University certificate
The world's largest faculty of engineering”
Introduction to the Program
En este temario 100% online podrás poner al día tus conocimientos y competencias acerca de simulaciones, creación y optimización de productos en la Industria Química”
En la Ingeniería Química, los reactores tienen una importancia superlativa ya que potencian la eficiencia al maximizar conversiones y reducir subproductos. A través de ellos también se facilita la escalabilidad de las reacciones y, al mismo tiempo, controlan mejor la seguridad de esos procesos. Algunos de los más avanzados entre ellos, como los fotocatalíticos y los microfluídicos, que han permitido explorar nuevas condiciones y rutas de síntesis para las sustancias. Su dominio garantiza a los expertos una capacidad de investigación superior a la par que una praxis de excelencia.
Por esta razón, TECH ha integrado disruptivos conceptos, herramientas y metodologías de trabajo sobre este ámbito en esta Postgraduate diploma. Mediante su estudio, el alumnado profundizará en las diferentes tipologías de reactores al igual que ahondará en su diseño y cinética frente a reacciones químicas.
Por otro lado, este programa dispone en total de 4 módulos y, además de los mencionados reactores químicos, cuenta con los criterios más vanguardistas sobre operaciones de transferencia, producción, simulación y optimización de procesos. De modo específico, se analizarán los intercambiadores de calor específico y los principios de equilibrio líquido y vapor. Además, el temario enfatiza en los softwares más punteros para evaluar de manera previa y controlada separaciones, plantas multimproducto, entre otros.
Este itinerario académico se acompaña de una innovadora metodología 100% online donde destaca el exclusivo sistema de enseñanza Relearning. Este último propicia la asimilación rápida y flexible de conceptos y competencias por medio de la reiteración gradual de diferentes aspectos durante cada uno de los temas abordados. Por otra parte, esta Postgraduate diploma no está sujeto a horarios herméticos ni cronogramas evaluativos rígidos. Así, al cursarlo, los profesionales podrán establecer sus rutinas en correspondencia con otras obligaciones personales o laborales.
No esperes más para empezar esta titulación donde ahondarás en los tipos de reactores más avanzados de la Industria Química”
Esta Postgraduate diploma en Chemical Process Engineering contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Ingeniería Química
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Una Postgraduate diploma que no está reñido con otras responsabilidades, permitiéndote estudiar o trabajar a lo largo de sus 6 meses de duración”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Este programa no está sujeto a horarios herméticos y podrás acceder a su contenido cuando quieras y desde el sitio que prefieras”
Tras esta titulación, manejarás a cabalidad los fundamentos del análisis químico y ambiental previos a la fabricación de productos químicos”
Syllabus
In its 4 modules, this Postgraduate diploma addresses a wide range of concepts, technologies, and procedures related to the design and optimization of chemical processes. From transfer operations and the approach of advanced reactors to the simulation of complex processes, the students will have the opportunity to update their theoretical knowledge and practical skills. It will also delve into the use of cutting-edge software tools to implement these innovations. In the analysis of these contents, the Relearning methodology will be present, which facilitates the incorporation of competencies in the quickest, most flexible, and always in a 100% online modality.
Enroll in this Postgraduate diploma and be part of the most exclusive educational community in the online panorama: the TECH community"
Module 1. Advanced Transfer Operations Design
1.1. Vapor-Liquid Equilibrium in Multicomponent Systems
1.1.1. Ideal Solutions
1.1.2. Vapor-liquid Diagrams
1.1.3. Deviations from Ideality: Activity Coefficients
1.1.4. Azeotropes
1.2. Rectification of Multicomponent Mixtures
1.2.1. Differential or Flash Distillation
1.2.2. Rectification Columns
1.2.3. Energy Balances in Condensers and Boilers
1.2.4. Calculation of the Number of Plates
1.2.5. Plate Efficiency and Overall Efficiency
1.2.6. Discontinuous Rectification
1.3. Supercritical Fluids
1.3.1. Use of Supercritical Fluids as Solvents
1.3.2. Elements of Supercritical Fluid Systems
1.3.3. Applications of Supercritical Fluids
1.4. Extraction
1.4.1. Liquid-Liquid Extraction
1.4.2. Extraction in Plate Columns
1.4.3. Leaching
1.4.4. Drying
1.4.5. Crystallization
