

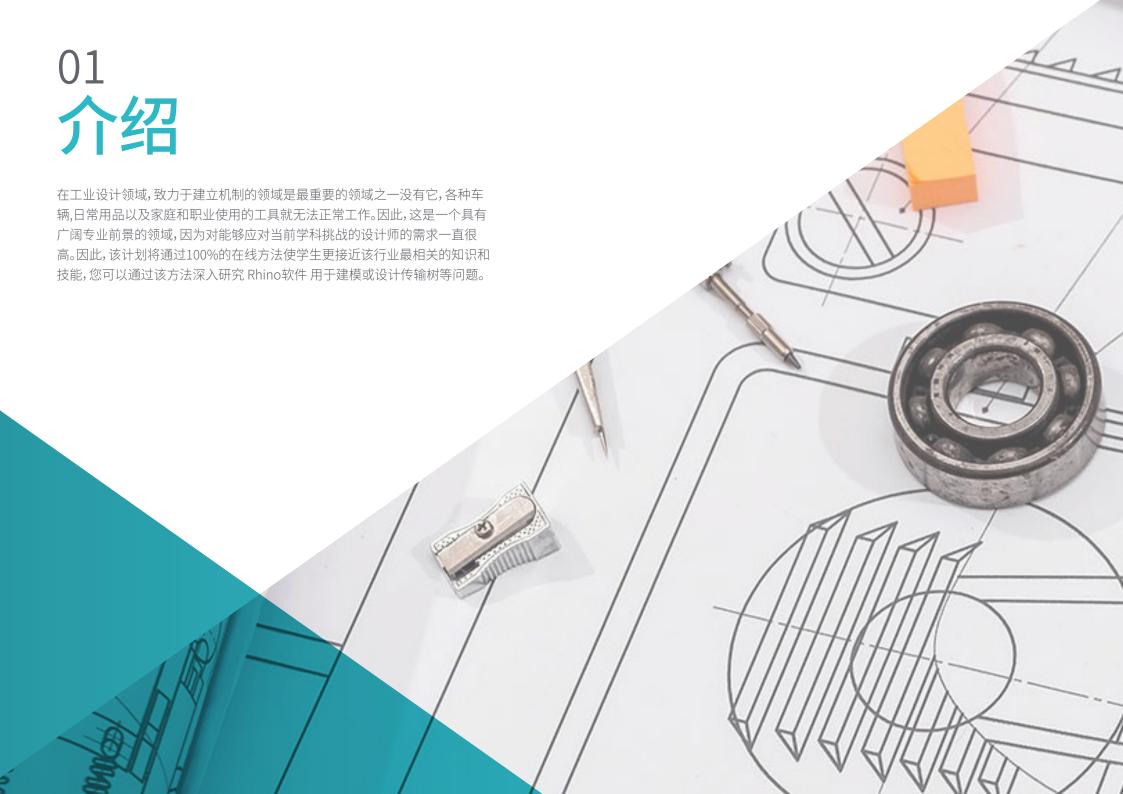
专科文凭 设计机制

» 模式:在线

» 时长:**6个月**

» 学历:TECH科技大学

» 教学时数:16小时/周


» 时间表:按你方便的

» 考试:在线

网络访问: www.techtitute.com/cn/design/postgraduate-diploma/postgraduate-diploma-mechanism-design

目录

OT	02		
介绍	目标		
	4	8	
03 结构和内容	04	05	
结构和内容	方法	学位	
	12	20	28

tech 06 介绍

产品设计最重要的领域之一是机构设计。这是操作各种工具,车辆或设备的重要学科。尽管如此,它并没有得到很大的认可,因此该行业的专业人员往往短缺。出于这个原因,这个领域有很多工作机会,如果准备充分,设计师可以利用这些机会。

这位设计机制专科文凭经过精心设计,为学生提供了该领域最先进的知识,因此他可以申请成为一名伟大的专家,愿意在一家大型工业公司承担这一重要任务为了实现这一目标,该课程将深入研究平面基本布局,基本几何元素,柔性传动设计或使用Rhino软件对机构进行建模等问题。

