

Experto Universitario

Herramientas para la Investigación en Salud

» Modalidad: No escolarizada (100% en línea)

» Duración: 6 meses

» Titulación: TECH Universidad

» Horario: a tu ritmo

» Exámenes: online

Acceso web: www.techtitute.com/ciencias-del-deporte/experto-universitario/experto-herramientas-investigacion-salud

Índice

 $\begin{array}{c|c} 01 & 02 \\ \hline Presentación & Objetivos \\ \hline 03 & 04 & 05 \\ \hline Dirección del curso & Estructura y contenido & Metodología \\ \hline pág. 12 & pág. 16 & pág. 16 & pág. 20 \\ \hline \end{array}$

06

Titulación

La investigación científica y la intervención profesional en Deporte deben estar conectadas. Para ello, es fundamental que los especialistas que desarrollen las investigaciones empíricas, integren en sus protocolos la aplicación de herramientas novedosas como la IA, el Big Data y la Estadística. La exigencia en este sector aumenta diariamente y la carrera por obtener los resultados más precisos es cada vez más rápida. Por ello, las empresas solicitan a profesionales que dominen la generación de proyectos de investigación y las claves en sus procedimientos con nuevas tecnologías. Atendiendo a esta demanda, TECH ha desarrollado una titulación destinada a egresados en Ciencias del Deporte y otros profesionales interesados en el ámbito de la Salud. Un programa 100% online que profundiza en la gestión del conocimiento y el análisis de datos, para actualizar las competencias de los especialistas.

Synchronizatio

tech 06 | Presentación

La investigación científica ha permitido desarrollar herramientas útiles a nivel fisiológico del rendimiento de los atletas y también en sus competiciones. Además, la precisión de estos estudios ha ayudado a reducir las lesiones de los deportistas no tan solo con la adaptación de las pruebas, sino también con su equipamiento. Por ello, existe una fuerte demanda en el sector investigativo para incorporar a sus líneas de trabajo a especialistas dotados de actualización en esta área que controlen en profundidad aspectos como la Estadística aplicada a los ensayos.

Además, los recursos que proporcionan las nuevas tecnologías han propiciado la evolución en el desarrollo de las hipótesis y han probado los beneficios de la actividad física en el bienestar de los individuos y la mejora de su estilo de vida. Ya sean datos en formato de número, tiempo, volumen, intensidad y estructura aplicados al Deporte, esta información es muy valiosa para la aportación científica a la práctica deportiva. Por esta razón, estos conocimientos deben ser tratados y evaluados por científicos altamente cualificados con el fin de establecer conclusiones óptimas en el escenario real.

Por esta razón, TECH ha desarrollado un programa 100% online que permite un seguimiento de la materia y la adaptación de su ritmo de estudio para proporcionar gran flexibilidad a los alumnos. De esta manera, los profesionales no tendrán que prescindir de otras actividades de su vida diaria de los especialistas, como su empleo. Además, TECH aplica la metodología *Relearning* para eximir al alumnado de largas horas de memorización y permitirles la asimilación de los contenidos de manera paulatina y constante. Cursando esta enseñanza, el profesional contará con el apoyo de un equipo docente especializado en el área que ha sido premiado con diversos reconocimientos en el sector de la salud.

Este **Experto Universitario en Herramientas para la Investigación en Salud** contiene el programa universitario más completo y actualizado del mercado. Sus características más destacadas son:

- El desarrollo de casos prácticos presentados por expertos en Ciencias de la Salud
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información médica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Las expectativas de tu proyecto son claves para su gestión. Comprende cómo afecta la estructura y la distribución de trabajo en esta área gracias a TECH"

Forma parte de los profesionales a la vanguardia de los estudios en Ciencias del Deporte, gracias a la profundización teórico-práctica que obtendrás con TECH"

El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Adopta las competencias en Estadística y R que te serán claves en el desarrollo de los proyectos de examinación cursando una titulación 100% online.

Con TECH serás capaz de aplicar la programación, el Big Data y la regresión múltiple para ofrecer un servicio mucho más preciso.

