Introduction to the Program

Matricúlate ahora en una titulación con la que crearás los algoritmos de Deep Learning más avanzados”

El avance en el campo del Deep Learning ha sido significativo en los últimos años gracias al desarrollo de nuevas técnicas y metodologías que permiten entrenar modelos de aprendizaje profundo con un mayor rendimiento y eficiencia. Por ello, existe una gran demanda de profesionales altamente capacitados en esta área para aplicar estas técnicas a proyectos innovadores y desafiantes, por lo que el informático de la actualidad se encuentra ante una fantástica oportunidad.

Por eso surge esta Postgraduate diploma en Advanced Deep Learning, que consta de varias unidades temáticas que abordan los aspectos más relevantes del Deep Learning, desde el aprendizaje supervisado hasta el aprendizaje por refuerzo y la generación de texto. Además, los participantes tendrán la oportunidad de dominar técnicas avanzadas como el uso de las redes neuronales recurrentes.

Asimismo, la Postgraduate diploma en Advanced Deep Learning se imparte en línea, lo que permite a los estudiantes acceder al contenido del título en cualquier momento y lugar. Del mismo modo, la metodología pedagógica del Relearning se enfoca en el aprendizaje autónomo y dirigido mediante la reiteración de los conceptos, impulsando el progreso educativo de los alumnos. Además, el programa ofrece una gran flexibilidad para organizar los recursos académicos, lo que permite a los estudiantes adaptar su aprendizaje a sus horarios y necesidades específicas.

Destaca con una Postgraduate diploma que te permitirá sentar las bases para replicar el éxito de empresas de IA como OpenAI o DeepMind”

Esta Postgraduate diploma en Advanced Deep Learning contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:

  • El desarrollo de casos prácticos presentados por expertos en Deep Learning Avanzado
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información tecnológica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Su especial hincapié en metodologías innovadoras
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Lanzarás tu carrera como informático creando avanzados modelos de Deep Computer Vision”

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Serás una referencia a la hora de crear modelos de IA que produzcan lenguaje natural con una calidad sorprendente"

Te someterás a útiles casos prácticos con los que potenciarás tus habilidades para optimizar la política de un agente"

Syllabus

The Postgraduate diploma in Advanced Deep Learning is an educational program that will provide students with a broad academic background, covering all the key aspects for the creation of the most advanced artificial neural network architectures and techniques such as Reinforcement Learning, key in well-known AI models such as ChatGPT. The curriculum is comprehensive and is complemented by a variety of innovative teaching resources available on the program's Virtual Campus.

A highly comprehensive curriculum that will provide you with the most global and up-to-date view of Advanced Deep Learning"

Module 1. Deep Computer Vision with Convolutional Neural Networks

1.1. The Cortex Visual Architecture

1.1.1. Functions of the Visual Cortex
1.1.2. Theories of computational vision
1.1.3. Models of image processing

1.2. Convolutional layers

1.2.1. Reuse of weights in convolution
1.2.2. 2D convolution
1.2.3. Activation Functions

1.3. Grouping layers and implementation of grouping layers with Keras

1.3.1. Pooling and Striding
1.3.2. Flattening
1.3.3. Types of Pooling

1.4. CNN Architecture

1.4.1. VGG Architecture
1.4.2. AlexNet architecture
1.4.3. ResNet Architecture

1.5. Implementation of a ResNet-34 CNN using Keras

1.5.1. Weight initialization
1.5.2. Input layer definition
1.5.3. Output definition

1.6. Use of pre-trained Keras models

1.6.1. Characteristics of pre-trained models
1.6.2. Uses of pre-trained models
1.6.3. Advantages of pre-trained models

1.7. Pre-trained models for transfer learning

1.7.1. Transfer learning
1.7.2. Transfer learning process
1.7.3. Advantages of transfer learning

1.8. Classification and Localization in Deep Computer Vision

1.8.1. Image Classification
1.8.2. Localization of objects in images
1.8.3. Object Detection

1.9. Object detection and object tracking

1.9.1. Object detection methods
1.9.2. Object tracking algorithms
1.9.3. Tracking and localization techniques

1.10. Semantic Segmentation

1.10.1. Deep learning for semantic segmentation
1.10.2. Edge Detection
1.10.3. Rule-based segmentation methods 

Module 2. Natural Language Processing (NLP) with Natural Recurrent Networks (NNN) and Attention

2.1. Text generation using RNN

2.1.1. Training an RNN for text generation
2.1.2. Natural language generation with RNN
2.1.3. Text generation applications with RNN

2.2. Training data set creation

2.2.1. Preparation of the data for training an RNN
2.2.2. Storage of the training dataset
2.2.3. Data cleaning and transformation

