Introduction to the Program

With this completely online Master's Degree, you will design personalized and intuitive user experiences to optimize customer satisfaction” 

master degree artificial intelligence programing TECH Global University

Computational Intelligence helps institutions improve productivity in software development. Its tools have the capacity to handle unstructured data, learn from past experiences and adapt to changes in dynamic environments. In addition, intelligent systems can predict potential application problems before they happen, allowing professionals to take preventive measures to avoid costly problems in the future. In this context, the most prestigious international IT companies are actively seeking to incorporate specialists in software architecture for QA testing.  

In this context, TECH is implementing an innovative Master's Degree in Artificial Intelligence in Programming. Designed by top experts, the syllabus will delve into the training of algorithms to develop products with intelligent systems. Likewise, the syllabus will delve into the essential extensions for Visual Studio Code, the most widely used source code editor today. On the other hand, the teaching materials will address the integration of Artificial Intelligence in management with databases to detect possible failures and create unit tests. In this way, students will gain the technical skills to develop advanced solutions based on machine learning techniques, optimizing the performance and efficiency of programming processes. 

It should be noted that this university program is taught using a completely online methodology. In this way, professionals will be able to balance their work with their knowledge updating process. In addition, they will enjoy the support of a highly specialized teaching staff that will provide them with personalized guidance. In this sense, the only requirement for entering the Virtual Campus is that students have an electronic device with an Internet connection, being able to connect even from their cell phone. 

You will implement advanced Natural Language Processing techniques for the development of virtual assistants such as chatbots” 

This Master's Degree in Artificial Intelligence in Programming contains the most complete and up-to-date program on the market. The most important features include:

  • Development of practical cases presented by experts in Artificial Intelligence in Programming  
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where the self-assessment process can be carried out to improve learning 
  • Special emphasis on innovative methodologies in Artificial Intelligence in Programming 
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an internet connection 

You will delve into the optimization of the performance of Artificial Intelligence models by applying methods of adjustment, validation and deployment in productive environments" 

Its teaching staff includes professionals from the field of Artificial Intelligence in Programming, who bring their work experience to this program, as well as renowned specialists from leading companies and prestigious universities. 

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive learning experience designed to prepare for real-life situations. 

This program is designed around Problem-Based Learning, whereby the student must try to solve the different professional practice situations that arise throughout the program. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts.

You will have a solid understanding of the testing life cycle, from the creation of test cases to the detection of bugs"

magister degree artificial intelligence programing TECH Global University

TECH's Relearning method will allow you to learn with less effort and higher performance, involving you more in your professional specialization"

Syllabus

This Master's Degree will provide graduates with a holistic approach, which will give them a significant advantage in computer development, equipping them with specific skills. To achieve this, the syllabus will cover everything from preparing the development environment to optimizing software and implementing intelligent systems in real projects. The syllabus will also delve into aspects such as no-code interface design, using ChatGPT to optimize code, and the application of machine learning in QA testing. 

”##IMAGE##”

You will implement Artificial Intelligence solutions in Cloud and Edge Computing environments, ensuring accessibility to all resources” 

Module 1. Fundamentals of Artificial Intelligence

1.1. History of Artificial Intelligence

1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film 
1.1.3. Importance of Artificial Intelligence 
1.1.4. Technologies that Enable and Support Artificial Intelligence

1.2. Artificial Intelligence in Games 

1.2.1. Game Theory 
1.2.2. Minimax and Alpha-Beta Pruning 
1.2.3. Simulation: Monte Carlo 

1.3. Neural Networks 

1.3.1. Biological Fundamentals 
1.3.2. Computational Model 
1.3.3. Supervised and Unsupervised Neural Networks 
1.3.4. Simple Perceptron 
1.3.5. Multilayer Perceptron 

1.4. Genetic Algorithms 

1.4.1. History 
1.4.2. Biological Basis 
1.4.3. Problem Coding 
1.4.4. Generation of the Initial Population 
1.4.5. Main Algorithm and Genetic Operators 
1.4.6. Evaluation of Individuals: Fitness 

1.5. Thesauri, Vocabularies, Taxonomies 

1.5.1. Vocabulary 
1.5.2. Taxonomy 
1.5.3. Thesauri 
1.5.4. Ontologies 
1.5.5. Knowledge Representation: Semantic Web 

1.6. Semantic Web 

1.6.1. Specifications: RDF, RDFS and OWL 
1.6.2. Inference/ Reasoning 
1.6.3. Linked Data 

1.7. Expert Systems and DSS 

1.7.1. Expert Systems 
1.7.2. Decision Support Systems 

1.8. Chatbots and Virtual Assistants

1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow 
1.8.3. Integrations: Web, Slack, WhatsApp, Facebook 
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant

1.9. AI Implementation Strategy 
1.10. Future of Artificial Intelligence

1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections

Module 2. Data Types and Life Cycle 

2.1. Statistics

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales

2.2. Types of Statistical Data

2.2.1. By Type

2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative. Binomial Data, Nominal Data and Ordinal Data 

2.2.2. By Form 

2.2.2.1. Numerical
2.2.2.2. Text 
2.2.2.3. Logical

2.2.3. By Source

2.2.3.1. Primary
2.2.3.2. Secondary

2.3. Data Lifecycle

2.3.1. Lifecycle Stages
2.3.2. Lifecycle Milestones
2.3.3. FAIR Principles

2.4. Initial Stages of the Cycle

2.4.1. Goal Definition
2.4.2. Determination of Required Resources
2.4.3. Gantt Chart
2.4.4. Data Structure

2.5. Data Collection

2.5.1. Data Collection Methodology
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels

2.6. Data Cleaning

2.6.1. Data Cleaning Phases
2.6.2. Data Quality
2.6.3. Data Manipulation (using R)

2.7. Data Analysis, Interpretation and Evaluation of Results

2.7.1. Statistical Measures
2.7.2. Relationship Indices
2.7.3. Data Mining

2.8. Data Warehouse

2.8.1. Components of a Data Warehouse
2.8.2. Design
2.8.3. Aspects to Consider

2.9. Data Availability

2.9.1. Utility
2.9.2. Security

2.10. Regulatory Framework 

2.10.1. Good Practices

Module 3. Data in Artificial Intelligence 

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Advanced Tools for Data Scientists 

3.2. Data, Information and Knowledge 

3.2.1. Data, Information and Knowledge
3.2.2. Types of Data 
3.2.3. Data Sources 

3.3. From Data to Information

3.3.1. Data Analysis 
3.3.2. Types of Analysis 
3.3.3. Extraction of Information from a Dataset 

3.4. Extraction of Information Through Visualization 

3.4.1. Visualization as an Analysis Tool 
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set 

3.5. Data Quality 

3.5.1. Quality Data 
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing 

3.6. Dataset 

3.6.1. Dataset Enrichment 
3.6.2. The Curse of Dimensionality 
3.6.3. Modification of Our Data Set 

3.7. Unbalance

3.7.1. Classes of Unbalance 
3.7.2. Unbalance Mitigation Techniques 
3.7.3. Balancing a Dataset 

3.8. Unsupervised Models

3.8.1. Unsupervised Model 
3.8.2. Methods 
3.8.3. Classification with Unsupervised Models 

3.9. Supervised Models 

3.9.1. Supervised Model 
3.9.2. Methods 
3.9.3. Classification with Supervised Models 

3.10. Tools and Good Practices 

3.10.1. Good Practices for Data Scientists 
3.10.2. The Best Model
3.10.3. Useful Tools 

Module 4. Data Mining. Selection, Pre-Processing and Transformation 

4.1. Statistical Inference 

4.1.1. Descriptive Statistics vs. Statistical Inference 
4.1.2. Parametric Procedures 
4.1.3. Non-Parametric Procedures 

4.2. Exploratory Analysis 

4.2.1. Descriptive Analysis
4.2.2. Visualization 
4.2.3. Data Preparation 

4.3. Data Preparation 

4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data 
4.3.3. Transforming Attributes

4.4. Missing Values 

4.4.1. Treatment of Missing Values 
4.4.2. Maximum Likelihood Imputation Methods 
4.4.3. Missing Value Imputation Using Machine Learning 

4.5. Noise in the Data

4.5.1. Noise Classes and Attributes 
4.5.2. Noise Filtering
4.5.3. The Effect of Noise 

4.6. The Curse of Dimensionality 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Multidimensional Data Reduction 

4.7. From Continuous to Discrete Attributes 

4.7.1. Continuous Data vs. Discreet Data 
4.7.2. Discretization Process 

4.8. The Data

4.8.1. Data Selection
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods

4.9. Instance Selection 

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Pre-Processing in Big Data Environments 

Module 5. Algorithm and Complexity in Artificial Intelligence 

5.1. Introduction to Algorithm Design Strategies 

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms 

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Criteria for Mathematical Analysis of Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms 

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Sorting by Merge (Merge_Sort) 
5.3.6. Sorting Quickly (Quick_Sort) 

5.4. Algorithms with Trees 

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps 

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms 

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms 

5.7.1. Greedy Strategy 
5.7.2. Greedy Strategy Elements 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding 

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra’s Algorithm 

5.9. Greedy Algorithms on Graphs 

5.9.1. Minimum Spanning Tree 
5.9.2. Prim’s Algorithm 
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking 

5.10.1. Backtracking Algorithm 
5.10.2. Alternative Techniques 

Module 6. Intelligent Systems 

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems 

Module 7. Machine Learning and Data Mining 

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Pre-Processing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. Algorithm C 
7.3.3. Overtraining and Pruning 
7.3.4. Result Analysis 