02 **Objetivos**

Este programa se ha diseñado bajo los fundamentos de un grupo de expertos que instruirán a los egresados en Ciencias del Deporte, entre otras ramas de la Salud, de manera que sean más competitivos en el ámbito investigativo. Gracias a TECH, los especialistas dominarán las claves de la interpretación de la información y el uso de herramientas estadísticas básicas, así como la metodología científica integrada por empresas especializadas en el trabajo de campo. Todo ello, con una visión contextualizada y con perspectivas futuras que integren las nuevas tecnologías en los procesos.

tech 10 | Objetivos

Objetivos generales

- Planteamiento adecuado de una pregunta o problema a solucionar
- Evaluar el estado del arte del problema mediante búsqueda bibliográfica
- Evaluar la viabilidad del potencial proyecto
- Redacción de un proyecto con arreglo a las diferentes convocatorias
- Búsqueda de financiación
- · Dominio de las herramientas de análisis de datos necesarias
- Redacción de artículos científicos (papers) con arreglo a las revistas dianas
- Generación de posters
- Herramientas para la difusión al público no especializado
- · Protección de datos
- Transferencia de conocimientos generados a la industria o la clínica
- Pinceladas en el uso de la inteligencia artificial y el análisis masivo de datos
- Interacción con ejemplos de proyectos exitosos

¿Deseas adentrarte en un sector exigente y/o actualizar las competencias que ya desarrolles en el área investigativa? Lógralo gracias a los conocimientos rigurosos que obtendrás con TECH"

Objetivos específicos

Módulo 1. Generación de proyectos de investigación

- Aprender a evaluar la viabilidad del potencial proyecto
- Conocer en profundidad los hitos esenciales para la redacción de un proyecto de investigación
- Profundizar en los criterios de exclusión/inclusión en proyectos
- Aprender a establecer el equipo específico para cada proyecto

Módulo 2. Estadística y R en investigación sanitaria

- Describir los conceptos principales de la bioestadística
- Conocer el programa R
- Definir y conocer el método de regresión y análisis multivariante con R
- Reconocer los conceptos de la estadística aplicada a la investigación
- Describir las técnicas estadísticas de Data Mining
- Proporcionar los conocimientos de las técnicas estadísticas más usadas en investigación biomédica

Módulo 3. Representaciones gráficas de datos en la investigación sanitaria y otros análisis avanzados

- Dominar las herramientas de Estadística computacional
- Aprender a generar gráficas para la interpretación visual los datos obtenidos en proyecto de investigación
- Conocer de manera profunda los métodos de reducción de dimensionalidad
- Profundizar en la comparación de los métodos

tech 14 | Dirección del curso

Dirección

Dr. López-Collazo, Eduardo

- Subdirector Científico en el Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Director del área de Respuesta Inmune y Enfermedades Infecciosas del IdiPAZ
- Director del Grupo de Respuesta Inmune y Tumor Inmunología del IdiPAZ
- Miembro del Comité Científico Externo del Instituto Murciano de Investigación Sanitaria
- Patrono de la Fundación para la Investigación Biomédica del Hospital La Paz
- Miembro de la Comisión Científica de FIDE
- Editor de la revista científica internacional *Mediators of Inflammation*
- Editor de la revista científica internacionil Frontiers of Immunology
- Coordinador de Plataformas del IdiPAZ
- Coordinador de los Fondos de Investigación Sanitarias en las áreas de Cáncer, Enfermedades Infecciosas y VIH
- Doctor en Física Nuclear por la Universidad de La Habana
- Doctor en Farmacia por la Universidad Complutense de Madrid

Profesores

Dr. Avendaño Ortiz, José

- Investigador Sara Borrell Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal (FIBioHRC/IRyCIS)
- Investigador Fundación para la Investigación Biomédica del Hospital Universitario La Paz (FIBHULP/IdiPAZ)
- Investigador Fundación HM hospitales (FiHM)
- Graduado en Ciencias Biomédicas por la Univesidad de Lleida
- Máster en Investigación Farmacológica por la Universidad Autónoma de Madrid
- Doctorado en Farmacología y Fisiología por la Universidad Autónoma de Madrid

