Introduction to the Program

Esta Postgraduate diploma te permitirá actualizar tus conocimientos sobre Mathematics and Logic for Computer Science de un modo práctico, 100% Online, sin renunciar al máximo rigor académico”

Este programa está dirigido a aquellas personas interesadas en alcanzar un nivel de conocimiento superior en Mathematics and Logic for Computer Science. El principal objetivo es capacitar al alumno para que aplique en el mundo real los conocimientos adquiridos en esta Postgraduate diploma, en un entorno de trabajo que reproduzca las condiciones que se puede encontrar en su futuro, de manera rigurosa y realista.

Esta Postgraduate diploma preparará al alumno para el ejercicio profesional de la Ingeniería Informática, gracias a una capacitación transversal y versátil adaptada a las nuevas tecnologías e innovaciones en este campo. Obtendrá amplios conocimientos en Mathematics and Logic for Computer Science, de la mano de profesionales en el sector.

El profesional debe aprovechar la oportunidad y cursar esta capacitación en un formato 100% Online, sin tener que renunciar a sus obligaciones, y haciendo fácil su regreso a la universidad. Actualizará tus conocimientos y consigue tu título de Postgraduate diploma para seguir creciendo personal y profesionalmente.

Este programa te permitirá potenciar tus capacidades y actualizar tus conocimientos en Mathematics and Logic for Computer Science”

Esta Postgraduate diploma en Mathematics and Logic for Computer Science contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:

  • El desarrollo de 100 escenarios simulados presentados por expertos en Matemáticas y Lógica para la Informática
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre Matemáticas y Lógica para la Informática
  • Las novedades sobre los últimos avances en el Matemáticas y Lógica para la Informática
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Un sistema interactivo de aprendizaje basado en el método del caso y su aplicación a la práctica real
  • Todo esto se complementará con lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Aprende las últimas técnicas y estrategias con este programa y alcanza el éxito como informático”

Incluye en su cuadro docente a un equipo de profesionales pertenecientes al ámbito de Ingeniería Informática, que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas pertenecientes a sociedades de referencia y universidades de prestigio.

El contenido multimedia elaborado con la última tecnología educativa permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará un aprendizaje inmersivo programado para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el docente deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, el profesional contará con la ayuda de un novedoso sistema de vídeos interactivos realizados por reconocidos expertos en Sistemas de Información con gran experiencia docente.

Aprovecha la última tecnología educativa para ponerte al día en Mathematics and Logic for Computer Science sin moverte de casa"

Conoce las últimas técnicas en Mathematics and Logic for Computer Science de la mano de expertos en la materia"

Syllabus

The structure of the contents has been designed by a team of Computer Engineering professionals, aware of the current relevance of the training to deepen in this area of knowledge, in order to humanistically enrich the student and raise the level of knowledge in Mathematics and Logic for Computer Science through the latest educational technologies available.

This Postgraduate diploma in Mathematics and Logic for Computer Science contains the most complete and up-to-date educational program on the market”

Module 1. Algebra and discrete mathematics

1.1. Methods of test, induction and recursion

1.1.1. Variables and quantifiers
1.1.2. Test methods
1.1.3. Induction
1.1.4. Recursion

1.2. Sets and Functions

1.2.1. Sets
1.2.2. Operations with sets
1.2.3. Functions
1.2.4. Cardinality

1.3. Number theory and modular arithmetic

1.3.1. Divisibility and modular arithmetic
1.3.2. Prime numbers
1.3.3. Greatest Common Divisor and Least Common Multiple
1.3.4. Linear congruencies
1.3.5. Chinese remainder theorem
1.3.6. Fermat's little theorem
1.3.7.  Primitive root and discrete logarithm
1.3.8. Diffie-Hellman Algorithm

1.4. Matrix Operations

1.4.1.  Concept of Matrix
1.4.2. Fundamental matrix operations
1.4.3. The matrix identity and the power of a matrix
1.4.4. The zero-one matrixes
1.4.5. The transposed matrix, inverse and determinant

1.5. Relationships

1.5.1. Binary relationships and their properties
1.5.2. N-Ary Relationships
1.5.3. Representation of relationships
1.5.4. Closure of a relationship

1.6. Gaussian elimination

1.6.1. Automatic solving of equation systems
1.6.2. Naive Gaussian elimination
1.6.3. Error vector and residual vector
1.6.4. Gaussian elimination with scaled partial pivoting

1.7. Lineal Programming

1.7.1. -Lineal Programming Problems
1.7.2. Standard form
1.7.3. Distensioned form
1.7.4. Duality