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrices 
7.4.2. Numerical Evaluation Matrices 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves 

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes’ Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10. Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis 

Module 8. Neural Networks, the Basis of Deep Learning 

8.1. Deep Learning 

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Operations 

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers 

8.3.1. Input Layer 
8.3.2. Hidden Layer 
8.3.3. Output Layer 

8.4. Layer Bonding and Operations 

8.4.1. Architecture Design 
8.4.2. Connection between Layers 
8.4.3. Forward Propagation 

8.5. Construction of the First Neural Network 

8.5.1. Network Design 
8.5.2. Establish the Weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8. From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine Tuning Hyperparameters of Neural Networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights 

Module 9. Deep Neural Networks Training 

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques 

9.2. Reuse of Pre-Trained Layers 

9.2.1. Transfer Learning Training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Adam and RMSprop Optimizers 
9.3.3. Moment Optimizers 

9.4. Learning Rate Programming 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross-Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines 

9.6.1. Model Design 
9.6.2. Selection of Metrics and Evaluation Parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Transfer Learning Training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Transfer Learning Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout 

Module 10. Model Customization and Training with TensorFlow 

10.1. TensorFlow 

10.1.1. Using the TensorFlow Library 
10.1.2. Model Education with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computational Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy Operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Functions and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Optimization of Graphs with TensorFlow Operations 

10.5. Data Loading and Pre-Processing with TensorFlow 

10.5.1. Loading of Datasets with TensorFlow 
10.5.2. Data Pre-Processing with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The tfdata API 

10.6.1. Using the tfdata API for Data Processing 
10.6.2. Construction of Data Streams with tf.data 
10.6.3. Using the tfdata API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecord API for Data Serialization 
10.7.2. Loading TFRecord Files with TensorFlow 
10.7.3. Using TFRecord Files for Training Models 

10.8. Keras Pre-Processing Layers 

10.8.1. Using the Keras Pre-Processing API 
10.8.2. Construction of Pre-Processing Pipelined with Keras 
10.8.3. Using the Keras Pre-Processing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasets for Data Loading 
10.9.2. Data Pre-Processing with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets for Model Training 

10.10. Building a Deep Learning App with TensorFlow 

10.10.1. Practical Application 
10.10.2. Building a Deep Learning App with TensorFlow 
10.10.3. Training a Model with TensorFlow 
10.10.4. Using the Application for the Prediction of Results 

Module 11. Deep Computer Vision with Convolutional Neural Networks 

11.1. The Visual Cortex Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1. Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Grouping Layers and Implementation of Grouping Layers with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1. VGG Architecture 
11.4.2. AlexNet Architecture 
11.4.3. ResNet Architecture 

11.5. Implementing a CNN ResNet- Using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of Pre-Trained Keras Models 

11.6.1. Characteristics of Pre-Trained Models 
11.6.2. Uses of Pre-Trained Models 
11.6.3. Advantages of Pre-Trained Models 

11.7. Pre-Trained Models for Transfer Learning 

11.7.1. Learning by Transfer 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Deep Computer Vision Classification and Localization 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.2. Edge Detection 
11.10.3. Rule-Based Segmentation Methods 

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention 

12.1. Text Generation Using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of the Training Dataset 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Classification of Opinions with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment Analysis with Deep Learning Algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an Encoder-Decoder Network for Machine Translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of Care Mechanisms in RNN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of Attention Mechanisms in Neural Networks 

12.6. Transformer Models 

12.6.1. Using Transformers Models for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for Vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Pre-Processing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face Transformer Library 

12.8.1. Using the Hugging Face Transformers Library 
12.8.2. Application of the Hugging Face Transformers Library 
12.8.3. Advantages of the Hugging Face Transformers Library 

12.9. Other Transformers Libraries. Comparison 

12.9.1. Comparison Between Different Transformers Libraries 
12.9.2. Use of the Other Transformers Libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP Application with RNN and Attention. Practical Application 

12.10.1. Development of a Natural Language Processing Application with RNN and Attention 
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application 

Module 13. Autoencoders, GANs and Diffusion Models 

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Noise Suppression of Automatic Encoders 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Generation of Fashion MNIST Images 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative Adversarial Networks and Diffusion Models 

13.9.1. Content Generation from Images 
13.9.2. Modeling of Data Distributions 
13.9.3. Use of Adversarial Networks 

13.10. Implementation of the Models 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation 

Module 14. Bio-Inspired Computing

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computation Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computing Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1. Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications

15.1. Financial Services

15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services. Opportunities and Challenges
15.1.2. Use Cases
15.1.3. Potential Risks Related to the Use of AI
15.1.4. Potential Future Developments/Uses of AI

15.2. Implications of Artificial Intelligence in Healthcare Service

15.2.1. Implications of AI in the Healthcare Sector. Opportunities and Challenges
15.2.2. Use Cases

15.3. Risks Related to the Use of AI in Healthcare Service

15.3.1. Potential Risks Related to the Use of AI
15.3.2. Potential Future Developments/Uses of AI

15.4. Retail

15.4.1. Implications of AI in Retail. Opportunities and Challenges
15.4.2. Use Cases
15.4.3. Potential Risks Related to the Use of AI
15.4.4. Potential Future Developments/Uses of AI

15.5. Industry

15.5.1. Implications of AI in Industry. Opportunities and Challenges
15.5.2. Use Cases

15.6. Potential Risks Related to the Use of AI in Industry

15.6.1. Use Cases
15.6.2. Potential Risks Related to the Use of AI
15.6.3. Potential Future Developments/Uses of AI

15.7. Public Administration

15.7.1. AI Implications for Public Administration. Opportunities and Challenges
15.7.2. Use Cases
15.7.3. Potential Risks Related to the Use of AI
15.7.4. Potential Future Developments/Uses of AI

15.8. Education

15.8.1. AI Implications for Education. Opportunities and Challenges
15.8.2. Use Cases
15.8.3. Potential Risks Related to the Use of AI
15.8.4. Potential Future Developments/Uses of AI

15.9. Forestry and Agriculture

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges
15.9.2. Use Cases
15.9.3. Potential Risks Related to the Use of AI
15.9.4. Potential Future Developments/Uses of AI

15.10. Human Resources

15.10.1. Implications of AI in Human Resources. Opportunities and Challenges
15.10.2. Use Cases
15.10.3. Potential Risks Related to the Use of AI
15.10.4. Potential Future Developments/Uses of AI

Module 16. Software Development Productivity Improvement with Artificial Intelligence 

16.1. Preparing a Suitable Development Environment 

16.1.1. Essential Tool Selection for AI Development
16.1.2. Configuration of the Selected Tools 
16.1.3. Implementation of CI/CD Pipelines Adapted to AI Projects 
16.1.4. Efficient Management of Dependencies and Versions in Development Environments 

16.2. Essential AI Extensions for Visual Studio Code

16.2.1. Exploring and Selecting AI Extensions for Visual Studio Code 
16.2.2. Integrating Static and Dynamic Analysis Tools into the Integrated Development Environment (IDE) 
16.2.3. Automation of Repetitive Tasks with Specific Extensions 
16.2.4. Customization of the Development Environment to Improve Efficiency 

16.3. No-Code Design of User Interfaces with AI Elements 

16.3.1. No-Code Design Principles and their Application to User Interfaces 
16.3.2. Incorporation of AI Elements in Visual Interface Design 
16.3.3. Tools and Platforms for the No-Code Creation of Intelligent Interfaces 
16.3.4. Evaluation and Continuous Improvement of No-Code Interfaces with AI 

16.4. Code Optimization Using ChatGPT

16.4.1. Duplicate Code Detection
16.4.2. Refactor 
16.4.3. Create Readable Code
16.4.4. Understanding What Code Does
16.4.5. Improving Variable and Function Naming
16.4.6. Creating Automatic Documentation

16.5. Repository Management with AI

16.5.1. Automation of Version Control Processes with AI Techniques 
16.5.2. Conflict Detection and Automatic Resolution in Collaborative Environments
16.5.3. Predictive Analysis of Changes and Trends in Code Repositories 
16.5.4. Improvements in the Organization and Categorization of Repositories using AI 

16.6. Integration of AI in Database Management

16.6.1. Optimization of Queries and Performance Using AI Techniques 
16.6.2. Predictive Analysis of Database Access Patterns 
16.6.3. Implementation of Recommender Systems to Optimize Database Structure 
16.6.4. Proactive Monitoring and Detection of Potential Database Problems 

16.7. Fault Detection and Creation of Unit Tests with AI ChatGPT

16.7.1. Automatic Generation of Test Cases using AI Techniques 
16.7.2. Early Detection of Vulnerabilities and Bugs using Static Analysis with AI 
16.7.3. Improving Test Coverage by Identifying Critical Areas by AI 

16.8. Pair Programming with GitHub Copilot

16.8.1. Integration and Effective Use of GitHub Copilot in Pair Programming Sessions 
16.8.2. Integration Improvements in Communication and Collaboration among Developers with GitHub Copilot 
16.8.3. Integration Strategies to Maximize the Use of GitHub Copilot-Generated Code suggestions 
16.8.4. Integration Case Studies and Best Practices in AI-Assisted Pair Programming 

