Introduction to the Program

Con esta Postgraduate diploma 100% online, adquirirás habilidades avanzadas en el uso de herramientas y tecnologías de Inteligencia Artificial, mejorando la eficiencia y la precisión en la traducción y la interpretación” 

La aplicación de técnicas de Inteligencia Artificial en la traducción automática ha alcanzado nuevas alturas gracias a los avances en modelos de Traducción Automática Neuronal (NMT). A medida que se mejora la arquitectura de estos modelos, se integran técnicas como el aprendizaje por transferencia y la atención contextual, lo que resulta en una mayor calidad de traducción y un soporte más amplio para múltiples idiomas y dominios.

Así nace esta Postgraduate diploma en el que los profesionales aprenderán sobre los diferentes enfoques en la traducción e interpretación, desde los modelos clásicos hasta aquellos basados en Inteligencia Artificial, así como su relevancia en el procesamiento del lenguaje natural. Además, adquirirán las habilidades necesarias para implementar técnicas avanzadas que faciliten la traducción automática y mejoren la comprensión de los matices lingüísticos.

Asimismo, se desarrollarán competencias para evaluar la calidad de las traducciones generadas, utilizando métricas e indicadores específicos que aseguren la precisión y eficiencia de los resultados. Esto no solo incrementará la productividad, sino que también permitirá a los expertos adaptarse a un entorno de trabajo dinámico y en constante evolución, donde la inmediatez es crucial.

Finalmente, el alumnado podrá integrar recursos lingüísticos y bases de datos en estas plataformas, lo que les permitirá mejorar la consistencia y la calidad de sus traducciones. En este sentido, no solo se fomentará la familiarización con las tecnologías actuales, sino que también los preparará para enfrentar los desafíos del futuro en el campo de la traducción automática.

De este modo, TECH ha desarrollado un programa integral completamente en línea, que solo requiere de un dispositivo electrónico con conexión a Internet para acceder a todos los materiales educativos. Esto elimina problemas como el desplazamiento a un lugar físico y la necesidad de seguir un horario rígido. Adicionalmente, se basará en la innovadora metodología Relearning, centrada en la repetición continua de conceptos clave para promover una asimilación óptima de los contenidos.

Serás capaz de evaluar la calidad de las traducciones en tiempo real y de integrar recursos lingüísticos, optimizando tu flujo de trabajo y aumentando la productividad y la consistencia en tus proyectos” 

Esta Postgraduate diploma en Application of Artificial Intelligence Techniques for Machine Translation contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:

  • El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial aplicada a la Traducción y la Interpretación
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Su especial hincapié en metodologías innovadoras
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a Internet

Te familiarizarás con recursos lingüísticos y bases de datos, equipándote para enfrentar los desafíos del campo de la traducción, utilizando herramientas que les permitan trabajar de manera más eficiente y efectiva” 

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Adquirirás conocimientos sobre la evolución de los modelos lingüísticos que sustentan la traducción y la interpretación, desde los enfoques clásicos hasta las innovaciones basadas en Inteligencia Artificial"

 

Podrás evaluar la calidad de las traducciones de manera crítica, utilizando métricas e indicadores específicos, garantizando que las traducciones cumplan con los estándares requeridos en entornos profesionales"

Syllabus

This Postgraduate diploma will cover a wide range of contents that will train professionals in the use of advanced technologies for translation and natural language processing. Therefore, they will delve into linguistic models, exploring both classical and modern approaches based on Artificial Intelligence, which will allow them to understand the theoretical foundations that support machine translation. In addition, real-time translation tools will be addressed, where the quality of translations will be evaluated through specific metrics. 

You will deepen your knowledge of AI-assisted translation platforms, thus optimizing the professional workflow through the integration of linguistic resources and databases” 

Module 1. Linguistic Models and AI Application

1.1. Classical Models of Linguistics and their Relevance to AI

1.1.1. Generative and Transformational Grammar
1.1.2. Structural Linguistic Theory
1.1.3. Formal Grammar Theory
1.1.4. Applications of Classical Models in AI

1.2. Probabilistic Models in Linguistics and Their Application in AI

1.2.1. Hidden Markov Models (HMM)
1.2.2. Statistical Language Models
1.2.3. Supervised and Unsupervised Learning Algorithms
1.2.4. Applications in Speech Recognition and Text Processing

1.3. Rule-Based Models and Their Implementation in AI. GPT

1.3.1. Formal Grammars and Rule Systems
1.3.2. Knowledge Representation and Computational Logic
1.3.3. Expert Systems and Inference Engines
1.3.4. Applications in Dialog Systems and Virtual Assistants

1.4. Deep Learning Models in Linguistics and Their Use in AI

1.4.1. Convolutional Neural Networks for Text Processing
1.4.2. Recurrent Neural Networks and LSTM for Sequence Modeling
1.4.3. Attention Models and Transformers. APERTIUM
1.4.4. Applications in Machine Translation, Text Generation and Sentiment Analysis.