1.5. Solid Phase Extraction
1.5.1. The PSE Process
1.5.2. Addition of Modifiers
1.5.3. Applications in the Extraction of High Value-Added Compounds
1.6. Adsorption
1.6.1. Adsorbate-Adsorbent Interaction
1.6.2. Adsorption Separation Mechanisms
1.6.3. Adsorption Equilibrium
1.6.4. Contact Methods
1.6.5. Commercial Adsorbents and Applications
1.7. Membrane Separation Processes
1.7.1. Membrane Types
1.7.2. Membrane Regeneration
1.7.3. Ion Exchange
1.8. Heat Transfer in Complex Systems
1.8.1. Molecular Energy Transport in Multicomponent Mixtures
1.8.2. Equation of Conservation of Energy Thermal
1.8.3. Turbulent Energy Transport
1.8.4. Temperature-Enthalpy Diagrams
1.9. Heat Exchangers
1.9.1. Classification of Heat Exchangers According to Flow Direction
1.9.2. Classification of Heat Exchangers According to Structure
1.9.3. Exchanger Applications in Industry
1.10. Heat Exchanger Networks
1.10.1. Sequential Synthesis of an Exchanger Network
1.10.2. Simultaneous Synthesis of an Exchanger Network
1.10.3. Application of the Pinch Method to Heat Exchanger Networks
Module 2. Advanced Chemical Reactor Design
2.1. Reactor Design
2.1.1. Kinetics of Chemical Reactions
2.1.2. Reactor Design
2.1.3. Simple Reaction Design
2.1.4. Multiple Reaction Design
2.2. Fixed Bed Catalytic Reactors
2.2.1. Mathematical Models for Fixed-Bed Reactors
2.2.2. Fixed Bed Catalytic Reactor
2.2.3. Adiabatic Reactor with and without Recirculation
2.2.4. Non Adiabatic Reactors
2.3. Fluidized-Bed Catalytic Reactors
2.3.1. Gas-Solid Systems
2.3.2. Fluidization Regions
2.3.3. Fluidized Bed Bubble Models
2.3.4. Reactor Models for Fine and Large Particles
2.4. Fluid-Fluid Reactors and Multiphase Reactors
2.4.1. Design of Infill Columns
2.4.2. Design of Gushing Columns
2.4.3. Multiphase Reactor Applications
2.5. Electrochemical Reactors
2.5.1. Over-potential and Electrochemical Reaction Rate
2.5.2. Influence on the Geometry of Electrodes
2.5.3. Modular Reactors
2.5.4. Model of Electrochemical Reactor Piston Flow
2.5.5. Model of Electrochemical Reactor Perfect Mixing
2.6. Membrane Reactors
2.6.1. Membrane Reactors
2.6.1.1. According to Membrane Position and Reactor Configuration
2.6.2. Membrane Reactors Applications
2.6.3. Design of Membrane Reactors for the Production of Hydrogen
2.6.4. Membrane Bioreactors
2.7. Photo-reactors
2.7.1. The Photo-reactors
2.7.2. Photo-reactor Applications
2.7.3. Photo-reactor Design for Pollutant Removal
2.8. Gasification and Combustion Reactors
2.8.1. Design of Fixed Bed Gasifiers
2.8.2. Design of Fluidized Bed Gasifiers
2.8.3. Drag-Flow Gasifiers
2.9. Bioreactors
2.9.1. Bioreactors by Mode of Operation
2.9.2. Design of a Batch Bioreactor
2.9.3. Design of a Continuous Bioreactor
2.9.4. Design of a Semi-continuous Bioreactor
2.10. Polymerization Reactors
2.10.1. Polymerization Process
2.10.2. Anionic Polymerization Reactors
2.10.3. Staged Polymerization Reactors
2.10.4. Free Radical Polymerization Reactors
Module 3. Processes and Chemical Products Design
3.1. Chemical Products Design
3.1.1. Chemical Products Design
3.1.2. Stages in Product Design
3.1.3. Chemical Products Categories
3.2. Strategies in Chemical Products Design
3.2.1. Detection of Market Needs
3.2.2. Conversion of Requirements into Product Specifications
3.2.3. Sources of Idea Production
3.2.4. Strategies for the Idea Screening
3.2.5. Variables Influencing Idea Selection
3.3. Strategies in Chemical Products Manufacturing
3.3.1. Prototypes in Chemical Products Manufacturing
3.3.2. Chemical Products Manufacture
3.3.3. Specific Design of Basic Chemicals
3.3.4. Scaling
3.4. Process Design
3.4.1. Flow-sheeting for Process Design
3.4.2. Process Understanding Diagrams
3.4.3. Heuristic Rules in the Design of Chemical Processes
3.4.4. Flexibility of Chemical Processes
3.4.5. Problem Solving Associated with Process Design
3.5. Integrated Environmental Remediation in Chemical Processes
3.5.1. Integration of the Environmental Variable in Process Engineering
3.5.2. Recirculation Flows in the Process Plant
3.5.3. Treatment of Effluents Produced in the Process
3.5.4. Minimization of Discharges from Process Plant Activities
3.6. Process Intensification
3.6.1. Intensification Applied to Chemical Processes
3.6.2. Intensification Methodologies
3.6.3. Intensification in Reaction and Separation Systems
3.6.4. Process Intensification Applications: Highly Efficient Equipment
3.7. Stock Management
3.7.1. Inventory Management
3.7.2. Selection Criteria
3.7.3. Inventory Sheets
3.7.4. Procurement
3.8. Processes and Chemical Products Economic Analysis
3.8.1. Fixed and Working Capital
3.8.2. Capital and Manufacturing Cost Estimation