16.9. Automatic Translation between Programming Languages ChatGPT

16.9.1. Specific Machine Translation Tools and Services for Programming Languages 
16.9.2. Adaptation of Machine Translation Algorithms to Development Contexts 
16.9.3. Improvement of Interoperability between Different Languages by Machine Translation 
16.9.4. Assessment and Mitigation of Potential Challenges and Limitations in Machine Translation

16.10. Recommended AI Tools to Improve Productivity 

16.10.1. Comparative Analysis of AI Tools for Software Development 
16.10.2. Integration of AI Tools in Workflows
16.10.3. Automation of Routine Tasks with AI Tools
16.10.4. Evaluation and Selection of Tools Based on Project Context and Requirements 

Module 17. Software Architecture with Artificial Intelligence

17.1. Optimization and Performance Management in AI Tools with the Help of ChatGPT

17.1.1. Performance Analysis and Profiling in AI Tools 
17.1.2. Algorithm Optimization Strategies and AI Models 
17.1.3. Implementation of Caching and Parallelization Techniques to Improve Performance 
17.1.4. Tools and Methodologies for Continuous Real-Time Performance Monitoring 

17.2. Scalability in AI Applications Using ChatGPT

17.2.1. Scalable Architectures Design for AI Applications 
17.2.2. Implementation of Partitioning and Load Sharing Techniques 
17.2.3. Workflow and Workload Management in Scalable Systems 
17.2.4. Strategies for Horizontal and Vertical Expansion in Variable Demand Environments 

17.3. Maintainability of AI Applications Using ChatGPT

17.3.1. Design Principles to Facilitate Maintainability in AI Projects 
17.3.2. Specific Documentation Strategies for AI Models and Algorithms 
17.3.3. Implementation of Unit and Integration Tests to Facilitate Maintainability 
17.3.4. Methods for Refactoring and Continuous Improvement in Systems with AI Components

17.4. Large-Scale System Design

17.4.1. Architectural Principles for Large-Scale System Design 
17.4.2. Decomposition of Complex Systems into Microservices 
17.4.3. Implementation of Specific Design Patterns for Distributed Systems 
17.4.4. Strategies for Complexity Management in Large-Scale Architectures with AI Components

17.5. Large-Scale Data Warehousing for AI Tools

17.5.1. Selection of Scalable Data Storage Technologies 
17.5.2. Design of Database Schemas for Efficient Handling of Large Data Volumes 
17.5.3. Partitioning and Replication Strategies in Massive Data Storage Environments 
17.5.4. Implementation of Data Management Systems to Ensure Integrity and Availability in AI Projects 

17.6. Data Structures with AI Using ChatGPT

17.6.1. Adaptation of Classical Data Structures for Use with AI Algorithms 
17.6.2. Design and Optimization of Specific Data Structures with ChatGPT 
17.6.3. Integration of Efficient Data Structures in Data Intensive Systems 
17.6.4. Strategies for Real-Time Data Manipulation and Storage in AI Data Structures

17.7. Programming Algorithms for AI Products

17.7.1. Development and Implementation of Application-Specific Algorithms for AI Applications 
17.7.2. Algorithm Selection Strategies according to Problem Type and Product Requirements 
17.7.3. Adaptation of Classical Algorithms for Integration into AI Systems 
17.7.4. Evaluation and Performance Comparison between Different Algorithms in Development Contexts with AI

17.8. Design Patterns for AI Development

17.8.1. Identification and Application of Common Design Patterns in Projects with AI Components 
17.8.2. Development of Specific Patterns for the Integration of Models and Algorithms into Existing Systems 
17.8.3. Strategies for the Implementation of Patterns to Improve Reusability and Maintainability in AI Projects 
17.8.4. Case Studies and Best Practices in the Application of Design Patterns in AI Architectures 

17.9. Implementation of Clean Architecture using ChatGPT

17.9.1. Fundamental Principles and Concepts of Clean Architecture
17.9.2. Adaptation of Clean Architecture to Projects with AI Components 
17.9.3. Implementation of Layers and Dependencies in Systems with Clean Architecture 
17.9.4. Benefits and Challenges of Implementing Clean Architecture in Software Development with AI 

17.10. Secure Software Development in Web Applications withDeepCode

17.10.1. Principles of Security in the Development of Software with AI Components 
17.10.2. Identification and Mitigation of Potential Vulnerabilities in AI Models and Algorithms 
17.10.3. Implementation of Secure Development Practices in Web Applications with Artificial Intelligence Functionalities 
17.10.4. Strategies for the Protection of Sensitive Data and Prevention of Attacks in AI Projects 