1.5. Distributed Language Representations and Their Impact on AI

1.5.1. Word Embeddings and Vector Space Models
1.5.2. Distributed Representations of Sentences and Documents
1.5.3. Bag-of-Words Models and Continuous Language Models
1.5.4. Applications in Information Retrieval, Document Clustering and Content Recommendation

1.6. Machine Translation Models and Their Evolution in AI. Lilt

1.6.1. Statistical and Rule-Based Translation Models
1.6.2. Advances in Neural Machine Translation
1.6.3. Hybrid Approaches and Multilingual Models
1.6.4. Applications in Online Translation and Content Localization Services

1.7. Sentiment Analysis Models and Their Usefulness in AI

1.7.1. Sentiment Classification Methods
1.7.2. Detection of Emotions in Text
1.7.3. Analysis of User Opinions and Comments
1.7.4. Applications in Social Networks, Analysis of Product Opinions and Customer Service

1.8. Language Generation Models and Their Application in AI. TransPerfect Globallink

1.8.1. Autoregressive Text Generation Models
1.8.2. Conditioned and Controlled Text Generation
1.8.3. GPT-Based Natural Language Generation Models
1.8.4. Applications in Automatic Typing, Text Summarization, and Intelligent Conversation

1.9. Speech Recognition Models and Their Integration in AI

1.9.1. Audio Feature Extraction Methods
1.9.2. Speech Recognition Models Based on Neural Networks
1.9.3. Improvements in Speech Recognition Accuracy and Robustness
1.9.4. Applications in Virtual Assistants, Transcription Systems and Speech-based Device Control

1.10. Challenges and Future of Linguistic Models in AI

1.10.1. Challenges in Natural Language Understanding
1.10.2. Limitations and Biases in Current Linguistic Models
1.10.3. Research and Future Trends in AI Linguistic Modeling
1.10.4. Impact on Future Applications such as General Artificial Intelligence (AGI) and Human Language Understanding. SmartCAt

Module 2. AI and Real-Time Translation

2.1. Introduction to Real-Time Translation with AI

2.1.1. Definition and Basic Concepts
2.1.2. Importance and Applications in Different Contexts
2.1.3. Challenges and Opportunities
2.1.4. Tools such as Fluently or Voice Tra

2.2. Artificial Intelligence Fundamentals in Translation

2.2.1. Brief Introduction to Artificial Intelligence
2.2.2. Specific Applications in Translation
2.2.3. Relevant Models and Algorithms

2.3. AI-Based Real-Time Translation Tools

2.3.1. Description of the Main Tools Available
2.3.2. Comparison of Functionalities and Features
2.3.3. Use Cases and Practical Examples

2.4. Neural Machine Translation (NMT) Models. SDL Language Cloud

2.4.1. Principles and Operation of NMT Models
2.4.2. Advantages over Traditional Approaches
2.4.3. Development and Evolution of NMT Models

2.5. Natural Language Processing (NLP) in Real-Time Translation. SayHi TRanslate

2.5.1. Basic NLP Concepts Relevant to Translation
2.5.2. Preprocessing and Post-Processing Techniques
2.5.3. Improving the Coherence and Cohesion of the Translated Text

2.6. Multilingual and Multimodal Translation Models

2.6.1. Translation Models that Support Multiple Languages
2.6.2. Integration of Modalities such as Text, Speech and Images
2.6.3. Challenges and Considerations in Multilingual and Multimodal Translation

2.7. Quality Assessment in Real-Time Translation with AI

2.7.1. Translation Quality Assessment Metrics
2.7.2. Automatic and Human Evaluation Methods. iTranslate Voice
2.7.3. Strategies to Improve Translation Quality

2.8. Integration of Real-Time Translation Tools in Professional Environments

2.8.1. Use of Translation Tools in Daily Work
2.8.2. Integration with Content Management and Localization Systems
2.8.3. Adaptation of Tools to Specific User Needs

2.9. Ethical and Social Challenges in Real-Time Translation with AI

2.9.1. Biases and Discrimination in Machine Translation
2.9.2. Privacy and Security of User Data
2.9.3. Impact on Linguistic and Cultural Diversity