所有这些都是基于一个在线学习系统,该系统将使专业人士能够将工作与学习结合起来,因为它适合他们的个人情况。此外,该学位还将使您能够24小时完全访问以各种多媒体材料呈现的内容,这些材料将使教学成为一个简单有效的过程。

这个这本设计机制专科文凭包含了市场上最完整和最新的课程。主要特点是:

- 由工业设计专家提出的案例研究的发展
- ◆ 该书的内容图文并茂,示意性强,实用性强为那些视专业实践至关重要的 学科提供了科学和实用的信息
- ◆ 实际练习,你可以进行自我评估过程,以改善你的学习
- 其特别强调创新方法
- 理论课,向专家提问,关于有争议问题的讨论区和个人反思性论文
- ◆ 可以从任何有互联网连接的固定或便携式设备上获取内容

工业部门提供了巨大的职业机会,当你完成这个计划时,你将能够获得这些机会,因为你已经成为机械设计的伟大专家"

为了深入研究机械设计的最佳技术, 该计划提供了最先进的多媒体材料: 理论-实践练习,视频,大师班等"

该课程的教学人员包括来自该行业的专业人士,他们将自己的工作经验带到了这一培训中,还有来自领先公司和著名大学的公认专家。

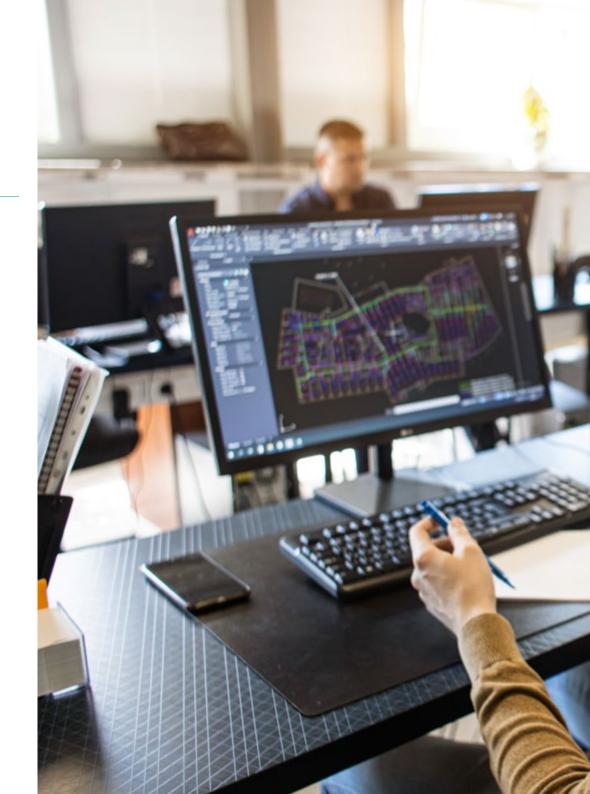
多媒体内容是用最新的教育技术开发的,将允许专业人员进行情景式学习,即一个模拟的环境,提供一个身临其境的培训,为真实情况进行培训。

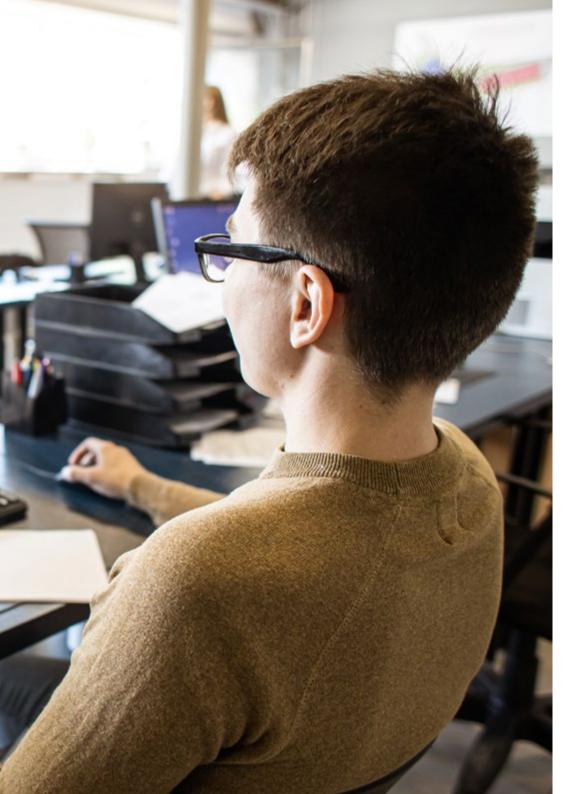
该课程的设计重点是**基于问题的学习**,通过这种方式,专业人员必须尝试解决整个学年出现的不同专业实践情况。它将得到一个由著名专家开发的创新互动视频系统的支持。