Module 18. Web Projects with Artificial Intelligence

18.1. Working Environment Preparation for Web Development with AI

18.1.1. Configuration of Web Development Environments for Projects with Artificial Intelligence 
18.1.2. Selection and Preparation of Essential Tools for Web Development with AI 
18.1.3. Integration of Specific Libraries and Frameworks for Web Projects with Artificial Intelligence
18.1.4. Implementation of Best Practices in the Configuration of Collaborative Development Environments 

18.2. Workspace Creation for AI Projects

18.2.1. Effective Design and Organization of Workspaces for Web Projects with Artificial Intelligence Components
18.2.2. Use of Project Management and Version Control Tools in the Workspace 
18.2.3. Strategies for Efficient Collaboration and Communication in the Development Team 
18.2.4. Adaptation of the Workspace to the Specific Needs of AI Web Projects 

18.3. Design Patterns in Github Copilot Products

18.3.1. Identification and Application of Common Design Patterns in User Interfaces with Artificial Intelligence Elements 
18.3.2. Development of Specific Patterns to Improve the User Experience in AI Web Projects 
18.3.3. Integration of Design Patterns in the Overall Architecture of Web Projects with Artificial Intelligence 
18.3.4. Evaluation and Selection of Appropriate Design Patterns According to the Project’s Context 

18.4. Front-End Development with GitHub Copilot

18.4.1. Integration of AI Models in the Presentation Layer of Web Projects
18.4.2. Development of Adaptive User Interfaces with Artificial Intelligence Elements
18.4.3. Implementation of Natural Language Processing (NLP) Functionalities in Frontend Development 
18.4.4. Strategies for Performance Optimization in Front-End Development with AI

18.5. Database Creation using GitHub Copilot 

18.5.1. Selection of Database Technologies for Web Projects with Artificial Intelligence 
18.5.2. Design of Database Schemas for Storing and Managing AI-Related Data 
18.5.3. Implementation of Efficient Storage Systems for Large Volumes of Data Generated by AI Models 
18.5.4. Strategies for Security and Protection of Sensitive Data in AI Web Project Databases 

18.6. Back-End Development with GitHub Copilot

18.6.1. Integration of AI Services and Models in the Back-End Business Logic 
18.6.2. Development of Specific APIs and Endpoints for Communication between Front-End and AI Components 
18.6.3. Implementation of Data Processing and Decision-Making Logic in the Backend with Artificial Intelligence 
18.6.4. Strategies for Scalability and Performance in Back-End Development of Web Projects with AI

18.7. Optimization of the Deployment Process of Your Website

18.7.1. Automation of Web Project Build and Deployment Processes with ChatGPT
18.7.2. Implementing CI/CD Pipelines Tailored to Web Applications with Github Copilot
18.7.3. Strategies for Efficient Release and Upgrade Management in Continuous Deployments 
18.7.4. Post-Deployment Monitoring and Analysis for Continuous Process Improvement

18.8. AI in Cloud Computing

18.8.1. Integration of Artificial Intelligence Services in Cloud Computing Platforms 
18.8.2. Development of Scalable and Distributed Solutions using Cloud Services with AI Capabilities 
18.8.3. Strategies for Efficient Resource and Cost Management in Cloud Environments with AI-enabled Web Applications 
18.8.4. Evaluation and Comparison of Cloud Service Providers for AI-enabled Web Projects

18.9. Creating an AI Project for LAMP Environments with the Help of ChatGPT

18.9.1. Adaptation of Web Projects Based on the LAMP Stack to Include Artificial Intelligence Components 
18.9.2. Integration of AI-specific Libraries and Frameworks in LAMP Environments 
18.9.3. Development of AI Functionalities that Complement the Traditional LAMP Architecture
18.9.4. Strategies for Optimization and Maintenance in Web Projects with AI in LAMP Environments

18.10. Creating an AI Project for MEVN Environments Using ChatGPT

18.10.1. Integration of MEVN Stack Technologies and Tools with Artificial Intelligence Components 
18.10.2. Development of Modern and Scalable Web Applications in MEVN Environments with AI Capabilities 
18.10.3. Implementation of Data Processing and Machine Learning Functionalities in MEVN Projects 
18.10.4. Strategies for Performance and Security Enhancement of AI-enabled Web Applications in MEVN Environments 

Module 19. Mobile Applications with Artificial Intelligence   

19.1. Working Environment Preparation for Mobile Development with AI

19.1.1. Configuration of Mobile Development Environments for Projects with Artificial Intelligence
19.1.2. Selection and Preparation of Specific Tools for Mobile Application Development with AI 
19.1.3. Integration of AI-Libraries and Frameworks in Mobile Development Environments 
19.1.4. Configuration of Emulators and Real Devices for Testing Mobile Applications with AI Components

