Introduction to the Program

La especialización académica más actualizada impartida por extraordinarios docentes experimentados en el mundo deportivo y académico”

En este programa encontrarás formación pormenorizada de aspectos claves en el rendimiento deportivo, tratados con una didáctica y profundidad únicos en la oferta académica actual. Cada módulo lo dictarán especialistas en la materia, lo que garantiza un conocimiento al más alto nivel.  

Este programa en High Performance in Sports: Strength, Speed and Endurance Training le brindará al alumno en cada módulo contenidos a nivel teórico de altísima calidad y profundidad. Una de las características que diferencian este programa de otros es la relación entre las diferentes temáticas de los módulos a nivel teórico, pero sobre todo a nivel práctico haciendo que el alumno obtenga ejemplos reales de equipos y atletas del más alto rendimiento deportivo a nivel mundial, así como del mundo profesional del deporte dando como resultado que el alumno pueda ir construyendo el conocimiento de la manera más completa.   

Otro punto fuerte de esta Postgraduate diploma en High Performance in Sports: Strength, Speed and Endurance Training es la formación del alumno en el uso de nuevas tecnologías aplicadas al Rendimiento Deportivo. El alumno no solo conocerá la nueva tecnología en el ámbito del rendimiento, sino que aprenderá su uso y, lo que es más importante, aprenderá la interpretación de los datos que brinda cada dispositivo para tomar mejores decisiones en lo que respecta a la programación del entrenamiento. 

Así, en TECH nos hemos propuesto crear contenidos de altísima calidad docente y educativa que conviertan a nuestros alumnos en profesionales de éxito, siguiendo los más altos estándares de calidad en la enseñanza a nivel internacional. Por ello, te mostramos este programa con un nutrido contenido y que te ayudará a alcanzar la élite del Alto Rendimiento Deportivo. Además, los profesionales tendrán la oportunidad de acceder a una serie de Masterclasses únicas, diseñadas por un reconocido experto internacional. Este especialista en Rendimiento Deportivo orientará a los egresados para que adquieran los conocimientos y habilidades esenciales y así sobresalir en esta disciplina. 

¡Aprovecha esta oportunidad única de TECH! Tendrás acceso a Masterclasses exclusivas, con la participación de un renombrado experto internacional en Rendimiento Deportivo” 

Esta Postgraduate diploma en High Performance in Sports: Strength, Speed and Endurance Training contiene el programa científico más completo y actualizado del mercado. Sus características más destacadas son: 

  • El desarrollo de numerosos casos prácticos presentados por especialistas en entrenamientos personales 
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que están concebidos, recogen la información indispensable para el ejercicio profesional 
  • Los ejercicios donde realizar el proceso de autoevaluación para mejorar el aprendizaje 
  • El sistema interactivo de aprendizaje basado en algoritmos para la toma de decisiones 
  • Su especial hincapié en las metodologías innovadoras en entrenamientos personales para la recuperación de lesiones y nutrición
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual 
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet 

Esta Postgraduate diploma es la mejor inversión que puedes hacer en la selección de un programa de actualización por dos motivos: además de poner al día tus conocimientos como entrenador personal, obtendrás un título por TECH” 

El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

La Postgraduate diploma permite ejercitarse en entornos simulados, que proporcionan un aprendizaje inmersivo programado para entrenarse ante situaciones reales"

Esta Postgraduate diploma 100% online te permitirá compaginar tus estudios con tu labor profesional a la vez que aumentas tus conocimientos en este ámbito"

Syllabus

The structure of the contents has been designed by a team of professionals knowledgeable about the implications of training in daily practice, aware of the current relevance of quality education in the field of personal training; and committed to quality teaching through new educational technologies. 

