Introduction to the Program

Este programa de Postgraduate certificate en Mental Calculation and Problem Solving generará una sensación de seguridad en el desempeño de tu profesión, que te ayudará a crecer personal y profesionalmente”

Este programa dedica un tema completo a la Lógica, al Razonamiento y a sus procesos, al concepto de Problema matemático, a su metodología-didáctica, a los diferentes Procedimientos prácticos para evitar dificultades y bloqueos en la resolución de los mismos así como el desarrollo de Metamodelos para la generación de estrategias en la resolución de problemas.

Este programa incluye recursos manipulativos con amplia tradición en el ámbito de las matemáticas como el Ábaco japonés y otros métodos más novedosos como el Smartick, método flash, Supertic, Geogebra, Mothmatic, Arcademics, Kahn Academy y el Proyecto Gauss.

Este Postgraduate certificate se centra en el Aprendizaje Basado en Problemas (ABP) como vehículo para trabajar los distintos conceptos matemáticos propios de la etapa de Infantil y Primaria además del desarrollo de actitudes, valores, trabajo en equipo, toma de decisiones, aprendizaje autónomo

La Lógica, el Razonamiento, La Reducción a lo Absurdo son parte importante del programa. La Ludificación es otra herramienta para trabajar los Problemas en el aula a través de recursos manipulativos, no manipulativos y los juegos de mesa como el Geoplano y el Pentominós entre otros.

Este Postgraduate certificate le servirá al alumno para formarse en las distintas metodologías y didácticas para trabajar la Estimación, la Aproximación y el Cálculo Mental, la Lógica y el Razonamiento. Conocerá una serie de recursos manipulativos tradicionales como el Ábaco japonés y otros métodos más novedosos como el Smartick, el método flash, Supertic, Geogebra, Mothmatic, Arcademics, Kahn Academy y el Proyecto Gauss.

Actualiza tus conocimientos a través del programa de Postgraduate certificate en Mental Calculation and Problem Solving”

Este Postgraduate certificate en Mental Calculation and Problem Solving contiene el programa educativo más completo y actualizado del mercado. Las características más destacadas del Postgraduate certificate son:

  • Desarrollo de más de 75 casos prácticos presentados por expertos en Mental Calculation and Problem Solving.
  • Sus contenidos gráficos, esquemáticos y eminentemente prácticos con los que están concebidos, recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional.
  • Novedades sobre la Mental Calculation and Problem Solving infantil. Contiene ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje.
  • Con especial hincapié en metodologías innovadoras en Mental Calculation and Problem Solving.
  • Disponibilidad de los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet.

Este Postgraduate certificate puede ser la mejor inversión que puedes hacer en la selección de un programa de actualización por dos motivos: además de poner al día tus conocimientos en Mental Calculation and Problem Solving, obtendrás un título de Postgraduate certificate por la mayor Universidad Digital del mundo, TECH”

Incluye en su cuadro docente profesionales pertenecientes al ámbito de Mental Calculation and Problem Solving, que vierten en esta formación la experiencia de su trabajo, además de reconocidos especialistas pertenecientes a sociedades de referencia y universidades de prestigio.

Gracias a su contenido multimedia elaborado con la última tecnología educativa, permitirán al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará un aprendizaje inmersivo programado para entrenarse ante situaciones reales.

El diseño de este programa está basado en el aprendizaje basado en problemas, mediante el cual el alumno deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del Postgraduate certificate. Para ello, el alumno contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos en el campo de Mental Calculation and Problem Solving y con gran experiencia docente.

Aumenta tu seguridad en la toma de decisiones actualizando tus conocimientos a través de este Postgraduate certificate"

Aprovecha la oportunidad para conocer los últimos avances en Mental Calculation and Problem Solving y mejorar la formación de tus alumnos"

Syllabus

The teaching team that TECH has selected for this program has worked intensively in the design of the 150 hours of theoretical, practical and additional content included in this Postgraduate certificate, thanks to which it has been possible to create a rigorous, complete and innovative syllabus. In this way, graduates will have access to a highly training program, which will allow them not only to improve their teaching competences, but also to implement in their pedagogical strategies the keys for the teaching of Mental Calculus.  