19.2. Creation of a Workspace with GitHub Copilot

19.2.1. Integration of GitHub Copilot in Mobile Development Environments 
19.2.2. Effective Use of GitHub Copilot for Code Generation in AI Projects 
19.2.3. Strategies for Developer Collaboration when Using GitHub Copilot in the Workspace 
19.2.4. Best Practices and Limitations in the Use of GitHub Copilot in Mobile Application Development with AI

19.3. Firebase Configuration

19.3.1. Initial Configuration of a Firebase Project for Mobile Development 
19.3.2. Firebase Integration in Mobile Applications with Artificial Intelligence Functionality 
19.3.3. Use of Firebase Services as Database, Authentication, and Notifications in AI projects 
19.3.4. Strategies for Real-Time Data and Event Management in Firebase-enabled Mobile Applications

19.4. Concepts of Clean Architecture, DataSources, Repositories

19.4.1. Fundamental Principles of Clean Architecture in Mobile Development with AI 
19.4.2. Implementation of DataSources and Repositories Layers with GitHub Copilot
19.4.3. Design and Structuring of Components in Mobile Projects with Github Copilot
19.4.4. Benefits and Challenges of Implementing Clean Architecture in Mobile Applications with AI

19.5. Creating Authentication Screen with GitHub Copilot

19.5.1. Design and Development of User Interfaces for Authentication Screens in Mobile Applications with IA 
19.5.2. Integration of Authentication Services with Firebase in the Login Screen
19.5.3. Use of Security and Data Protection Techniques in the Authentication Screen 
19.5.4. Personalization and Customization of the User Experience in the Authentication Screen 

19.6. Creating Dashboard and Navigation with GitHub Copilot

19.6.1. Dashboard Design and Development with Artificial Intelligence Elements 
19.6.2. Implementation of Efficient Navigation Systems in Mobile Applications with AI 
19.6.3. Integration of AI Functionalities in the Dashboard to Improve User Experience

19.7. Listing Screen Creation using GitHub Copilot

19.7.1. Development of User Interfaces for Listing Screens in AI-enabled Mobile Applications 
19.7.2. Integration of Recommendation and Filtering Algorithms into the Listing Screen 
19.7.3. Use of Design Patterns for Effective Presentation of Data in the Listing Screen 
19.7.4. Strategies for Efficient Loading of Real-Time Data into the Listing Screen 

19.8. Creating Details Screen with GitHub Copilot

19.8.1. Design and Development of Detailed User Interfaces for the Presentation of Specific Information
19.8.2. Integration of AI Functionalities to Enrich the Detailed Screen 
19.8.3. Implementation of Interactions and Animations in the Detailed Screen 
19.8.4. Strategies for Performance Optimization in Loading and Detail Display in AI-enabled Mobile Applications 

19.9. Creating a Settings Screen with GitHub Copilot

19.9.1. Development of User Interfaces for Configuration and Settings in AI-enabled Mobile Applications 
19.9.2. Integration of Customized Settings Related to Artificial Intelligence Components 
19.9.3. Implementation of Customized Options and Preferences in the Settings Screen 
19.9.4. Strategies for Usability and Clarity in the Presentation of Options in the Settings Screen 

19.10. Creation of Icons, Splash and Graphic Resources for Your App with AI  

19.10.1. Design and Creation of Attractive Icons to Represent the AI Mobile Application 
19.10.2. Development of Splash Screens with Impactful Visuals 
19.10.3. Selection and Adaptation of Graphic Resources to Enhance the Aesthetics of the Mobile Application 
19.10.4. Strategies for Consistency and Visual Branding in the Graphic Elements of the Application with AI 

Module 20. Artificial Intelligence for QA Testing 

20.1. Software Testing Life Cycle

20.1.1. Description and Understanding of the Testing Life Cycle in Software Development
20.1.2. Phases of the Testing Life Cycle and its Importance in Quality Assurance 
20.1.3. Integration of Artificial Intelligence in Different Stages of the Testing Life Cycle 
20.1.4. Strategies for Continuous Improvement of the Testing Life Cycle using AI 

20.2. Test Cases and Bug Detection with the Help of ChatGPT

20.2.1. Effective Test Case Design and Writing in the Context of QA Testing 
20.2.2. Identification of Bugs and Errors during Test Case Execution 
20.2.3. Application of Early Bug Detection Techniques using Static Analysis 
20.2.4. Use of Artificial Intelligence Tools for the Automatic Identification of Bugs in Test Cases