1.8. Simplex algorithm

1.8.1. What is the simplex algorithm?
1.8.2. Geometric Interpretation
1.8.3. Pivoting
1.8.4. Initialization
1.8.5. Algorithm body

1.9. Graphs

1.9.1. Introduction to Graphs
1.9.2. Neighborly relations
1.9.3. Graph representation
1.9.4. Isomorphic graphs
1.9.5. Connectivity in networks

1.10. Tree

1.10.1. Introduction to Tree
1.10.2. Application of Tree
1.10.3. Tree Paths

Module 2. Calculus and numerical methods

2.1. Introduction to Analysis

2.1.1. Concept from Functions
2.1.2. Concept of limit
2.1.3. Calculation of limits
2.1.4. Continuity of functions

2.2. Derivation of functions and their applications

2.2.1. Derivative of a function
2.2.2. Geometric Interpretation
2.2.3. Physical interpretation
2.2.4. Calculation of derivatives
2.2.5. Successive derivatives
2.2.6. Derivable functions. Lateral derivatives
2.2.7. Theorems of derivable functions
2.2.8. L'Hôpital Rule
2.2.9. Relative extremes and monotony
2.2.10. Inflection points and curvature
2.2.11. Optimization problems

2.3. Study and graphical representation of functions of one variable

2.3.1. Study of a function
2.3.2. Study of polynomial functions
2.3.3. Study of Rational Functions
2.3.4. Study of irrational functions
2.3.5. Study of exponential functions
2.3.6. Study of Logarithm Functions
2.3.7. Study of trigonometric functions
2.3.8. Construction of functions from other known functions

2.4. Definite Integrals

2.4.1.  The definite integral as the limit of a sum
2.4.2.  Properties of the definite integral
2.4.3.  Immediate Integrals
2.4.4.  Mean value theorem of integral calculus
2.4.5.  Fundamental Calculus Theorem. Barrow's Rule
2.4.6.  Areas of flat enclosures
2.4.7.  Arc length of a curve
2.4.8.  Volumes of solid bodies

2.5. Indefinite integral

2.5.1.  Concept of Primitives of a Function
2.5.2.  Properties of the indefinite integral
2.5.3.  Integration by Parts
2.5.4.  Integration of Rational Functions
2.5.5.  Integration by variable change
2.5.6.  Integration by trigonometric substitutions
2.5.7.  Non-elemental integrals

2.6. Finite sequences and series

2.6.1.  Successions of Real Numbers
2.6.2.  Sets
2.6.3.  The integral criterion and the comparison criterion
2.6.4.  Alternating series
2.6.5.  Absolute convergence and quotient criterion

2.7. Fundamental principles of counting

2.7.1.  Partitioning of a set
2.7.2.  Addition principle
2.7.3.  Multiplication principle
2.7.4.  Inclusion- Exclusion Principles
2.7.5.  Distribution principle

2.8. Numerical and error analysis

2.8.1.  Origin and Evolution of Numerical Analysis
2.8.2.  Algorithms
2.8.3.  Types of Error
2.8.4.  Convergence

2.9. Numbering Systems

2.9.1.  Information representation
2.9.2.  Introduction to numerical systems
2.9.3.  Conversion from decimal system to base b
2.9.4.  Arithmetic operations in base b
2.9.5.  Conversion from b1 to b2 system
2.9.6.  Representation of numbers
2.9.7.  Floating point arithmetic
2.9.8.  Error propagation

2.10. Root computation and interpolation, solving algorithms and acceleration techniques

2.10.1.  Bisection algorithm
2.10.2.  Fixed-point algorithm
2.10.3.  Secant Method
2.10.4.  Newton-Raphson algorithm
2.10.5.  Modified secant algorithm
2.10.6.  Newton modified algorithm
2.10.7.  ∆2 of Aitken
2.10.8.  Steffersen Algorithm

Module 3. Statistics

3.1. Introduction to Statistics

3.1.1. Basic Concepts
3.1.2. Types of Variables
3.1.3. Statistical Information

3.2. Data Record Sorting and Classifying

3.2.1. Description of Variables
3.2.2. Frequency Distribution Table
3.2.3. Quantitative and Qualitative Frequency Distribution Tables

3.3. ICT Applications and Practical Systems

3.3.1. Basic Concepts
3.3.2. Data Science
3.3.3. Data Representation

3.4. Summary Statistics I

3.4.1. Descriptive Statistics
3.4.2. Centralization Measurements
3.4.3. Measures of Dispersion
3.4.4. Measures of Shape and Position

3.5. Summary Statistics II

3.5.1. Box Plots
3.5.2. Identifying Outliers
3.5.3. Transformation

3.6. Statistical Analysis of the Relationship between the Two Variables

3.6.1. Tabulation
3.6.2. Contingency Tables and Graphical Representations
3.6.3. Linear Relationship between Quantitative Variables