Dr. Pascual Iglesias, Alejandro

- Coordinador de la Plataforma de Bioinformática en el Hospital La Paz
- Asesor del Comité de expertos COVID-19 de Extremadura
- Investigador en grupo de investigación respuesta inmune innata de Eduardo López-Collazo, Instituto de Investigación Sanitaras Hospital Universitario La Paz
- Investigador en grupo de investigación coronavirus de Luis Enjuanes en el Centro Nacional de Biotecnología CNB-CSIC
- Coordinador de Formación Continuada en Bioinformártica en el Instituto de Investigación Sanitaria del Hospital Universitario La Paz
- Doctor Cum Laude en Biociencias Moleculares por la Universidad Autónoma de Madrid
- Licenciado en Biología Molecular por la Universidad de Salamanca
- Máster en Fisiopatología y Farmacología Celular y Molecular por la Universidad de Salamanca

D. Arnedo Abad, Luis

- Data & Analyst Manager
- Data Scientist & Analyst Manager en Industrias Arnedo
- Data Scientist & Analyst Manager en Boustique Perfumes
- Data Scientist & Analyst Manager en Darecod
- Diplomado en Estadística
- · Graduado en Psicología

Aprovecha la oportunidad para conocer los últimos avances en esta materia para aplicarla a tu práctica diaria"

tech 18 | Estructura y contenido

Módulo 1. Generación de proyectos de investigación

- 1.1. Estructura general de un proyecto
- 1.2. Presentación de antecedentes y datos preliminares
- 1.3. Definición de la hipótesis
- 1.4. Definición de objetivos generales y específicos
- 1.5. Definición del tipo de muestra, número y variables a medir
- 1.6. Establecimiento de la metodología científica
- 1.7. Criterios de exclusión/inclusión en proyectos con muestras humanas
- 1.8. Establecimiento del equipo específico: balance y expertise
- 1.9. Aspectos éticos y expectativas: un elemento importante que olvidamos
- 1.10. Generación del presupuesto: un ajuste fino entre las necesidades y la realidad de la convocatoria

Módulo 2. Estadística y R en investigación sanitaria

- 2.1. Bioestadística
 - 2.1.1. Introducción al método científico
 - 2.1.2. Población y muestra. Medidas muestrales de centralización
 - 2.1.3. Distribuciones discretas y Distribuciones continuas
 - 2.1.4. Esquema general de la inferencia estadística. Inferencia sobre una media de una población normal. Inferencia sobre una media de una población general
 - 2.1.5. Introducción a la inferencia no paramétrica
- 2.2. Introducción a R
 - 2.2.1. Características básicas del programa
 - 2.2.2. Principales tipos de objetos
 - 2.2.3. Ejemplos sencillos de simulación e inferencia estadística
 - 2.2.4. Gráficos
 - 2.2.5. Introducción a la programación en R
- 2.3. Métodos de regresión con R
 - 2.3.1. Modelos de regresión
 - 2.3.2. Selección de variables
 - 2.3.3. Diagnóstico del modelo
 - 2.3.4. Tratamiento de datos atípicos
 - 2.3.5. Análisis de regresiones

Estructura y contenido | 19 tech

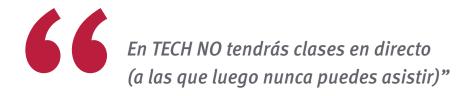
\cap	4	Análisis	N /1	10 rionto	00n D	
/	4	Analisis	1//11 11111	/aname	(:())[] K	

- 2.4.1. Descripción de datos multivariantes
- 2.4.2. Distribuciones multivariantes
- 2.4.3. Reducción de la dimensión
- 2.4.4. Clasificación no supervisada: análisis de conglomerados
- 2.4.5. Clasificación supervisada: análisis discriminante
- 2.5. Métodos de regresión para la investigación con R
 - 2.5.1. Modelos lineales generalizados (GLM): regresión de Poisson y binomial negativa
 - 2.5.2. Modelos lineales generalizados (GLM): regresiones logística y binomial
 - 2.5.3. Regresión de Poisson y Binomial Negativa infladas por ceros
 - 2.5.4. Ajustes locales y modelos aditivos generalizados (GAM)
 - 2.5.5. Modelos mixtos generalizados (GLMM) y generalizados aditivos (GAMM)
- 2.6. Estadística aplicada a la investigación biomédica con R I
 - Nociones básicas de R. Variables y objetos de R. Manejo de datos. Ficheros. Gráficos
 - 2.6.2. Estadística descriptiva y funciones de probabilidad
 - 2.6.3. Programación y funciones en R
 - 2.6.4. Análisis de tablas de contingencia
 - 2.6.5. Inferencia básica con variables continuas
- 2.7. Estadística aplicada a la investigación biomédica con R II
 - 2.7.1. Análisis de la varianza
 - 2.7.2 Análisis de correlación
 - 2.7.3. Regresión lineal simple
 - 2.7.4. Regresión lineal múltiple
 - 2.7.5. Regresión logística
- 2.8. Estadística aplicada a la investigación biomédica con R III
 - 2.8.1. Variables de confusión e interacciones
 - 2.8.2. Construcción de un modelo de regresión logística
 - 2.8.3. Análisis de supervivencia
 - 2.8.4. Regresión de Cox
 - 2.8.5. Modelos predictivos. Análisis de curvas ROC