The most effective and dynamic educational program on the market is at your disposal thanks to this Postgraduate certificate”

Module 1. Mental Calculation and Problem Solving

1.1. Mental Calculation

1.1.1. What is Mental Calculation?

1.1.1.1. Definition
1.1.1.2. Mechanical or Stimulus-Response Calculation
1.1.1.3. Reflective or Thoughtful Calculation
1.1.1.4. Skills

1.1.2. Authors' Contribution

1.1.2.1. María Ortiz
1.1.2.2. Jiménez Ibáñez
1.1.2.3. Hope
1.1.2.4. Dickson
1.1.2.5. Carrol y Porter
1.1.2.6. Alistair McIntosh

1.1.3. Justification

1.1.3.1. MC Classroom Implementation
1.1.3.2. 6 Reasons why Mental Calculation is Important

1.1.4. Mental Calculation in the Basic Curriculum of Primary Education

1.1.4.1. Royal Decree 126/2014
1.1.4.2. Contents
1.1.4.3. Assessment Criteria
1.1.4.4. Assessable Learning Standards

1.1.5. Advantages of Mental Calculation

1.1.5.1. Bernardo Gómez
1.1.5.2. María Ortiz

1.1.6. Disadvantages of Mental Calculation

1.1.6.1. Definition
1.1.6.2. Four Areas of Difficulty
1.1.6.3. Causes

1.1.7. Approximate Calculation

1.1.7.1. Definition
1.1.7.2. Algorithmic Thinking
1.1.7.3. Onset

1.1.8. Mental Arithmetic

1.1.8.1. Definition
1.1.8.2. Elementary Forms
1.1.8.3. Levels of Use

1.1.9. Keys to Teaching Mental Calculation

1.1.9.1. Uses
1.1.9.2. Strategies
1.1.9.3. Practice
1.1.9.4. Decision
1.1.9.5. Mentality

1.2. Teaching Mental Calculation

1.2.1. Contents and Activities for the M.C

1.2.1.1. Basic Concepts of Number and Properties Related to Operations
1.2.1.2. The Tables
1.2.1.3. Strategies
1.2.1.4. Oral Problems
1.2.1.5. Games and Didactic Material

1.2.2. General Didactic Guidelines

1.2.2.1. Strategies to be Proposed
1.2.2.2. Sequencing
1.2.2.3. Level of the Student Body
1.2.2.4. Playful Activity
1.2.2.5. Constancy
1.2.2.6. M.C Programming

1.2.3. Mental Calculation Strategies

1.2.3.1. Definition
1.2.3.2. Simpler Strategies

1.2.4. Strategies for Addition

1.2.4.1. Counting
1.2.4.2. Double
1.2.4.3. Commutative Property
1.2.4.4. Associative Property
1.2.4.5. Decomposition

1.2.5. Subtraction Strategies

1.2.5.1. Counting
1.2.5.2. Decomposition
1.2.5.3. Completing Numbers

1.2.6. Strategies for Multiplication

1.2.6.1. Sum Reduction
1.2.6.2. Distributive Property
1.2.6.3. Commutative Property
1.2.6.4. Factorization and Association
1.2.6.5. Basic Multiplications

1.2.7. Division Strategies

1.2.7.1. Division Test
1.2.7.2. Divide by 2 and 3
1.2.7.3. Basic Divisions

1.2.8. Approximation

1.2.8.1. Definition
1.2.8.2. María Ortiz
1.2.8.3. Utility and Advantages

1.2.9. Approximate Calculation Strategies

1.2.9.1. Reformulation
1.2.9.2. Translation Processes
1.2.9.3. Compensation Processes

1.3. Sequencing and Activities to Work on Mental Calculation

1.3.1. Manipulative Resources

1.3.1.1. What are they?

1.3.2. Design of Activities

1.3.2.1. Infant

1.3.3. Learning Calculation in Relation to Other Areas of Knowledge

1.3.3.1. Tongue

1.3.4. Number Tables

1.3.4.1. What are they?

1.3.5. Numerical Pyramids

1.3.5.1. What are they?

1.3.6. Numerical Triangles

1.3.6.1. What are they?

1.3.7. Magic Squares

1.3.7.1. What are they?

1.3.8. Mathematical Games

1.3.8.1. What are they?

1.3.9. Other Games

1.3.9.1. What are they?

1.4. Other Resources for the Development of Mental Calculation

1.4.1. Japanese Abacus
1.4.2. Flash Method
1.4.3. Smartick
1.4.4. Supertic
1.4.5. Geogrebra
1.4.6. Mothmatic
1.4.7. Arcademics
1.4.8. Kahn Academy
1.4.9. Gauss Project

