Introduction to the Program

Con esta Postgraduate diploma 100% online, obtendrás una sólida capacitación en herramientas y técnicas avanzadas de análisis, permitiéndote tomar decisiones más informadas y estratégicas en tus inversiones” 

En el contexto actual del trading, el análisis técnico y el análisis fundamental son herramientas esenciales que los inversores utilizan para tomar decisiones informadas. El análisis técnico se basa en gráficos y patrones de precios históricos, mientras que el análisis fundamental se enfoca en factores económicos y financieros, como informes de ganancias y datos macroeconómicos.

Así nace esta Postgraduate diploma, en el que se desarrollará la capacidad de visualizar y optimizar indicadores técnicos mediante tecnologías de Inteligencia Artificial, mejorando el análisis y reconocimiento de patrones en datos financieros. En este sentido, se incluirá la implementación de redes neuronales convolucionales, que elevan la precisión en la identificación de oportunidades de trading, así como la optimización de estrategias mediante el aprendizaje por refuerzo, asegurando un enfoque centrado en la maximización de rentabilidad.

Asimismo, se capacitará a los profesionales para modelar y predecir el desempeño financiero de las empresas, utilizando técnicas de Machine Learning y Deep Learning, para facilitar la toma de decisiones de inversión más informadas 
y estratégicas. Además, se incorporarán técnicas de Procesamiento de Lenguaje Natural (PLN), que permiten analizar estados financieros y extraer información crucial sobre la salud de las empresas.

Finalmente, se abordará el diseño y desarrollo de sistemas de trading automatizados, equipando a los expertos con las habilidades necesarias para integrar técnicas de Machine Learning que mejoren la eficiencia de las operaciones. A través de métodos avanzados, como el backtesting, podrán evaluar y optimizar sus estrategias de trading, buscando maximizar su rendimiento.

De este modo, TECH ha diseñado un programa integral 100% online, que solo requiere un dispositivo electrónico con conexión a Internet para acceder a todos los recursos educativos. Esto elimina problemas como la necesidad de desplazarse a un lugar físico y la imposición de un horario específico. Adicionalmente, se basará en la revolucionaria metodología Relearning, que se centra en la repetición de conceptos clave para garantizar una adecuada asimilación de los contenidos.

El enfoque en la Inteligencia Artificial y el aprendizaje automático te brindarán una ventaja competitiva al optimizar procesos de análisis y ejecución de trades, con el apoyo de la revolucionaria metodología Relearning”

Esta Postgraduate diploma en Technical Analysis, Fundamental Analysis and Algorithmic Trading contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:

  • El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial aplicada a la Bolsa y los Mercados Financieros
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Su especial hincapié en metodologías innovadoras
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a Internet

Desarrollarás habilidades para modelar y predecir el desempeño financiero de las empresas, utilizando métodos de aprendizaje automático, gracias a una amplia biblioteca de innovadores recursos multimedia”

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Profundizarás en la gestión del riesgo, asegurando que las estrategias de trading algorítmico no solo sean rentables, sino también seguras, a través de los mejores materiales didácticos, a la vanguardia tecnológica y educativa"

Utilizarás técnicas de IA, como las redes neuronales convolucionales, para reconocer patrones en los datos financieros, identificando oportunidades de trading con mayor precisión. ¡Con todas las garantías de calidad de TECH!” 

Syllabus

The program will include the study of technical analysis tools and techniques, as well as the use of Artificial Intelligence for the identification of patterns in financial data. In this way, methodologies for modeling the financial performance of companies will be addressed, through the use of Machine Learning and Natural Language Processing (NLP), facilitating the evaluation of their financial health. In addition, the design and development of automated trading systems, integrating advanced backtesting and risk management techniques, which will allow the application of a holistic and strategic approach to investment decisions in the markets.

This Postgraduate diploma in Technical Analysis, Fundamental Analysis and Algorithmic Trading will cover a broad spectrum of content that will train graduates in various areas of financial analysis”

Module 1. Technical Analysis of Financial Markets with AI

1.1. Analysis and Visualization of Technical Indicators with Plotly and Dash

1.1.1. Implementation of Interactive Charts with Plotly
1.1.2. Advanced Visualization of Time Series with Matplotlib
1.1.3. Creating Real-Time Dynamic Dashboards with Dash

1.2. Optimization and Automation of Technical Indicators with Scikit-learn

1.2.1. Automation of Indicators with Scikit-learn
1.2.2. Optimization of Technical Indicators
1.2.3. Creating Personalized Indicators with Keras

1.3. Financial Pattern Recognition with CNN

1.3.1. Using CNN in TensorFlow to Identify Patterns in Charts
1.3.2. Improving Recognition Models with Transfer Learning Techniques
1.3.3. Validation of Recognition Models in Real-Time Markets