您将深入研究Rhino软件的使用,以执行应用于机构设计的大型建模。

TECH 的在线方法将使您能够选择学习的时间和地点,因为它完全适应您的个人和职业环境。

tech 10 | 目标




总体目标

- ◆ 学会利用有效的制作策略和自己的创造性贡献,适当地计划,发展和展示艺术作品
- 获得实现技术项目所需的理论和方法学知识
- 根据材料的特性,分析和评估工程中使用的材料
- ◆ 深入研究创新和技术转让的过程,以开发新的产品和工艺,并建立一个新的技术状态
- ◆ 掌握Rhino软件进行机构建模

当你完成这个专科文凭时,你所有的职业目标都将在你的范围内"

具体目标

模块1技术代表系统

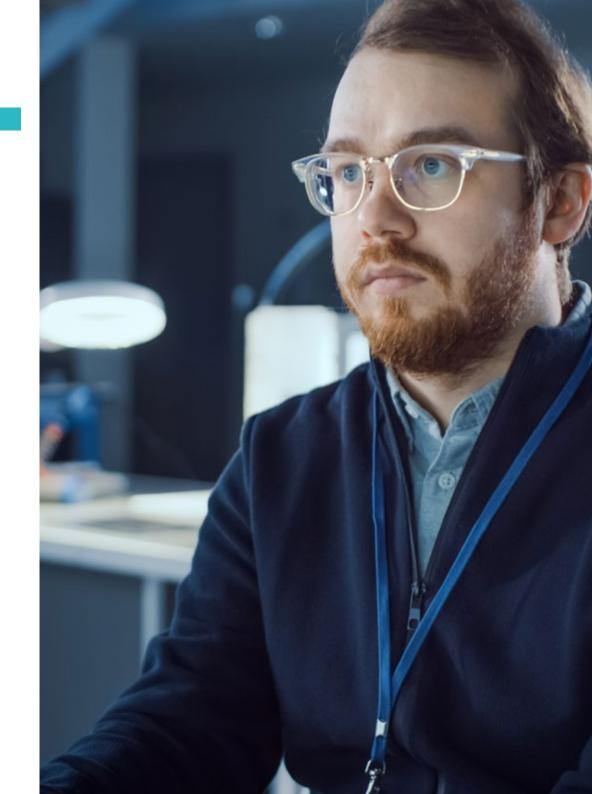
- 在寻找设计问题的解决方案时,将表示系统的知识作为一种工具
- ◆ 发展构思和空间视野,获得鼓励推广和产生想法的新工具
- 学会用斜面,轴测和圆锥系统系统来表示物体,作为传递想法以实现想法的一种手段

模块2.机械元件的设计

- 掌握机械工程设计的所有方面
- ◆ 开发专利,实用新型和工业设计
- 评估不同的故障理论在每个机器元件中的应用
- 使用最先进的设计工具,设计,分析和评估机器部件
- 评估机器元件设计的不同选择