We have the most complete and up-to-date scientific program on the market. We want to provide you with the best specialization"  

Module 1. Strength Training from Theory to Practice

1.1. Strength: Conceptualization

1.1.1. Strength Defined from a Mechanical Point of View
1.1.2. Strength Defined from a Physiology Point of View
1.1.3. Define the Concept of Applied Strength
1.1.4. Time-Strength Curve

1.1.4.1. Interpretation

1.1.5. Define the Concept of Maximum Strength
1.1.6. Define the Concept of RFD
1.1.7. Define the Concept of Useful Strength
1.1.8. Strength- Speed-Power Curves

1.1.8.1. Interpretation

1.1.9. Define the Concept of Strength Deficit

1.2. Training Load

1.2.1. Define the Concept of Strength Training Load
1.2.2. Define the Concept of Load
1.2.3. Load Concept: Volume

1.2.3.1. Definition and Applicability in Practice

1.2.4. Load Concept: Intensity

1.2.4.1. Definition and Applicability in Practice

1.2.5. Load Concept: Density

1.2.5.1. Definition and Applicability in Practice

1.2.6. Define the Concept of Effort Character

1.2.6.1. Definition and Applicability in Practice

1.3. Strength Training in the Prevention and Rehabilitation of Injuries

1.3.1. Conceptual and Operational Framework in Injury Prevention and Rehabilitation

1.3.1.1. Terminology
1.3.1.2. Concepts

1.3.2. Strength Training and Injury Prevention and Rehabilitation Under Scientific Evidence
1.3.3. Methodological Process of Strength Training in Injury Prevention and Functional Recovery

1.3.3.1. Defining the Method
1.3.3.2. Applying the Method in Practice

1.3.4. Role of Core Stability (CORE) in Injury Prevention

1.3.4.1. Definition of CORE
1.3.4.2. CORE Training

1.4. Plyometric Method

1.4.1. Physiological Mechanisms

1.4.1.1. Specific General Information

1.4.2. Muscle Actions in Plyometric Exercises
1.4.3. The Stretch-Shortening Cycle (SSC)

1.4.3.1. Use of Energy or Elastic Capacity
1.4.3.2. Reflex Involvement Series and Parallel Elastic Energy Accumulation

1.4.4. CEA Classification Scheme

1.4.4.1. Short CEA
1.4.4.2. Long CEA 

1.4.5. Properties of the Muscle and Tendon
1.4.6. Central Nervous System

1.4.6.1. Recruitment
1.4.6.2. Frequency (F)
1.4.6.3. Synchronization

1.4.7. Practical Considerations

1.5. Power Training

1.5.1. Definition of Power

1.5.1.1. Conceptual Aspects of Power
1.5.1.2. The Importance of Power in a Context of Sport Performance
1.5.1.3. Clarification of Power Terminology

1.5.2. Factors Contributing to Peak Power Development
1.5.3. Structural Aspects Conditioning Power Production

1.5.3.1. Muscle Hypertrophy
1.5.3.2. Muscle Structure
1.5.3.3. Ratio of Fast and Slow Fibers in a Cross Section
1.5.3.4. Muscle Length and its Effect on Muscle Contraction
1.5.3.5. Quantity and Characteristics of Elastic Components

1.5.4. Neural Aspects Conditioning Power Production

1.5.4.1. Action Potential
1.5.4.2. Speed of Motor Unit Recruitment
1.5.4.3. Muscle Coordination
1.5.4.4. Intermuscular Coordination
1.5.4.5. Prior Muscle Status (PAP)
1.5.4.6. Neuromuscular Reflex Mechanisms and Their Incidence

1.5.5. Theoretical Aspects for Understanding the Strength-Time Curve

1.5.5.1. Strength Impulse
1.5.5.2. Phases of the Strength-Time Curve
1.5.5.3. Phases of Acceleration in the Strength-Time Curve
1.5.5.4. Maximum Acceleration Area of the Strength-Time Curve
1.5.5.5. Deceleration Phase of the Strength-Time Curve

1.5.6. Theoretical Aspects for Understanding Power Curves 

1.5.6.1. Energy-Time Curve
1.5.6.2. Energy-Displacement Curve
1.5.6.3. Optimal Workload for Maximum Power Development 

1.5.7. Practical Considerations

1.6. Vector Strength Training

1.6.1. Definition of Force Vector

1.6.1.1. Axial Vector
1.6.1.2. Horizontal Vector
1.6.1.3. Rotational Vector

1.6.2. Benefits of Using this Terminology
1.6.3. Definition of Basic Vectors in Training

1.6.3.1. Analysis of the Main Sporting Actions
1.6.3.2. Analysis of the Main Overload Exercises
1.6.3.3. Analysis of the Main Training Exercises