1.4. Quantitative Trading Strategies with QuantConnect

1.4.1. Building Algorithmic Trading Systems with QuantConnect
1.4.2. Backtesting Strategies with QuantConnect
1.4.3. Integrating Machine Learning into Trading Strategies with QuantConnect

1.5. Algorithmic Trading with Reinforcement Learning Using TensorFlow

1.5.1. Reinforcement Learning for Trading
1.5.2. Creating Trading Agents with TensorFlow Reinforcement Learning
1.5.3. Simulating and Tuning Agents in OpenAI Gym

1.6. Time Series Modeling with LSTM in Keras for Price Forecasting

1.6.1. Applying LSTM to Price Forecasting
1.6.2. Implementing LSTM Models in Keras for Financial Time Series
1.6.3. Optimization and Parameter Fitting in Time Series Models

1.7. Application of Explainable Artificial Intelligence (XAI) in Finance

1.7.1. Applicability of XAI in Finances
1.7.2. Applying LIME to Trading Models
1.7.3. Using SHAP for Feature Contribution Analysis in AI Decisions

1.8. High-Frequency Trading (HFT) Optimized with Machine Learning Models

1.8.1. Developing ML Models for HFT
1.8.2. Implementing HFT Strategies with TensorFlow
1.8.3. Simulation and Evaluation of HFT in Controlled Environments

1.9. Volatility Analysis Using Machine Learning

1.9.1. Applying Intelligent Models to Predict Volatility
1.9.2. Implementing Volatility Models with PyTorch
1.9.3. Integrating Volatility Analysis into Portfolio Risk Management

1.10. Portfolio Optimization with Genetic Algorithms

1.10.1. Fundamentals of Genetic Algorithms for Investment Optimization in Markets
1.10.2. Implementing Genetic Algorithms for Portfolio Selection
1.10.3. Evaluation of Portfolio Optimization Strategies

Module 2. Fundamental Analysis of Financial Markets with AI

2.1. Predictive Financial Performance Modeling with Scikit-Learn

2.1.1. Linear and Logistic Regression for Financial Forecasting with Scikit-Learn
2.1.2. Using Neural Networks with TensorFlow to Forecast Revenues and Earnings
2.1.3. Validating Predictive Models with Cross-Validation Using Scikit-Learn

2.2. Valuation of Companies with Deep Learning

2.2.1. Automating the Discounted Cash Flows (DCF) Model with TensorFlow
2.2.2. Advanced Valuation Models Using PyTorch
2.2.3. Integration and Analysis of Multiple Valuation Models with Pandas

2.3. Analysis of Financial Statements with NLP Using ChatGPT

2.3.1. Extracting Key Information from Annual Reports with ChatGPT
2.3.2. Sentiment Analysis of Analyst Reports and Financial News with ChatGPT
2.3.3. Implementing NLP Models with Chat GPT for Interpreting Financial Texts

2.4. Risk and Credit Analysis with Machine Learning

2.4.1. Credit Scoring Models Using SVM and Decision Trees in Scikit-Learn
2.4.2. Credit Risk Analysis in Corporations and Bonds with TensorFlow
2.4.3. Visualization of Risk Data with Tableau

2.5. Credit Analysis with Scikit-Learn

2.5.1. Implementing Credit Scoring Models
2.5.2. Credit Risk Analysis with RandomForest in Scikit-Learn
2.5.3. Advanced Visualization of Credit Scoring Results with Tableau

2.6. ESG Sustainability Assessment with Data Mining Techniques

2.6.1. ESG Data Mining Methods
2.6.2. ESG Impact Modeling with Regression Techniques
2.6.3. Applications of ESG Analysis in Investment Decisions

2.7. Sector Benchmarking with Artificial Intelligence Using TensorFlow and Power BI

2.7.1. Comparative Analysis of Companies Using AI
2.7.2. Predictive Modeling of Sector Performance with TensorFlow
2.7.3. Implementing Industry Dashboards with Power BI

2.8. Portfolio Management with AI Optimization

2.8.1. Portfolio Optimization
2.8.2. Use of Machine Learning Techniques for Portfolio Optimization with Scikit-Optimize
2.8.3. Implementing and Evaluating the Effectiveness of Algorithms in Portfolio Management

2.9. Financial Fraud Detection with AI Using TensorFlow and Keras

2.9.1. Basic Concepts and Techniques of Fraud Detection with AI
2.9.2. Constructing Neural Network Detection Models in TensorFlow
2.9.3. Practical Implementation of Fraud Detection Systems in Financial Transactions

