развития навыков и способностей, необходимых специалисту в рамках глобализации, в которой мы живем.

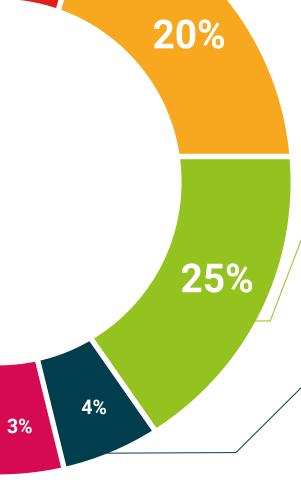
Дополнительная литература

Новейшие статьи, консенсусные документы и международные руководства включены в список литературы курса. В виртуальной библиотеке ТЕСН студент будет иметь доступ ко всем материалам, необходимым для завершения обучения.

Методология | 51 tech

Метод дополнится подборкой лучших кейсов, выбранных специально для этой квалификации. Кейсы представляются, анализируются и преподаются лучшими специалистами на международной арене.

Интерактивные конспекты


Мы представляем содержание в привлекательной и динамичной мультимедийной форме, которая включает аудио, видео, изображения, диаграммы и концептуальные карты для закрепления знаний.

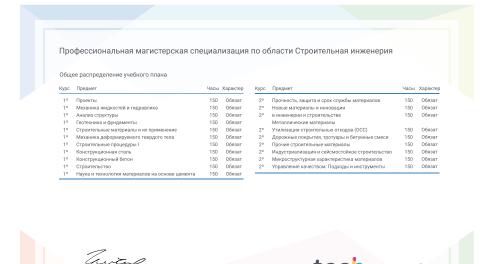
Эта уникальная обучающая система для представления мультимедийного содержания была отмечена компанией Microsoft как "Европейская история успеха".

Тестирование и повторное тестирование

На протяжении всей программы мы периодически оцениваем и переоцениваем ваши знания с помощью оценочных и самооценочных упражнений: так вы сможете убедиться, что достигаете поставленных целей.

tech 54 | Квалификация

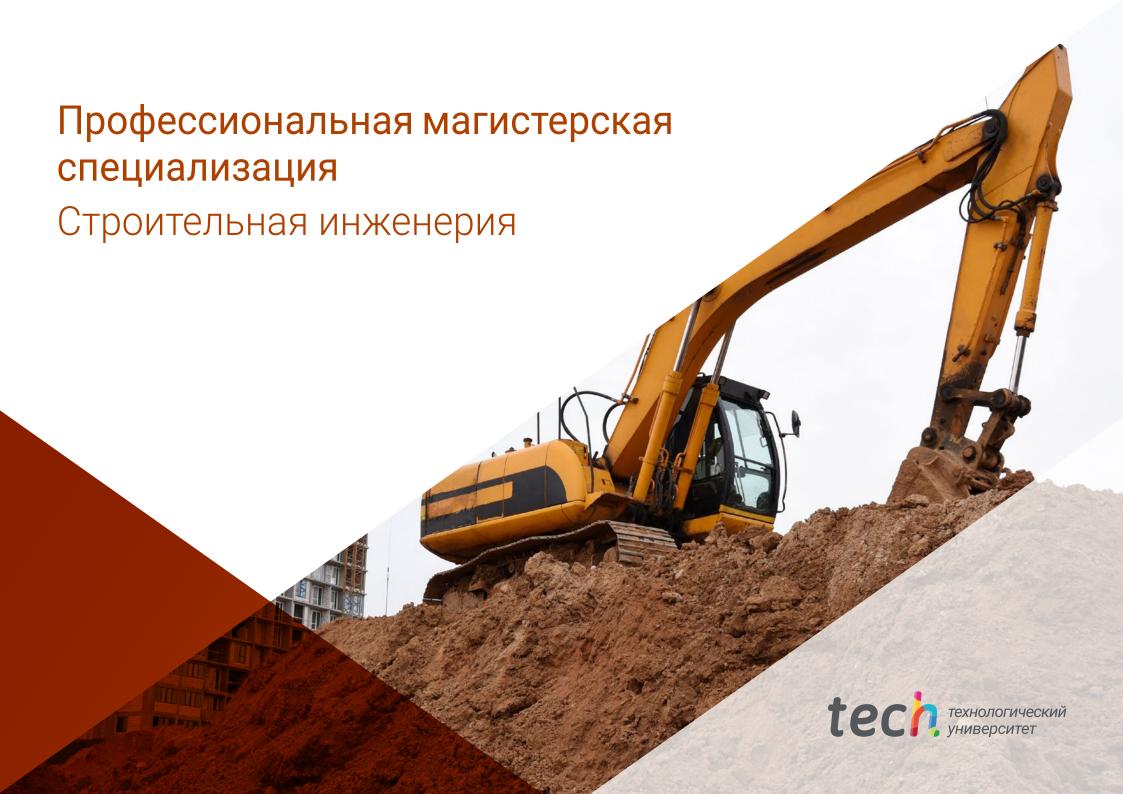
Данная **Профессиональная магистерская специализация в области Строительная инженерия** содержит самую полную и современную программу на рынке.


После прохождения аттестации студент получит по почте* с подтверждением получения соответствующий диплом Профессиональная магистерская специализация, выданный ТЕСН Технологическим университетом.

Диплом, выданный **TECH Технологическим университетом**, подтверждает квалификацию, полученную в Профессиональная магистерская специализация, и соответствует требованиям, обычно предъявляемым биржами труда, конкурсными экзаменами и комитетами по оценке карьеры.

Диплом: **Профессиональная магистерская специализация в области Строительная инженерия**

Количество учебных часов: 3000 часов



tech технологический университет

Профессиональная магистерская специализация

Строительная инженерия

- » Формат: **онлайн**
- » Продолжительность: 2 года
- Учебное заведение: ТЕСН Технологический университет
- Режим обучения: 16ч./неделя
- Расписание: по своему усмотрению
- » Экзамены: **онлайн**