- 2.9. Técnicas estadísticas de Data Mining con R I
 - 2.9.1. Introducción. *Data Mining*. Aprendizaje Supervisado y No Supervisado. Modelos Predictivos. Clasificación y Regresión
 - 2.9.2. Análisis descriptivo. Pre-procesamiento de datos
 - 2.9.3. Análisis de Componentes Principales (PCA)
 - 2.9.4. Análisis de Componentes Principales (PCA)
 - 2.9.5. Análisis Clúster. Métodos Jerárquicos. K-means
- 2.10. Técnicas estadísticas de Data Mining con R II
 - Medidas de Evaluación de Modelos. Medidas de capacidad predictiva.
 Curvas ROC
 - 2.10.2. Técnicas de Evaluación de Modelos. Validación cruzada. Muestras Bootstrap
 - 2.10.3. Métodos basados en árboles (CART)
 - 2.10.4. Support vector machines (SVM)
 - 2.10.5. Random Forest (RF) y Redes Neuronales (NN)

Módulo 3. Representaciones gráficas de datos en la investigación sanitaria y otros análisis avanzados

- 3.1. Tipos de gráficos
- 3.2. Análisis de supervivencia
- 3.3. Curvas ROC
- 3.4. Análisis multivariante (tipos de regresión múltiple)
- 3.5. Modelos binarios de regresión
- 3.6. Análisis de datos masivos
- 3.7. Métodos para reducción de dimensionalidad
- 3.8. Comparación de los métodos: PCA, PPCA and KPCA
- 3.9. T-SNE (t-Distributed Stochastic Neighbor Embedding)
- 3.10. UMAP (Uniform Manifold Approximation and Projection)



El alumno: la prioridad de todos los programas de TECH

En la metodología de estudios de TECH el alumno es el protagonista absoluto. Las herramientas pedagógicas de cada programa han sido seleccionadas teniendo en cuenta las demandas de tiempo, disponibilidad y rigor académico que, a día de hoy, no solo exigen los estudiantes sino los puestos más competitivos del mercado.

Con el modelo educativo asincrónico de TECH, es el alumno quien elige el tiempo que destina al estudio, cómo decide establecer sus rutinas y todo ello desde la comodidad del dispositivo electrónico de su preferencia. El alumno no tendrá que asistir a clases en vivo, a las que muchas veces no podrá acudir. Las actividades de aprendizaje las realizará cuando le venga bien. Siempre podrá decidir cuándo y desde dónde estudiar.

Los planes de estudios más exhaustivos a nivel internacional

TECH se caracteriza por ofrecer los itinerarios académicos más completos del entorno universitario. Esta exhaustividad se logra a través de la creación de temarios que no solo abarcan los conocimientos esenciales, sino también las innovaciones más recientes en cada área.

Al estar en constante actualización, estos programas permiten que los estudiantes se mantengan al día con los cambios del mercado y adquieran las habilidades más valoradas por los empleadores. De esta manera, quienes finalizan sus estudios en TECH reciben una preparación integral que les proporciona una ventaja competitiva notable para avanzar en sus carreras.

Y además, podrán hacerlo desde cualquier dispositivo, pc, tableta o smartphone.