2.3. Sentiment Analysis

2.3.1. Classification of opinions with RNN
2.3.2. Detection of themes in comments
2.3.3. Sentiment analysis with deep learning algorithms

2.4. Encoder-decoder network for neural machine translation

2.4.1. Training an RNN for machine translation
2.4.2. Use of an encoder-decoder network for machine translation
2.4.3. Improving the accuracy of machine translation with RNNs

2.5. Attention mechanisms

2.5.1. Application of care mechanisms in RNN
2.5.2. Use of care mechanisms to improve the accuracy of the models
2.5.3. Advantages of attention mechanisms in neural networks

2.6. Transformer models

2.6.1. Use of Transformers models for natural language processing
2.6.2. Application of Transformers models for vision
2.6.3. Advantages of Transformers models

2.7. Transformers for vision

2.7.1. Use of Transformers models for vision
2.7.2. Image data preprocessing
2.7.3. Training of a Transformer model for vision

2.8. Hugging Face Transformer Library

2.8.1. Using the Hugging Face Transformers Library
2.8.2. Application of the Hugging Face Transformers Library
2.8.3. Advantages of the Hugging Face Transformers library

2.9. Other Transformers Libraries. Comparison

2.9.1. Comparison between the different Transformers libraries
2.9.2. Use of the other Transformers libraries
2.9.3. Advantages of the other Transformers libraries

2.10. Development of an NLP Application with RNN and Attention. Practical Application

2.10.1. Development of a natural language processing application with RNN and attention
2.10.2. Use of RNN, attention mechanisms and Transformers models in the application
2.10.3. Evaluation of the practical application

Module 3. Reinforcement Learning

3.1. Optimization of rewards and policy search

3.1.1. Reward optimization algorithms
3.1.2. Policy search processes
3.1.3. Reinforcement learning for reward optimization

3.2. OpenAI

3.2.1. OpenAI Gym environment
3.2.2. Creation of OpenAI environments
3.2.3. Reinforcement Learning Algorithms in OpenAI

3.3. Neural network policies

3.3.1. Convolutional neural networks for policy search
3.3.2. Deep learning policies
3.3.3. Extending neural network policies

3.4. Stock evaluation: the credit allocation problem

3.4.1. Risk analysis for credit allocation
3.4.2. Estimating the profitability of loans
3.4.3. Credit evaluation models based on neural networks

3.5. Policy Gradients

3.5.1. Reinforcement learning with policy gradients
3.5.2. Optimization of policy gradients
3.5.3. Policy gradient algorithms

3.6. Markov decision processes

3.6.1. Optimization of Markov decision processes
3.6.2. Reinforcement learning for Markov decision processes
3.6.3. Models of Markov decision processes

3.7. Temporal difference learning and Q-Learning

3.7.1. Application of temporal differences in learning
3.7.2. Application of Q-Learning in learning
3.7.3. Optimization of Q-Learning parameters

3.8. Implementation of Deep Q-Learning and Deep Q-Learning variants

3.8.1. Construction of deep neural networks for Deep Q-Learning
3.8.2. Implementation of Deep Q-Learning
3.8.3. Variations of Deep Q-Learning

3.9. Reinforcement Learning Algorithms

3.9.1. Reinforcement Learning Algorithms
3.9.2. Reward Learning Algorithms
3.9.3. Punishment learning algorithms

3.10. Design of a Reinforcement Learning Environment. Practical Application

3.10.1. Design of a reinforcement learning environment
3.10.2. Implementation of a reinforcement learning algorithm
3.10.3. Evaluation of a reinforcement learning algorithm

You will only need a PC or Tablet to access educational content that is a reference in the specialization of Advanced Deep Learning techniques”

Postgraduate Diploma in Advanced Deep Learning

Deep Learning has become one of the most demanded fields with the greatest projection in the technological field. To improve the capacity of data analysis and decision making, companies are looking to incorporate specialists in the area. TECH, aware of this need, has developed the Postgraduate Diploma in Advanced Deep Learning. This postgraduate course will deepen the knowledge of the most advanced techniques of machine learning, neural networks and deep learning. This will allow the professional to specialize in the creation, implementation and optimization of deep learning models to solve complex problems.

The proper handling of Deep Learning assumes a deep knowledge in mathematics, statistics and programming. In our Postgraduate Diploma you will approach the practical handling of the most used software tools and programming libraries in Deep Learning. Such as TensorFlow and PyTorch. This will allow you to effectively apply the knowledge acquired in real life projects. You will deepen your knowledge of hyperparameter selection and the implementation of regularization techniques. In short, the program in Advanced Deep Learning at TECH, is the best option to acquire the necessary knowledge and stand out in the job field.