3.8.3. Equipment Cost Estimate
3.8.4. Estimation of Labor and Raw Material Costs
3.9. Profitability Estimation
3.9.1. Global Investment Estimation Methods
3.9.2. Detailed Investment Estimation Methods
3.9.3. Chemical Investment Selection Criteria
3.9.4. The Time Factor in Cost Estimation
3.10. Application in the Chemistry Industry
3.10.1. Glass Industry
3.10.2. Cement Industry
3.10.3. Ceramic Industry
Module 4. Chemical Process Simulation and Optimization
4.1. Optimization of Chemical Processes
4.1.1. Heuristic Rules in Optimization of Processes
4.1.2. Determination of Degrees of Freedom
4.1.3. Selection of Design Variables
4.2. Energy Optimization
4.2.1. Pinch Method Advantages
4.2.2. Thermodynamic Effects Influencing Optimization
4.2.3. Cascade Diagrams
4.2.4. Enthalpy-Temperature Diagrams
4.2.5. Corollaries of the Pinch Method
4.3. Optimization Under Uncertainty
4.3.1. Lineal Programming (LP)
4.3.2. Graphical Methods and Simplex Algorithm in LP
4.3.3. Non-Lineal Programming
4.3.4. Numerical Methods for the Optimization of Nonlinear Problems
4.4. Simulation of Chemical Processes
4.4.1. Simulated Process Design
4.4.2. Property Estimation
4.4.3. Thermodynamic Packages
4.5. Software for Chemical Process Simulation and Optimization
4.5.1. Aspen plus and Aspen hysys
4.5.2. Unisim
4.5.3. Matlab
4.5.4. COMSOL
4.6. Simulation of Separation Operations
4.6.1. Marginal Steam Flow Rate Method for Rectification Columns
4.6.2. Rectifying Columns with Thermal Coupling
4.6.3. Empirical Method for the Design of Multicomponent Columns
4.6.4. Calculation of the Number Minimally of Plates
4.7. Heat Exchanger Simulation
4.7.1. Simulation of a Shell and Tube Heat Exchanger
4.7.2. Heads on Heat Exchangers
4.7.3. Configurations and Variables to be Defined in Heat Exchanger Design
4.8. Reactor Simulation
4.8.1. Ideal Reactor Simulation
4.8.2. Multiple Reactor Systems Simulation
4.8.3. Reacting or Equilibrium Reactor Simulation
4.9. Multi-Product Plants Design
4.9.1. Multi-Product Plant
4.9.2. Multi-Product Plants Advantages
4.9.3. Multi-Product Plants Design
4.10. Multi-Product Plants Optimization
4.10.1. Factors Affecting Optimization Efficiency
4.10.2. Factorial Design Applied to Multiproduct Plants
4.10.3. Optimization of Equipment Size
4.10.4. Remodeling of Existing Plants
You will have at your disposal up-to-date materials, complementary readings, and rigorous explanatory videos, among other multimedia resources"
Postgraduate Diploma in Chemical Process Engineering
In a world driven by innovation and the constant search for efficient solutions, chemical process engineering has become a fundamental pillar of numerous industries. TECH Global University presents you with our Chemical Process Engineering Postgraduate Diploma program, a unique opportunity to delve into this exciting field and become a highly skilled professional. Our program is designed to provide you with specialized knowledge and practical skills in chemical process engineering. Focused on the application of scientific and technological principles to design, operate and optimize chemical processes, this Postgraduate Diploma will give you a competitive edge in the job market.
Focus on the application of scientific and technological principles to design, operate and optimize chemical processes, this Postgraduate Diploma will give you a competitive advantage in the job market.
Become part of the best University in the world
One of the most outstanding advantages of this program is that it is offered in online mode. This means that you can access this valuable knowledge from anywhere in the world and adapt it to your personal schedule. The flexibility of online education allows you to continue with your work and personal responsibilities while training in a high-demand field. At TECH Global University, we understand that theory is important, but practical application is essential. That's why our program includes hands-on projects, case studies and simulations that will allow you to face real-world challenges and develop effective solutions. Some of the key topics you'll address include chemical process thermodynamics, chemical reactor design, process control, safety in the chemical industry and more. You will be accompanied by subject matter experts who will guide you throughout your learning. Become an expert in chemical process engineering and prepare yourself to play a key role in industries such as chemical, petrochemical, pharmaceutical, food, energy and many others. The demand for skilled professionals in this field is constantly growing, and TECH Global University gives you the opportunity to excel in this exciting career.