1.5. Problem-Based Learning

1.5.1. General aspects of the PBL
1.5.2. Features of a PBL
1.5.3. Planning of a PBL
1.5.4. Role of the Teacher
1.5.5. Role of the Students
1.5.6. Design of the PBL
1.5.7. Implementation of the PBL
1.5.8. Evaluation of PBL
1.5.9. Benefits of PBL

1.6. Logic

1.6.1. Study and Scientific Basis of Logic Principles
1.6.2. Statements
1.6.3. Conditional Expressions
1.6.4. Explanation, Argumentation and Demonstration
1.6.5. Reasoning: Deduction, Induction and Abduction
1.6.6. Reduction to Absurdity
1.6.7. Logic for Learning, Logic for Teaching
1.6.8. Educational Intervention-Didactic Procedures
1.6.9. Resources for Mathematical Logic

1.7. Mathematical Problems

1.7.1. Concept of Problem
1.7.2. Didactic Methodology for Educational Intervention
1.7.3. Variables
1.7.4. Constants
1.7.5. Elaboration of Problems
1.7.6. Interpretation of Problems
1.7.7. Oral Problems
1.7.8. Practical Procedures to Avoid Difficulties and Blockages in Mathematical Problem Solving
1.7.9. Adaptation of the Statements

1.8. Metamodels and Models for the Generation of Problem-Solving Strategies

1.8.1. Introduction to Metamodels and Models
1.8.2. What are Metamodels for?
1.8.3. Generative Metamodels
1.8.4. Structuring Metamodels
1.8.5. Link Metamodels
1.8.6. Transformation Metamodels
1.8.7. Composition Metamodels
1.8.8. Interconnection Metamodels
1.8.9. ICT Metamodels

1.9. The Mathematical Task in Problem Solving

1.9.1. Mathematical Work
1.9.2. Factors Involved in Problem-Solving Learning
1.9.3. Problem Solving, the First Approach
1.9.4. Resolution Strategies
1.9.5. Problem Solving Phases
1.9.6. Problem Solving Guidelines
1.9.7. Obstacles and Problem-Solving Difficulties
1.9.8. Overcoming Obstacles
1.9.9. Resolution Check

1.10. Materials and Games to Work on the Problems

1.10.1. Manipulative Resources
1.10.2. Non-Manipulative Resources
1.10.3. Playful Resources
1.10.4. Design of Activities
1.10.5. Learning Problems in Relation to other Areas of Knowledge
1.10.6. Everyday Problems
1.10.7. Board Games to Work on Problems
1.10.8. Geoplane
1.10.9. Pentominoes

The most complete and up to date educational program in the market is within your reach in this first level Postgraduate certificate”

Postgraduate Certificate in Mental Calculation and Problem Solving

Are you ready to expand your knowledge in mathematics? With TECH Global University you can do it! The Postgraduate Certificate in Mental Calculation and Problem Solving will give you the tools you need to improve your mathematical skills and your ability to solve problems efficiently. Both in academia and in everyday life, mental arithmetic and problem solving are fundamental skills. The program will provide you with the necessary tools to develop your mathematical skills and improve your ability to solve problems efficiently. Find out how to empower your mind and achieve a solid mathematical mastery with our course!

Become an expert in mathematical problem solving

In this high-quality Postgraduate Certificate, you will learn techniques and approaches to tackle mathematical problems of different levels of difficulty. You will discover how to analyze and decompose problems, identify patterns, and use effective solving strategies. In addition, you will develop logical reasoning and critical thinking skills, apply your mental arithmetic and problem-solving skills in real-life situations. In addition, you will learn how to use mathematics to make informed decisions, solve practical situations and understand mathematical concepts in different contexts. You'll discover how to apply mental arithmetic and problem solving in areas such as personal finance, statistics and geometry. But that's not all! You'll learn strategies to continually improve your mental arithmetic and problem-solving skills. You'll discover resources and activities that will help you practice and strengthen your math skills. In addition, you will learn how to identify your areas of improvement and set realistic goals to reach a higher and higher level of proficiency. Through practical techniques and strategies, you will learn how to empower your mind and acquire a solid mathematical mastery. Enroll in our course and discover the power of mental calculation and problem solving in your daily and academic life!