El modelo de TECH es asincrónico, de modo que te permite estudiar con tu pc, tableta o tu smartphone donde quieras, cuando quieras y durante el

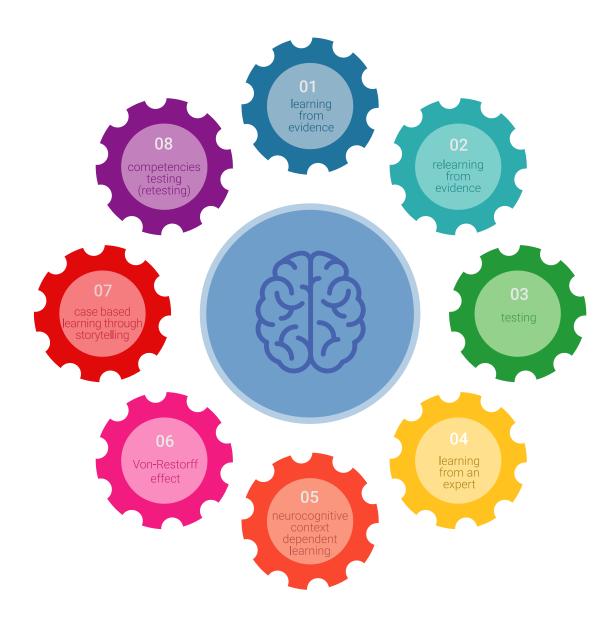
tech 24 | Metodología de estudio

Case studies o Método del caso

El método del caso ha sido el sistema de aprendizaje más utilizado por las mejores escuelas de negocios del mundo. Desarrollado en 1912 para que los estudiantes de Derecho no solo aprendiesen las leyes a base de contenidos teóricos, su función era también presentarles situaciones complejas reales. Así, podían tomar decisiones y emitir juicios de valor fundamentados sobre cómo resolverlas. En 1924 se estableció como método estándar de enseñanza en Harvard.

Con este modelo de enseñanza es el propio alumno quien va construyendo su competencia profesional a través de estrategias como el *Learning by doing* o el *Design Thinking*, utilizadas por otras instituciones de renombre como Yale o Stanford.

Este método, orientado a la acción, será aplicado a lo largo de todo el itinerario académico que el alumno emprenda junto a TECH. De ese modo se enfrentará a múltiples situaciones reales y deberá integrar conocimientos, investigar, argumentar y defender sus ideas y decisiones. Todo ello con la premisa de responder al cuestionamiento de cómo actuaría al posicionarse frente a eventos específicos de complejidad en su labor cotidiana.


Método Relearning

En TECH los case studies son potenciados con el mejor método de enseñanza 100% online: el Relearning.

Este método rompe con las técnicas tradicionales de enseñanza para poner al alumno en el centro de la ecuación, proveyéndole del mejor contenido en diferentes formatos. De esta forma, consigue repasar y reiterar los conceptos clave de cada materia y aprender a aplicarlos en un entorno real.

En esta misma línea, y de acuerdo a múltiples investigaciones científicas, la reiteración es la mejor manera de aprender. Por eso, TECH ofrece entre 8 y 16 repeticiones de cada concepto clave dentro de una misma lección, presentada de una manera diferente, con el objetivo de asegurar que el conocimiento sea completamente afianzado durante el proceso de estudio.

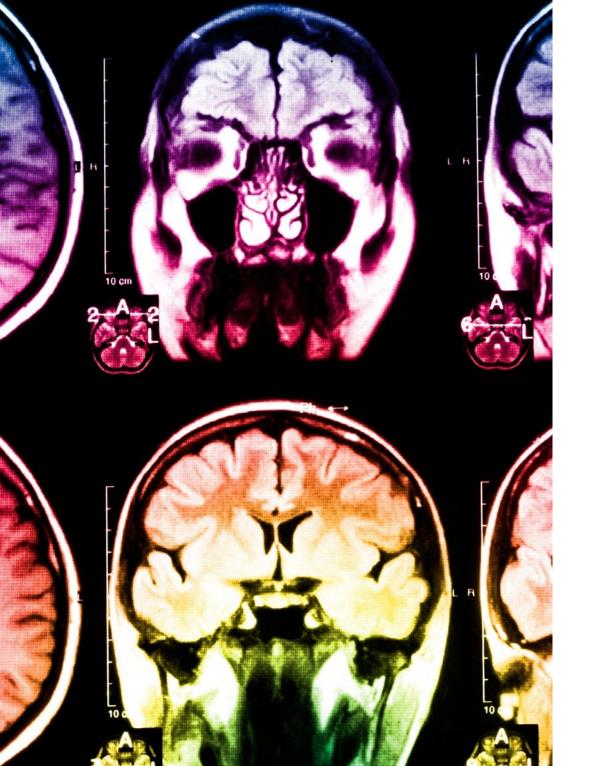
El Relearning te permitirá aprender con menos esfuerzo y más rendimiento, implicándote más en tu especialización, desarrollando el espíritu crítico, la defensa de argumentos y el contraste