3.7. Time Series and Index Numbers

3.7.1. Time Series
3.7.2. Rates of Change
3.7.3. Index Numbers
3.7.4. Consumer Prices Index (CPI) and Deflated Time Series

3.8. Introduction to Probability: Calculation and Basic Concepts

3.8.1. Basic Concepts
3.8.2. Set Theory
3.8.3. Probability Calculation

3.9. Random Variables and Probability Distributions

3.9.1. Random Variables
3.9.2. Variable Measurements
3.9.3. Function of Probability

3.10. Probability Models for Random Variables

3.10.1. Probability Calculation
3.10.2.  Discrete Random Variables
3.10.3. Continuous Random Variables
3.10.4. Models Derived from Normal Distribution

Module 4. Logic in Computer Science

4.1. Justification of the Logic

4.1.1. Object of Logic Study
4.1.2. What Is Logic for?
4.1.3. Components and Types of Reasoning
4.1.4. Components of a Logic Calculation
4.1.5. Semantics
4.1.6. Justification of the Existence of a Logic
4.1.7. How to Check that a Logic is Adequate

4.2. Calculation of Natural Deduction from Statements

4.2.1. Formal Language
4.2.2. Deductive Mechanism

4.3. Formalization and Deduction Strategies for Propositional Logic

4.3.1. Formalization Strategies
4.3.2. Natural Reasoning
4.3.3. Laws and Rules
4.3.4. Axiomatic Deduction and Natural Deduction
4.3.5. Calculating Natural Deduction
4.3.6. Primitive Rules of Propositional Calculus

4.4. Semantics of Propositional Logic

4.4.1. Truth Tables
4.4.2. Equivalence
4.4.3. Tautologies and Contradictions
4.4.4. Validation of Propositional Sentences
4.4.5. Validation by Means of Truth Tables
4.4.6. Validation Using Semantic Trees
4.4.7. Validation by Refutation

4.5. Applications of Propositional Logic: Logic Circuits

4.5.1. Basic Gates
4.5.2. Circuits
4.5.3. Mathematical Models of the Circuits
4.5.4. Minimization
4.5.5. The Second Canonical Form and the Minimum Form in Product of Additions
4.5.6. Other Gates

4.6. Natural Predicate Deduction Calculus

4.6.1. Formal Language
4.6.2. Deductive Mechanism

4.7. Formalization Strategies for Predicate Logic

4.7.1. Introduction to Formalization in Predicate Logic
4.7.2. Formalization Strategies with Quantifiers

4.8. Deduction Strategies for Predicate Logic

4.8.1. Reason for Omission
4.8.2. Presentation of the New Rules
4.8.3. Predicate Logic as a Natural Deduction Calculus

4.9. Applications of Predicate Logic: Introduction to Logic Programming

4.9.1. Informal Presentation
4.9.2. Prolog Elements
4.9.3. Re-Evaluation and Cut-Off

4.10. Set Theory, Predicate Logic and Its Semantics

4.10.1. Intuitive Set Theory
4.10.2. Introduction to Predicate Semantics

A unique, key, and decisive educational experience to boost your professional development”

Postgraduate Diploma in Mathematics and Logic for Computer Science

If you are passionate about programming and technology, TECH's Postgraduate Diploma in Mathematics and Logic for Computing is an opportunity you should not miss. This academic training program will allow you to acquire in-depth knowledge in mathematics and logic, fundamental tools for developing effective and quality software programs. The Postgraduate Diploma in Mathematics and Logic for Computing focuses on providing students with the knowledge and skills necessary to solve complex mathematical problems, both theoretically and practically. During the program, students will also learn to apply mathematical logic to programming, which will enable them to create more efficient algorithms and computer programs. The goal of this Postgraduate Diploma is to provide students with a solid understanding of the mathematical and logical concepts behind programming, enabling them to tackle problems more effectively. Throughout the program, students will also gain skills in analysis and problem solving, which are fundamental in any programming-related field.

Study 100% online from anywhere

The Postgraduate Diploma in Mathematics and Logic for Computing is taught online, which means students can study from anywhere in the world, at their own pace and on their own schedule. In addition, the program is designed to be accessible to people with different levels of math and logic experience, from beginners to experts. To conclude, if you are looking for high-quality training in mathematics and logic for computer science, the Postgraduate Diploma in Mathematics and Logic for Computing is an excellent choice. With this program, you will be able to acquire the necessary skills to tackle complex mathematical and logical problems in programming, and start a successful career in the technology field Don't think twice and enroll in TECH!