模块3.在Rhino中进行技术建模

- 对NURBS建模软件的工作方式有广泛的了解
- ◆ 在建模中使用精确系统工作
- ◆ 与现场组织合作



tech 14 | 结构和内容

模块1.技术代表系统

- 1.1. 平面几何学简介
 - 1.1.1. 基本材料及其使用
 - 1.1.2. 基本平面线
 - 1.1.3. 多角形度量衡关系
 - 1.1.4. 规范化,线条,书写和格式
 - 1.1.5. 归一化尺寸计算
 - 1.1.6. 天平
 - 1.1.7. 表达系统
 - 1.1.7.1.投影的类型
 - 1.1.7.1.1.圆锥投影
 - 1.1.7.1.2.正交圆柱形投影
 - 1.1.7.1.3.斜向圆柱形投影
 - 1.1.7.2.表达系统的类别
 - 1.1.7.2.1.测量系统
 - 1.1.7.2.2.透视系统
- 1.2. 基本平面线
 - 1.2.1. 基本的几何元素
 - 1.2.2. 垂直度
 - 1.2.3. 平行主义
 - 1.2.4. 有分部的业务
 - 1.2.5. 角度
 - 1.2.6. 圆圈
 - 1.2.7. 几何地方
- 1.3. 几何变换
 - 1.3.1. 等高线
 - 1.3.1.1.平等
 - 1.3.1.2.翻译
 - 1.3.1.3.对称性
 - 1.3.1.4.旋转

结构和内容 | 15 tech

1.0.2.	L-11.16.1
	1.3.2.1.宅配
	1.3.2.2.相似性
1.3.3.	非对称性
	1.3.3.1.等价物
	1.3.3.2.投资
1.3.4.	项目
	1.3.4.1.同源性
	1.3.4.2.平行同质性或亲和性
多边形	
1.4.1.	多角形线条
	1.4.1.1.定义和类型
1.4.2.	三角形
	1.4.2.1.元素和分类
	1.4.2.2.三角形的构造
	1.4.2.3.显著的线和点
1.4.3.	四边形
	1.4.3.1.元素和分类
	1.4.3.2.平行四边形
1.4.4.	正规的多边形
	1.4.4.1.定义
	1.4.4.2.建筑
1.4.5.	周边和区域
	1.4.5.1.定义测量领域
	1.4.5.2.面积单位
1.4.6.	多边形的面积
	1.4.6.1.四边形的面积
	1.4.6.2.三角形的面积
	1.4.6.3.正规多边形的面积
	1.4.6.4.不规则多边形的面积

132 同构的

1.4.

```
1.5. 切入点和链接。技术曲线和圆锥曲线
    1.5.1. 切线,链接和极性
          1.5.1.1.切线
             1.5.1.1.1.切线定理
            1.5.1.1.2.切线的画法
            1.5.1.1.3.线条和曲线的链接
          1.5.1.2.圆周上的极性
             1.5.1.2.1.切线圆的画法
    1.5.2. 技术曲线
          1.5.2.1.椭圆形
          1.5.2.2.椭圆体
          1.5.2.3.螺旋形
    1.5.3. 圆锥曲线
          1.5.3.1.椭圆
          1.5.3.2.抛物线
          1.5.3.3.双曲线
1.6. 二面体系统
    1.6.1. 一般情况
          1.6.1.1.点和线
          1.6.1.2.平面交叉口
          1.6.1.3.平行性,垂直性和距离。
          1.6.1.4.平面的变化
          1.6.1.5.转弯
          1.6.1.6.降级
          1.6.1.7.角度
    1.6.2. 曲线和曲面
          1.6.2.1.曲线
          1.6.2.2.表面
          1.6.2.3.多面体
          1.6.2.4.棱锥
```

1.6.2.5.棱镜

tech 16 结构和内容

1.6.2.6.锥体 1.6.2.7.圆柱体 1.6.2.8.革命的表面 1.6.2.9.表面的交集 1.6.3. 阴影 1.6.3.1. 一般情况 1.7. 尺寸化的系统 1.7.1. 点,线,面