Un Campus Virtual 100% online con los mejores recursos didácticos

Para aplicar su metodología de forma eficaz, TECH se centra en proveer a los egresados de materiales didácticos en diferentes formatos: textos, vídeos interactivos, ilustraciones y mapas de conocimiento, entre otros. Todos ellos, diseñados por profesores cualificados que centran el trabajo en combinar casos reales con la resolución de situaciones complejas mediante simulación, el estudio de contextos aplicados a cada carrera profesional y el aprendizaje basado en la reiteración, a través de audios, presentaciones, animaciones, imágenes, etc.

Y es que las últimas evidencias científicas en el ámbito de las Neurociencias apuntan a la importancia de tener en cuenta el lugar y el contexto donde se accede a los contenidos antes de iniciar un nuevo aprendizaje. Poder ajustar esas variables de una manera personalizada favorece que las personas puedan recordar y almacenar en el hipocampo los conocimientos para retenerlos a largo plazo. Se trata de un modelo denominado *Neurocognitive context-dependent e-learning* que es aplicado de manera consciente en esta titulación universitaria.

Por otro lado, también en aras de favorecer al máximo el contacto mentoralumno, se proporciona un amplio abanico de posibilidades de comunicación, tanto en tiempo real como en diferido (mensajería interna, foros de discusión, servicio de atención telefónica, email de contacto con secretaría técnica, chat y videoconferencia).


Asimismo, este completísimo Campus Virtual permitirá que el alumnado de TECH organice sus horarios de estudio de acuerdo con su disponibilidad personal o sus obligaciones laborales. De esa manera tendrá un control global de los contenidos académicos y sus herramientas didácticas, puestas en función de su acelerada actualización profesional.

La modalidad de estudios online de este programa te permitirá organizar tu tiempo y tu ritmo de aprendizaje,

La eficacia del método se justifica con cuatro logros fundamentales:

- 1. Los alumnos que siguen este método no solo consiguen la asimilación de conceptos, sino un desarrollo de su capacidad mental, mediante ejercicios de evaluación de situaciones reales y aplicación de conocimientos.
- 2. El aprendizaje se concreta de una manera sólida en capacidades prácticas que permiten al alumno una mejor integración en el mundo real.
- 3. Se consigue una asimilación más sencilla y eficiente de las ideas y conceptos, gracias al planteamiento de situaciones que han surgido de la realidad.
- 4. La sensación de eficiencia del esfuerzo invertido se convierte en un estímulo muy importante para el alumnado, que se traduce en un interés mayor en los aprendizajes y un incremento del tiempo dedicado a trabajar en el curso.

La metodología universitaria mejor valorada por sus alumnos

Los resultados de este innovador modelo académico son constatables en los niveles de satisfacción global de los egresados de TECH.

La valoración de los estudiantes sobre la calidad docente, calidad de los materiales, estructura del curso y sus objetivos es excelente. No en valde, la institución se convirtió en la universidad mejor valorada por sus alumnos según el índice global score, obteniendo un 4,9 de 5.

Accede a los contenidos de estudio desde cualquier dispositivo con conexión a Internet (ordenador, tablet, smartphone) gracias a que TECH está al día de la vanguardia

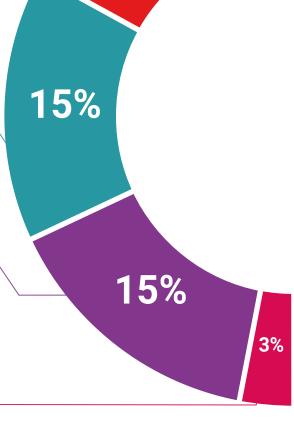
Podrás aprender con las ventajas del acceso a entornos simulados de aprendizaje y el planteamiento de aprendizaje por Así, en este programa estarán disponibles los mejores materiales educativos, preparados a conciencia:

Material de estudio

Todos los contenidos didácticos son creados por los especialistas que van a impartir el curso, específicamente para él, de manera que el desarrollo didáctico sea realmente específico y concreto.