2.10. Analysis and Modeling in Mergers and Acquisitions with AI

2.10.1. Using Predictive AI Models to Evaluate Mergers and Acquisitions
2.10.2. Simulating Post-Merger Scenarios Using Machine Learning Techniques
2.10.3. Evaluating the Financial Impact of M&A with Intelligent Models

Module 3. Algorithmic Trading Strategies

3.1. Fundamentals of Algorithmic Trading

3.1.1. Algorithmic Trading Strategies
3.1.2. Key Technologies and Platforms for the Development of Algorithmic Trading Algorithms
3.1.3. Advantages and Challenges of Automated Trading versus Manual Trading

3.2. Design of Automated Trading Systems

3.2.1. Structure and Components of an Automated Trading System
3.2.2. Algorithm Programming: from the Idea to the Implementation
3.2.3. Latency and Hardware Considerations in Trading Systems

3.3. Backtesting and Evaluation of Trading Strategies

3.3.1. Methodologies for Effective Backtesting of Algorithmic Strategies
3.3.2. Importance of Quality Historical Data in Backtesting
3.3.3. Key Performance Indicators for Evaluating Trading Strategies

3.4. Optimizing Strategies with Machine Learning

3.4.1. Applying Supervised Learning Techniques in Strategy Improvement
3.4.2. Using Particle Swarm Optimization and Genetic Algorithms
3.4.3. Challenges of Overfitting in Trading Strategy Optimization

3.5. High Frequency Trading (HFT)

3.5.1. Principles and Technologies behind HFT
3.5.2. Impact of HFT on Market Liquidity and Volatility
3.5.3. Common HFT Strategies and Their Effectiveness

3.6. Order Execution Algorithms

3.6.1. Types of Execution Algorithms and Their Practical Application
3.6.2. Algorithms for Minimizing the Market Impact
3.6.3. Using Simulations to Improve Order Execution

3.7. Arbitration Strategies in Financial Markets

3.7.1. Statistical Arbitrage and Price Merger in Markets
3.7.2. Index and ETF Arbitrage
3.7.3. Technical and Legal Challenges of Arbitrage in Modern Trading

3.8. Risk Management in Algorithmic Trading

3.8.1. Risk Measures for Algorithmic Trading
3.8.2. Integrating Risk Limits and Stop-Loss in Algorithms
3.8.3. Specific Risks of Algorithmic Trading and How to Mitigate Them

3.9. Regulatory Aspects and Compliance in Algorithmic Trading

3.9.1. Global Regulations Impacting Algorithmic Trading
3.9.2. Regulatory Compliance and Reporting in an Automated Environment
3.9.3. Ethical Implications of Automated Trading

3.10. Future of Algorithmic Trading and Emerging Trends

3.10.1. Impact of Artificial Intelligence on the Future Development of Algorithmic Trading
3.10.2. New Blockchain Technologies and Their Application in Algorithmic Trading
3.10.3. Trends in Adaptability and Customization of Trading Algorithms

In a constantly evolving environment, this specialization will become a valuable investment for those looking to stand out and maximize their potential in the Stock and Financial Markets sector”

Postgraduate Diploma in Technical Analysis, Fundamental Analysis and Algorithmic Trading

In an increasingly dynamic and competitive financial environment, mastery of analytical tools and techniques is essential to make informed investment decisions. The ability to combine technical analysis with fundamental analysis and algorithmic trading has become a determining factor in maximizing returns and minimizing risks. Aware of this need, at TECH Global University we have designed the Postgraduate Diploma in Technical Analysis, Fundamental Analysis and Algorithmic Trading program. This program is aimed at professionals and students who wish to acquire advanced skills in the analysis of financial markets. Through online classes, fundamental concepts such as technical indicators, chart patterns and quantitative analysis tools are explored. In addition, fundamental analysis is explored in depth, allowing participants to better understand the economic and financial factors that influence market movements.

Get trained in analysis and trading with this online postgraduate course

Algorithmic trading, one of the most innovative areas in the financial sector, is also addressed in this program. Students will learn how to develop and optimize trading strategies based on algorithms, taking advantage of advanced technologies to execute trades with greater efficiency and speed. This not only facilitates decision making, but also allows for more efficient risk management. The Postgraduate Diploma in Technical Analysis, Fundamental Analysis and Algorithmic Trading offers a comprehensive approach that combines theory and practice, preparing participants to face the challenges of today's market. At the end of the graduate program, graduates will be able to apply their knowledge in various areas of the financial sector, from investment management to the development of customized trading systems. TECH Global University is committed to providing quality education that is tailored to the needs of the market. This program is an invaluable opportunity for those seeking to excel in the world of finance and become experts in analysis and trading.