1.7.2. 交叉口和拐弯处 1.7.2.1.降级

1.7.2.2.应用

1.7.3. 平行性,垂直性,距离和角度

1.7.3.1.垂直度

1.7.3.2.距离

1.7.3.3.角度

1.7.4. 线,面和地形

1.7.4.1.地形

1.7.5. 应用

1.8. 轴测系统

1.8.1. 正交轴测法:点,线和平面

1.8.2. 正交轴测法:交点,剖面图和垂直度

1.8.2.1.降级

1.8.2.2.垂直度

1.8.2.3.平面形状

1.8.3. 正交轴测法:身体的视角

1.8.3.1.机构的代表性

1.8.4. 斜面轴测法:斜度,垂直度 1.8.4.1.正面视角 1.8.4.2.孔, 径和垂直度 1.8.4.3.平面图形 1.8.5. 斜轴测法:身体的视角 1.8.5.1.阴影

1.9. 圆锥系统

1.9.1. 锥形或中央凸起 1.9.1.1.交叉口

1.9.1.2.平行性

1.9.1.3.降级

1.9.1.4.垂直度

1.9.1.5.角度

1.9.2. 线性视角

1.9.2.1.辅助性结构

1.9.3. 线和面的透视

1.9.3.1.实用的观点 1.9.4. 透视法

1.9.4.1.倾斜的框架

1.9.5. 透视修复

1.9.5.1.反射作用

1.9.5.2.阴影

1.10. 素描

1.10.1. 写生的目的

1.10.2. 比例

1.10.3. 草图绘制过程

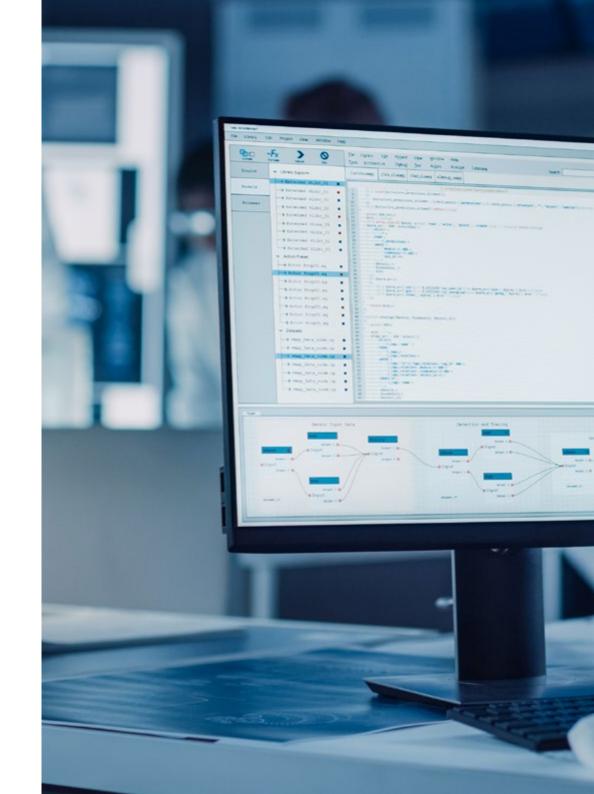
1.10.4. 观点

1.10.5. 标签和图形符号

1.10.6. 测量

模块2.机械元件的设计

- 2.1. 失败的理论
 - 2.1.1. 失败的理论静态
 - 2.1.2. 失败的理论动态性
 - 2.1.3. 疲劳
- 2.2. 摩擦学和润滑
 - 2.2.1. 摩擦力
 - 2.2.2. 穿着
 - 2.2.3. 润滑剂
- 2.3. PTO轴设计
 - 2.3.1. 轴和车轴
 - 2.3.2. 键槽和花键轴
 - 2.3.3. 飞轮
- 2.4. 刚性的传动设计
 - 2.4.1. 凸轮
 - 2.4.2. 正齿轮
 - 2.4.3. 锥齿轮
 - 2.4.4. 螺旋形齿轮
 - 2.4.5. 蜗牛齿轮
- 2.5. 柔性传输的设计
 - 2.5.1. 链条驱动
 - 2.5.2. 皮带传动
- 2.6. 轴承和轴承设计
 - 2.6.1. 滑动轴承
 - 2.6.2. 轴承
- 2.7. 制动器,离合器和联轴器设计
 - 2.7.1. 刹车系统
 - 2.7.2. 离合器
 - 2.7.3. 联轴器