1.6.4. Practical Considerations

1.7. Main Methods for Strength Training

1.7.1. Own Body Weight
1.7.2. Free Exercises
1.7.3. P.A.P

1.7.3.1. Definition
1.7.3.2. Application of PAP Prior to Energy-Related Sports Disciplines

1.7.4. Exercises with Machines
1.7.5. Complex Training
1.7.6. Exercises and Their Transfer
1.7.7. Contrasts
1.7.8. Cluster Training
1.7.9. Practical Considerations

1.8. VBT

1.8.1. Conceptualization of the Application of VBT

1.8.1.1. Degree of Stability of Execution Speed with Each Percentage of 1MR

1.8.2. Difference Between Scheduled Load and Actual Load

1.8.2.1. Definition of the Concept
1.8.2.2. Variables Involved in the Difference Between Programmed Load and Actual Training Load

1.8.3. VBT as a Solution to the Problem of Using 1MR and nMR to Program Loads
1.8.4. VBT and Degree of Fatigue

1.8.4.1. Connection to Lactate
1.8.4.2. Connection to Ammonium

1.8.5. VBT in Relation to the Loss of Speed and Percentage of Repetitions Performed

1.8.5.1. Define the Different Degrees of Effort in the Same Series
1.8.5.2. Different Adaptations According to the Degree of Speed Loss in the Series

1.8.6. Methodological Proposals According to Different Authors
1.8.7. Practical Considerations

1.9. Strength in Connection to Hypertrophy

1.9.1. Hypertrophy-Inducing Mechanism: Mechanical Stress
1.9.2. Hypertrophy-Inducing Mechanism: Metabolic Stress
1.9.3. Hypertrophy-Inducing Mechanism: Muscle Damage
1.9.4. Hypertrophy Programming Variables

1.9.4.1. Frequency (F)
1.9.4.2. Volume
1.9.4.3. Intensity
1.9.4.4. Cadence
1.9.4.5. Series and Repetitions
1.9.4.6. Density
1.9.4.7. Order in the Execution of Exercises

1.9.5. Training Variables and Their Different Structural Effects

1.9.5.1. Effect on Different Types of Fiber
1.9.5.2. Effects on the Tendon
1.9.5.3. Bundle Length
1.9.5.4. Angle of Pennea

1.9.6. Practical Considerations

1.10. Eccentric Strength Training

1.10.1. Conceptual framework

1.10.1.1. Definition of Eccentric Training
1.10.1.2. Different Types of Eccentric Training

1.10.2. Eccentric Training and Performance
1.10.3. Eccentric Training in the Prevention and Rehabilitation of Injuries
1.10.4. Technology Applied to Eccentric Training

1.10.4.1. Conical Pulleys
1.10.4.2. Isoinertial Devices

1.10.5. Practical Considerations 

Module 2. Speed Training from Theory to Practice

2.1. Speed 

2.1.3. Definition 
2.1.4. General concepts

2.1.4.1. Manifestations of Speed
2.1.4.2. Factors that Determine Performance
2.1.4.3. Difference Between Speed and Quickness
2.1.4.4. Segmental Speed
2.1.4.5. Angular Speed
2.1.4.6. Reaction Time 

2.2. Dynamics and Mechanics of Linear Sprint (100m Model)

2.2.1. Kinematic Analysis of the Take-off
2.2.2. Dynamics and Strength Application During Take-off
2.2.3. Kinematic Analysis of the Acceleration Phase
2.2.4. Dynamics and Strength Application During Acceleration
2.2.5. Kinematic Analysis of Running at Maximum Speed
2.2.6. Dynamics and Strength Application During Maximum Speed