2.10. Future of AI-Based Real-Time Translation. Applingua

2.10.1. Emerging Trends and Technological Advances
2.10.2. Future Prospects and Potential Innovative Applications
2.10.3. Implications for Global Communication and Language Accessibility

Module 3. AI-Assisted Translation Tools and Platforms

3.1. Introduction to AI-Assisted Translation Tools and Platforms

3.1.1. Definition and Basic Concepts
3.1.2. Brief History and Evolution
3.1.3. Importance and Benefits in Professional Translation

3.2. Main AI-Assisted Translation Tools

3.2.1. Description and Functionalities of the Leading Tools on the Market
3.2.2. Comparison of Features and Prices
3.2.3. Use Cases and Practical Examples

3.3. Professional AI-Assisted Translation Platforms. Wordfast

3.3.1. Description of Popular AI-Assisted Translation Platforms
3.3.2. Specific Functionalities for Translation Teams and Agencies
3.3.3. Integration with Other Project Management Systems and Tools

3.4. Machine Translation Models Implemented in AI-Assisted Translation Tools

3.4.1. Statistical Translation Models
3.4.2. Neural Translation Models
3.4.3. Advances in Neural Machine Translation (NMT) and Its Impact on AI-Assisted Translation Tools

3.5. Integration of Linguistic Resources and Databases in AI-Assisted Translation Tools

3.5.1. Using Corpus and Linguistic Databases to Improve Translation Accuracy
3.5.2. Integrating Specialized Dictionaries and Glossaries
3.5.3. Importance of Context and Specific Terminology in AI-Assisted Translation

3.6. User Interface and User Experience in AI-Assisted Translation Tools

3.6.1. User Interface Design and Usability
3.6.2. Customization and Preference Settings
3.6.3. Accessibility and Multilingual Support on AI-Assisted Translation Platforms

3.7. Quality Assessment in AI-Assisted Translation

3.7.1. Translation Quality Assessment Metrics
3.7.2. Machine vs. Human Evaluation
3.7.3. Strategies to Improve the Quality of AI-Assisted Translation

3.8. Integration of AI-Assisted Translation Tools into the Translator's Workflow

3.8.1. Incorporation of AI-Assisted Translation Tools into the Translation Process
3.8.2. Optimizing Workflow and Increasing Productivity
3.8.3. Collaboration and Teamwork in AI-Assisted Translation Environments

3.9. Ethical and Social Challenges in the Use of AI-Assisted Translation Tools

3.9.1. Biases and Discrimination in Machine Translation
3.9.2. Privacy and Security of User Data
3.9.3. Impact on the Translation Profession and on Linguistic and Cultural Diversity

3.10. Future of AI-Assisted Translation Tools and IA. Wordbee

3.10.1. Emerging Trends and Technological Developments
3.10.2. Future Prospects and Potential Innovative Applications
3.10.3. Implications for Training and Professional Development in the Field of Translation

You will gain a comprehensive and up-to-date vision that will enable you to develop innovative solutions to improve professional development and job satisfaction”

Postgraduate Diploma in Application of Artificial Intelligence Techniques for Machine Translation

Machine translation has evolved significantly in recent years, driven by advances in artificial intelligence (AI). This transformation has allowed companies and organizations to optimize their communication processes and access to information in multiple languages, thus facilitating the globalization of their services. In this context, TECH Global University presents this Postgraduate Diploma in the Application of Artificial Intelligence Techniques for Machine Translation as the best academic option in the market. This program, taught in 100% online mode, offers a comprehensive approach that combines theory and practice, allowing you to understand the operation of machine translation systems and their application in real environments. Highlights include understanding translation algorithms, machine learning and the implementation of neural networks in translation processes. In addition, you will learn how to use advanced machine translation platforms, as well as how to evaluate the quality of the translations generated by these tools.

Develop advanced skills in machine translation

TECH offers high quality learning adapted to the needs of the modern job market. With this program, you will not only master the technical domain of machine translation tools, but also address ethical and liability issues in the use of AI. As you move forward, you will explore topics such as bias management in translation models, cultural interpretation, and the impact of AI on the future of professional translation. Upon completion, you will be better prepared to meet the challenges of the industry, positioning yourself as a leader in the implementation of machine translation technologies in an increasingly interconnected world. Take advantage of this opportunity to boost your career and excel in the field of translation - enroll now and develop critical skills for the effective application of AI in translation!