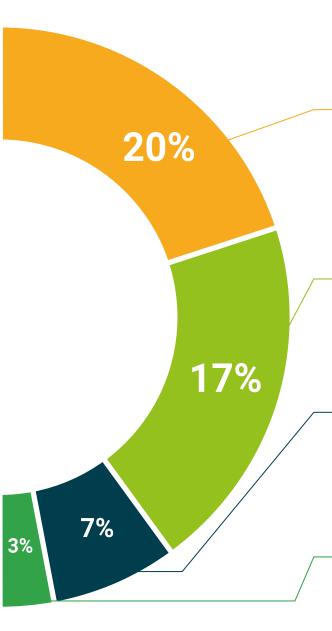
Estos contenidos son aplicados después al formato audiovisual que creará nuestra manera de trabajo online, con las técnicas más novedosas que nos permiten ofrecerte una gran calidad, en cada una de las piezas que pondremos a tu servicio.

Prácticas de habilidades y competencias


Realizarás actividades de desarrollo de competencias y habilidades específicas en cada área temática. Prácticas y dinámicas para adquirir y desarrollar las destrezas y habilidades que un especialista precisa desarrollar en el marco de la globalización que vivimos.

Resúmenes interactivos

Presentamos los contenidos de manera atractiva y dinámica en píldoras multimedia que incluyen audio, vídeos, imágenes, esquemas y mapas conceptuales con el fin de afianzar el conocimiento.


Este sistema exclusivo educativo para la presentación de contenidos multimedia fue premiado por Microsoft como "Caso de éxito en Europa".

Lecturas complementarias

Artículos recientes, documentos de consenso, guías internacionales... En nuestra biblioteca virtual tendrás acceso a todo lo que necesitas para completar tu capacitación.

Case Studies

Completarás una selección de los mejores case studies de la materia.

Casos presentados, analizados y tutorizados por los mejores especialistas del panorama internacional.

Testing & Retesting

Evaluamos y reevaluamos periódicamente tu conocimiento a lo largo del programa. Lo hacemos sobre 3 de los 4 niveles de la Pirámide de Miller.

Clases magistrales

Existe evidencia científica sobre la utilidad de la observación de terceros expertos.

El denominado *Learning from an expert* afianza el conocimiento y el recuerdo,

y genera seguridad en nuestras futuras decisiones difíciles.

Guías rápidas de actuación

TECH ofrece los contenidos más relevantes del curso en forma de fichas o guías rápidas de actuación. Una manera sintética, práctica y eficaz de ayudar al estudiante a progresar en su aprendizaje.

tech 32 | Titulación

Este **Experto Universitario en Herramientas para la Investigación en Salud** contiene el programa universitario más completo y actualizado del mercado.

Tras la superación de la evaluación, el alumno recibirá por correo postal* con acuse de recibo su correspondiente título de **Experto Universitario** emitido por **TECH Universidad.**

Este título expedido por **TECH Universidad** expresará la calificación que haya obtenido en el Experto Universitario, y reunirá los requisitos comúnmente exigidos por las bolsas de trabajo, oposiciones y comités evaluadores de carreras profesionales.

Título: Experto Universitario en Herramientas para la Investigación en Salud

Modalidad: No escolarizada (100% en línea)

Duración: 6 meses

Experto Universitario en Herramientas para la Investigación en Salud

Se trata de un título propio de esta Universidad con una duración de 450 horas, con fecha de inicio dd/mm/aaaa y fecha de finalización dd/mm/aaaa.

TECH es una Institución Particular de Educación Superior reconocida por la Secretaría de Educación Pública a partir del 28 de junio de 2018.

En Ciudad de México, a 31 de mayo de 2024

^{*}Apostilla de La Haya. En caso de que el alumno solicite que su título en papel recabe la Apostilla de La Haya, TECH Universidad realizará las gestiones oportunas para su obtención, con un coste adicional.

salud confianza personas
salud confianza personas
educación información tutores
garantía acreditación enseñanza
instituciones tecnología aprendizaj
comunidad compromiso.

Experto Universitario Herramientas para la Investigación en Salud

- » Modalidad: No escolarizada (100% en línea)
- » Duración: 6 meses
- » Titulación: TECH Universidad
- » Horario: a tu ritmo
- » Exámenes: online