2.3. Phases of Sprinting (Technique Analysis)

2.3.4. Technical Description of the Take-off
2.3.5. Technical Description of the Race During the Acceleration Phase

2.3.5.1. Technical Model of the Kinogram for the Acceleration Phase 

2.3.6. Technical Description of the Race During the Maximum Speed Phase

2.3.6.1. Technical Kinogram Model (ALTIS) for Technique Analysis

2.3.7. Speed Endurance

2.4. Speed Bioenergetics

2.4.1. Bioenergetics of Single Sprints

2.4.1.1. Myoenergetics of Single Sprints
2.4.1.2. ATP-PC System
2.4.1.3. Glycolytic System
2.4.1.4. Adenylate Kinase Reaction

2.4.2. Bioenergetics of Repeated Sprints

2.4.2.1. Energy Comparison Between Single and Repeated Sprints
2.4.2.2. Behavior of Energy Production Systems During Repeated Sprints
2.4.2.3. Recovery of PC
2.4.2.4. Connection Between Aerobic Power and Recovery Processes of PC
2.4.2.5. Determinants of Performance in Repeated Sprints

2.5. Analysis of Acceleration Technique and Maximum Speed in Team Sports

2.5.1. Description of the Technique in Team Sports
2.5.2. Comparison of Sprinting Technique in Team Sports vs. Athletic Events
2.5.3. Timing and Motion Analysis of Speed Events in Team Sports

2.6. Methodological Approach to Teaching the Technique

2.6.1. Technical Teaching of the Different Phases of the Race
2.6.2. Common Errors and Ways to Correct Them

2.7. Means and Methods for Speed Development

2.7.1. Means and Methods for Acceleration Phase Training

2.7.1.1. Connection of Force to Acceleration
2.7.1.2. Sled
2.7.1.3. Slopes
2.7.1.4. Jumpability

2.7.1.4.1. Building the Vertical Jump
2.7.1.4.2. Building the Horizontal Jump

2.7.1.5. Training the ATP/PC System

2.7.2. Means and Methods for Top Speed Training

2.7.2.1. Plyometry
2.7.2.2. Overspeed
2.7.2.3. Interval-Intensive Methods

2.7.3. Means and Methods for Speed Endurance Development

2.7.3.1. Interval-Intensive Methods
2.7.3.2. Repetition Method

2.8. Agility and Change of Direction

2.8.1. Definition of Agility
2.8.2. Definition of Change of Direction
2.8.3. Determinants of Agility and COD
2.8.4. Change of Direction Technique

2.8.4.1. Shuffle
2.8.4.2. Crossover
2.8.4.3. Agility and COD Training Drills

2.9. Assessment and Control of Speed Training

2.9.1. Strength-Speed Profile
2.9.2. Test With Photocells and Variants With Other Control Devices
2.9.3. RSA

2.10. Programming Speed Training

Module 3. Endurance Training from Theory to Practice

3.1. General concepts

3.1.1. General Definitions

3.1.1.1. Education
3.1.1.2. Trainability
3.1.1.3. Sports Physical Preparation

3.1.2. Objectives Endurance Training
3.1.3. General Principles of Training

3.1.3.1. Principles of Load
3.1.3.2. Principles of Organization
3.1.3.3. Principles of Specialization

3.2. Physiology of Aerobic Training

3.2.1. Physiological Response to Aerobic Endurance Training

3.2.1.2. Responses to Continuous Stress
3.2.1.3. Responses to Intervallic Stress
3.2.1.4. Responses to Intermittent Stress
3.2.1.5. Responses to Stress in Small-Space Games

3.2.2. Factors Related to Aerobic Endurance Performance

3.2.2.1. Aerobic Power
3.2.2.2. Anaerobic Threshold
3.2.2.3. Maximum Aerobic Speed
3.2.2.4. Economy of Effort 
3.2.2.5. Use of Substrates
3.2.2.6. Characteristics of Muscle Fibers

3.2.3. Physiological Adaptations to Aerobic Endurance

3.2.3.1. Adaptations to Continuous Stress
3.2.3.2. Adaptations to Intervallic Stress
3.2.3.3. Adaptations to Intermittent Stress
3.2.3.4. Adaptations to Stress in Small-Space Games