- 2.8. 机械弹簧的设计
- 2.9. 非永久性接头的设计
 - 2.9.1. 螺栓连接
 - 2.9.2. 铆接的接头
- 2.10. 永久性接头设计
 - 2.10.1. 焊接的接头
 - 2.10.2. 黏合剂接头

模块3.在Rhino中进行技术建模

- 3.1. Rhino模型制作
 - 3.1.1. Rhino的界面
 - 3.1.2. 对象类型
 - 3.1.3. 导航模型
- 3.2. 基础知识
 - 3.2.1. 用Gumball编辑
 - 3.2.2. 视口
 - 3.2.3. 建模助手
- 3.3. 精确建模
 - 3.3.1. 坐标输入
 - 3.3.2. 距离和角度约束的输入
 - 3.3.3. 对象约束
- 3.4. 指挥分析
 - 3.4.1. 额外的建模辅助工具
 - 3.4.2. 智能跟踪
 - 3.4.3. 施工图
- 3.5. 线条和折线
 - 3.5.1. 圆圈
 - 3.5.2. 自由形式的线条
 - 3.5.3. 螺旋形

tech 18 | 结构和内容

- 3.6. 编辑几何图形
 - 3.6.1. 圆角和倒角
 - 3.6.2. 混合曲线
 - 3.6.3. Loft
- 3.7. 变革I
 - 3.7.1. 移动,旋转,缩放
 - 3.7.2. 加入,修剪,扩展
 - 3.7.3. 分离-偏移-形成
- 3.8. 创建形状
 - 3.8.1. 可变形的形状
 - 3.8.2. 用固体做模型
 - 3.8.3. 转化的固体
- 3.9. 创造表面
 - 3.9.1. 简单的表面
 - 3.9.2. 挤压, 翻转和旋转表面
 - 3.9.3. 扫除表面
- 3.10. 组织机构
 - 3.10.1. 分层
 - 3.10.2. 群体
 - 3.10.3. 块状物

该节目在机制设计方面有最完整的内容,以最先进的多媒体资源为基础"

tech 22 方法

案例研究,了解所有内容的背景

我们的方案提供了一种革命性的技能和知识发展方法。我们的目标是在一个不断变化,竞争激烈和高要求的环境中加强能力建设。

你将进入一个以重复为基础的学习统,在整个教学大纲中采用自然和渐进式教学。

学生将通过合作活动和真实案例,学习如何解决真实商业环境中的复杂情况。

一种创新并不同的学习方法

该技术课程是一个密集的教学计划,从零开始,提出了该领域在国内和国际上最苛刻的挑战和决定。由于这种方法,个人和职业成长得到了促进,向成功迈出了决定性的一步。案例法是构成这一内容的技术基础,确保遵循当前经济,社会和职业现实。

我们的课程使你准备好在不确定的环境中面对新的挑战,并取得事业上的成功"

案例法一直是世界上最好的院系最广泛使用的学习系统。1912年开发的案例法是为了让法律学生不仅在理论内容的基础上学习法律,案例法向他们展示真实的复杂情况,让他们就如何解决这些问题作出明智的决定和价值判断。1924年,它被确立为哈佛大学的一种标准教学方法。

在特定情况下,专业人士应该怎么做?这就是我们在案例法中面临的问题,这是一种以行动为导向的学习方法。在整个课程中,学生将面对多个真实案例。他们必须整合所有的知识,研究,论证和捍卫他们的想法和决定。

tech 24 方法

再学习方法

TECH有效地将案例研究方法与基于循环的100%在线学习系统相结合,在每节课中结合了8个不同的教学元素。

我们用最好的100%在线教学方法加强案例研究:再学习。

在2019年,我们取得了世界上所有西班牙语在线大学中最好的学习成绩。

在TECH, 你将用一种旨在培训未来管理人员的尖端方法进行学习。这种处于世界教育学前沿的方法被称为再学习。

我校是唯一获准使用这一成功方法的西班牙语大学。2019年,我们成功 地提高了学生的整体满意度(教学质量,材料质量,课程结构,目标.....), 与西班牙语最佳在线大学的指标相匹配。