20.3. Types of Testing

20.3.1. Exploration of Different Types of Testing in the QA Environment 
20.3.2. Unit, Integration, Functional, and Acceptance Testing: Characteristics and Applications 
20.3.3. Strategies for the Selection and Appropriate Combination of Testing Types in Projects with ChatGPT
20.3.4. Adaptation of Conventional Testing Types to Projects with ChatGPT

20.4. Creation of a Testing Plan Using ChatGPT

20.4.1. Design and Structure of a Comprehensive Testing Plan 
20.4.2. Identification of Requirements and Test Scenarios in AI Projects 
20.4.3. Strategies for Manual and Automated Test Planning 
20.4.4. Continuous Evaluation and Adjustment of the Testing Plan as the Project Develops 

20.5. AI Bug Detection and Reporting

20.5.1. Implementation of Automatic Bug Detection Techniques Using Machine Learning Algorithms
20.5.2. Use of ChatGPT for Dynamic Code Analysis to Search for Possible Bugs
20.5.3. Strategies for Automatic Generation of Detailed Reports on Bugs Detected Using ChatGPT 
20.5.4. Effective Collaboration between Development and QA Teams in the Management of AI-Detected Bugs

20.6. Creation of Automated Testing with AI

20.6.1. Development of Automated Test Scripts for Projects Using ChatGPT 
20.6.2. Integration of AI-Based Test Automation Tools
20.6.3. Using ChatGPT for Dynamic Generation of Automated Test Cases 
20.6.4. Strategies for Efficient Execution and Maintenance of Automated Test Cases in AI Projects

20.7. API Testing

20.7.1. Fundamental Concepts of API Testing and its Importance in QA 
20.7.2. Development of Tests for the Verification of APIs in Environments Using ChatGPT
20.7.3. Strategies for Data and Results Validation in API Testing with ChatGPT
20.7.4. Use of Specific Tools for API Testing in Projects with Artificial Intelligence

20.8. AI Tools for Web Testing

20.8.1. Exploration of Artificial Intelligence Tools for Test Automation in Web Environments 
20.8.2. Integration of Element Recognition and Visual Analysis Technologies in Web Testing 
20.8.3. Strategies for Automatic Detection of Changes and Performance Problems in Web Applications Using ChatGPT 
20.8.4. Evaluation of Specific Tools for Improving Efficiency in Web Testing with AI

20.9. Mobile Testing Using AI

20.9.1. Development of Testing Strategies for Mobile Applications with AI Components
20.9.2. Integration of Specific Testing Tools for AI-Based Mobile Platforms 
20.9.3. Use of ChatGPT for Detecting Performance Problems in Mobile Applications
20.9.4. Strategies for the Validation of Interfaces and Specific Functions of Mobile Applications by AI 

20.10. QA Tools with AI

20.10.1. Exploration of QA Tools and Platforms that Incorporate Artificial Intelligence Functionality
20.10.2. Evaluation of Tools for Efficient Test Management and Test Execution in AI Projects 
20.10.3. Using ChatGPT for the Generation and Optimization of Test Cases
20.10.4. Strategies for Effective Selection and Adoption of QA Tools with AI Capabilities 

”##IMAGE##”

The current importance of programming makes this Master's Degree a safe bet, with a market in continuous growth and full of possibilities” 

Master's Degree in Artificial Intelligence in Programming

Welcome to TECH Global University, your gateway to the cutting edge of technology and innovation. We are excited to present our Master's Degree in Artificial Intelligence in Programming, a revolutionary postgraduate degree designed for those looking to excel in the fascinating world of computer systems and artificial neural networks. In a constantly evolving technological environment, the ability to understand and apply artificial intelligence in programming is essential. Our Master's Degree will immerse you in the most advanced aspects of this discipline, providing you with the skills and knowledge necessary to lead in the development of innovative solutions. TECH's online classes offer the flexibility you need to advance your education without sacrificing your daily commitments. Our faculty, made up of experts in the artificial intelligence industry, will guide you through a rigorous syllabus that covers everything from the fundamentals to practical, real-world applications.

Enhance your knowledge in Artificial Intelligence in Programming

In the Master's Degree in Artificial Intelligence in Programming, you'll explore advanced algorithms, machine learning, natural language processing and much more. As you progress through graduate school, you'll have the opportunity to apply this knowledge in hands-on projects, ensuring you're prepared to tackle the complex challenges of programming in the age of artificial intelligence. TECH Global University is proud to offer a program that not only provides you with theoretical knowledge, but also the ability to translate that knowledge into tangible solutions. Our hands-on approach will allow you to excel in the creation of intelligent systems, driving innovation in your career. Get ready to lead the technological revolution with a high-level Master's Degree. Join us and discover how the combination of flexible online classes and academic excellence can take your career to new horizons in the exciting field of artificial intelligence.