3.3. Situational Sports and Their Relation to Aerobic Endurance

3.3.1. Group I Situational Sport Demands; Soccer, Rugby and Hockey
3.3.2. Group II Situational Sport Demands; Basketball, Handball, Futsal
3.3.3. Group III Situational Sport Demands; Tennis and Volleyball

3.4. Monitoring and Assessment of Aerobic Endurance

3.4.1. Direct Treadmill Versus Field Evaluation

3.4.1.1. VO2max Treadmill Versus Field
3.4.1.2. VAM Treadmill Versus Field
3.4.1.3. VAM versus VFA
3.4.1.4. Time Limit (VAM)

3.4.2. Continuous Indirect Tests

3.4.2.1. Time Limit (VFA)
3.4.2.2. 1,000m Test
3.4.2.3. 5 Minute Test

3.4.3. Incremental and Maximum Indirect Tests

3.4.3.1. UMTT, UMTT-Brue, VAMEVAL and T-Bordeaux 
3.4.3.2. UNCa Test; Hexagon, Track, Hare

3.4.4. Indirect Back-and-Forth and Intermittent Tests

3.4.4.1. 20m Shuttle Run Test (Course Navette)
3.4.4.2. YoYo Test
3.4.4.3. Intermittent Tests; 30-15 IFT, Carminatti, 45-15. Test

3.4.6. Specific Tests With Ball

3.4.6.1. Hoff Test

3.4.7. Proposal Based on the VFA

3.4.7.1. VFA Contact Points for Football, Rugby and Hockey
3.4.7.2. VFA Contact Points for Basketball, Futsal and Handball

3.5. Planning Aerobic Exercise

3.5.1. Exercise Model
3.5.2. Training Frequency
3.5.3. Duration of the Exercise
3.5.4. Training Intensity
3.5.5. Density

3.6. Methods to Develop Aerobic Endurance

3.6.1. Continuous Training
3.6.2. Interval Training
3.6.3. Intermittent Training
3.6.4. SSG Training (Small-Space Games)
3.6.5. Mixed Training (Circuits)

3.7. Program Design 

3.7.1. Preseason Period
3.7.2. Competitive Period
3.7.3. Postseason Period

3.8. Special Aspects Related to Training

3.8.1. Concurrent Training
3.8.2. Strategies to Design Concurrent Training
3.8.3. Adaptations Generated by Concurrent Training
3.8.4. Differences Between Genders
3.8.5. De-Training

3.9. Aerobic Training in Children and Youth

3.9.1. General concepts

3.9.1.1Growth, Development and Maturation

3.9.2. Evaluation of VO2max and VAM

3.9.2.1. Indirect Measurement
3.9.2.2. Indirect Field Measurement

3.9.3. Physiological Adaptations in Children and Youth

3.9.3.1. VO2máx and VAM Adaptations

3.9.4. Design of Aerobic Training

3.9.4.1. Intermittent Method
3.9.4.2. Adherence and Motivation
3.9.4.3. Games in Small Spaces

A unique specialization experience, key and decisive to boost your professional development"

Postgraduate Diploma in High Performance in Sports: Strength, Speed ​​and Endurance Training

The Postgraduate Certificate in High Performance in Sports: Strength, Speed ​​and Endurance Training at TECH Global University is aimed at sports science professionals interested in competently improving their technical-theoretical skills. Our program offers an innovative study plan, which was designed by the best experts in the field, and as a result, students will have access to high-quality content along with an updated documentary bank that will boost their skills to a level of absolute excellence. In addition, with the new knowledge acquired, applicants will be able to design and implement training plans focused on sports performance, with the most advanced methods in terms of evaluation and nutrition applied to this branch of knowledge.

Take a postgraduate diploma in high performance in sports, 100% online

The TECH program has sophisticated thematic axes, which will be essential to internalize the topics related to strength training, rehabilitation of injuries, anaerobic resistance, variables in sports development, as well as other conceptual areas of great academic value. In addition, throughout the Postgraduate Diploma, students will face simulated practical cases, which will favor the acquisition of analytical skills, while preparing for the different challenges that they will face in work practice. On the other hand, it is worth noting that thanks to our 100% online modality we offer benefits of time and space, which are very useful for planning activities outside the academic field.