方法 | 25 tech

在我们的方案中,学习不是一个线性的过程,而是以螺旋式的方式发生(学习,解除学习,忘记和重新学习)。因此,我们将这些元素中的每一个都结合起来。这种方法已经培养了超过65万名大学毕业生,在生物化学,遗传学,外科,国际法,管理技能,体育科学,哲学,法律,工程,新闻,历史,金融市场和工具等不同领域取得了前所未有的成功。所有这些都是在一个高要求的环境中进行的,大学学生的社会经济状况很好,平均年龄为43.5岁。

再学习将使你的学习事半功倍,表现更出色,使你更多地参与到训练中,培养批判精神,捍卫论点和对比意见:直接等同于成功。

从神经科学领域的最新科学证据来看,我们不仅知道如何组织信息,想法,图像y记忆,而且知道我们学到东西的地方和背景,这是我们记住它并将其储存在海马体的根本原因,并能将其保留在长期记忆中。

通过这种方式,在所谓的神经认知背景依赖的电子学习中,我们课程的不同元素与学员发展其专业实践的背景相联系。

tech 26 | 方法

该方案提供了最好的教育材料,为专业人士做了充分准备:

学习材料

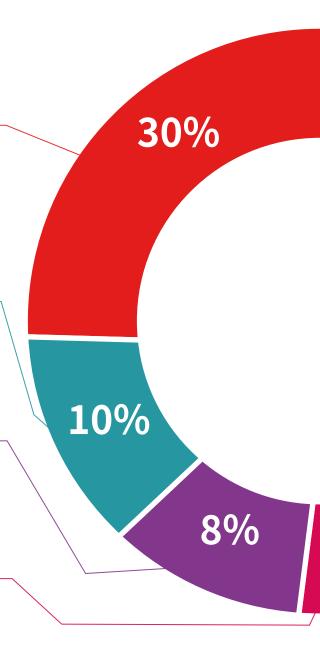
所有的教学内容都是由教授该课程的专家专门为该课程创作的,因此,教学的发展 是具体的。

然后,这些内容被应用于视听格式,创造了TECH在线工作方法。所有这些,都是用最新的技术,提供最高质量的材料,供学生使用。

大师课程

有科学证据表明第三方专家观察的有用性。

向专家学习可以加强知识和记忆,并为未来的困难决策建立信心。


技能和能力的实践

你将开展活动以发展每个学科领域的具体能力和技能。在我们所处的全球化框架内,我们提供实践和氛围帮你取得成为专家所需的技能和能力。

延伸阅读

最近的文章,共识文件和国际准则等。在TECH的虚拟图书馆里,学生可以获得他们完成培训所需的一切。

方法 | 27 tech

案例研究

他们将完成专门为这个学位选择的最佳案例研究。由国际上最好的专家介绍,分析和辅导案例。

互动式总结

TECH团队以有吸引力和动态的方式将内容呈现在多媒体丸中,其中包括音频,视频,图像,图表和概念图,以强化知识。

这个用于展示多媒体内容的独特教育系统被微软授予"欧洲成功案例"称号。

测试和循环测试

在整个课程中,通过评估和自我评估活动和练习,定期评估和重新评估学习者的知识:通过这种方式,学习者可以看到他/她是如何实现其目标的。

4%

3%

20%

tech 30|学位

这个设计机制专科文凭包含了市场上最完整和最新的课程。

评估通过后,学生将通过邮寄收到TECH科技大学颁发的相应的专科文凭学位。

TECH科技大学颁发的证书将表达在专科文凭获得的资格,并将满足工作交流,竞争性考试和专业职业评估委员会的普遍要求。

学位:设计机制专科文凭

官方学时:450小时

^{*}海牙认证。如果学生要求有海牙认证的毕业证书,TECH EDUCATION将作出必要的安排,并收取额外的费用。

