A Professional Master’s Degree adapted to the forefront of Telecommunications Engineering and in which you will find the most accurate and innovative information to improve your professional skills in just 12 months” 

The development of 5G and the range of possibilities that have arisen from this mobile technology clearly reflect the fact that telecommunications is constantly growing and reinventing itself. Between the 1970s and 1980s, when the Internet began to take its first steps with ARPAnet, CERN workers never imagined that, decades later, their small project, then revolutionary, would just be the seed of a large industry that today moves incalculable amounts of information from one end of the world to the other in milliseconds. The fifth generation of this technology already allows access to a very high connection speed, reducing latency to a minimum and considerably increasing the number of devices connected to the same network.

It is, therefore, a complex field that requires a very high level of technical expertise to work in, as well as detailed knowledge of the continual advances in the development of network systems and services. Therefore, if the professional wishes to specialize in this area, they must have a program that provides them with everything necessary to do so, such as this very comprehensive Professional Master’s Degree. Through 1,500 hours of the best theoretical-practical and additional content, the graduate will be able to update their knowledge in relation to switching, computing and telecommunications infrastructures, becoming a true expert in networks, digital systems, signal management and analog and digital electronics.

All this 100% online and in only 12 months of the most dynamic, innovative and comprehensive professional development that currently exists in the academic market. In addition, you will be able to access the Virtual Campus whenever you want, since TECH offers its programs without schedules or face-to-face classes and with the possibility of connecting from any device with an internet connection. It is, thus, a unique opportunity to acquire the highest-level Telecommunications Engineering tools through a program that will elevate your talent as an engineer to the top of the industrial sector.

You will stand out for your thorough management of computer networks, their typology and their interconnection elements” 

This Professional Master’s Degree in Telecommunications Engineering contains the most complete and up-to-date educational program on the market. Its most notable features are: 

  • Case studies presented by experts in Telecommunications Engineering
  • The graphic, schematic, and practical contents with which they are created, provide practical information on the disciplines that are essential for professional practice
  • Practical exercises where self-assessment can be used to improve learning
  • A special emphasis on innovative methodologies
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
  • Content that is accessible from any fixed or portable device with an internet connection

A Professional Master’s Degree with which you will deepen your knowledge of electronics and essential Telecommunications Engineering equipment, acquiring a professional command of the most complex tools”

The program’s teaching staff includes professionals from the sector who contribute their work experience to this degree program, as well as renowned specialists from leading societies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive learning designed for real situations.

This program is designed around Problem-Based Learning, whereby the professional must try to resolve the different professional practice situations that arise during the academic year. For this purpose, the student will be assisted by an innovative interactive video system created by renowned and experienced experts.  

You will have access to the Virtual Campus whenever you need it: without limits, without timetables and from any device with internet connection"

The perfect academic choice to get up to date on the construction and management of ISDN and FR infrastructures and stand out in a booming sector"


TECH designs each of its Professional Master’s Degree keeping in mind the needs of its students and the requirements of the current labor market in which they perform their function, to ensure education according to demand and context. To that end, it requests the collaboration of experts in thefield to develop each program, guaranteeing the inclusion of the most exhaustive and innovative information in the area in which it is developed, in this case Telecommunications Engineering . It also includes high-quality supplementary material presented in different formats so that the graduate can contextualize the syllabus and immerse themselves, into each section. 

This degree has been developed based on the Relearning methodology, so that you do not have to invest extra time into memorizing and you can attend an innovative, modern and dynamic course” 

Module 1. Electronics and Basic Instrumentation 

1.1.  Basic Instrumentation 

1.1.1.  Introduction. Signals and Their Parameters 
1.1.2.  Basic Electrical Magnitudes and their Measurement 
1.1.3.  Oscilloscope 
1.1.4. Digital Multimeter 
1.1.5.  Function Generator 
1.1.6.  Laboratory Power Supply 

1.2.  Electronic Components in the Laboratory 

1.2.1.  Main Types and Concepts of Tolerance and Series 
1.2.2.  Thermal Behavior and Power Dissipation Maximum Voltage and Current 
1.2.3.  Concepts of Variation Coefficients, Drift and Non-Linearity
1.2.4. Most Common Specific Parameters of the Main Types Catalog Selection and Limitations

1.3. The Junction Diode Circuits with Diodes Diodes for Special Applications 

1.3.1.  Introduction and Operation 
1.3.2.  Circuits with Diodes 
1.3.3. Diodes for Special Applications 
1.3.4. Zener Diode 

1.4.  The Bipolar Junction Transistor BJT and FET/MOSFET 

1.4.1. Transistor Basics 
1.4.2.  Polarization and Transistor Stabilization 
1.4.3.  Transistor Circuits and Applications 
1.4.4. Single-Stage Amplifiers 
1.4.5. Amplifier Types, Voltage, Current 
1.4.6.  Alternating Models 

1.5.  Basic Concepts of Amplifiers Circuits with Optimal Operational Amplifiers 

1.5.1.  Amplifier Types Voltage, Current, Transimpedance, and Transconductance 
1.5.2.  Typical Parameters: Input and Output Impedances, Direct and Inverse Transfer Functions
1.5.3.  Viewing as Quadripoles and Parameters 
1.5.4.  Amplifier Connection: Cascade, Series-Series, Series-Parallel, Parallel-Series, Parallel-Series and Parallel, Parallel 
1.5.5. Concept of Operational Amplifier General Characteristics. Use as a Comparator and as an Amplifier 
1.5.6. Inverting and Non-Inverting Amplifier Circuits Precision Trackers and Rectifiers Voltage Current Control 
1.5.7. Elements for Instrumentation and Operational Calculation: Adders, Subtractors, Differential Amplifiers, Integrators and Differentiators 
1.5.8. Stability and Feedback: Astables and Triggers 

1.6. Single-stage Amplifiers and Multi-stage Amplifiers 

1.6.1. General Concepts of Device Polarization 
1.6.2.  Basic Polarization Circuits and Techniques. Implementation for Bipolar and Field Effect Transistors Stability, Drift and Sensitivity 
1.6.3.  Basic Small-Signal Amplifier Configurations: Common Emitter-Source, Base-Gate, Collector-Drainer. Properties and Variants 
1.6.4.  Performance in the Face of Large Signal Fluctuations and Dynamic Range 
1.6.5.  Basic Analog Switches and their Properties 
1.6.6.  Effects of Frequency on Single-Stage Configurations: Case of Medium Frequencies and their Limits 
1.6.7.  Multi-stage Amplification with R-C and Direct Coupling Amplification, Frequency Range, Polarization and Dynamic Range Considerations 

1.7.  Basic Configurations in Integrated Analog Circuits 

1.7.1. Differential Input Configurations Bartlett's Theorem Polarization, Parameters and Measures 
1.7.2.  Functional Polarization Blocks: Current Mirrors and their Modifications Active Loads and Level Changers 
1.7.3.  Standard Input Configurations and their Properties: Single Transistor, Darlington Pairs and their Modifications, Cascode 
1.7.4.  Output Configurations 

1.8.  Active Filters 

1.8.1. General Aspects 
1.8.2.  Operational Filter Design 
1.8.3.  Low Pass Filters 
1.8.4.  High Pass Filters 
1.8.5.  Band Pass and Band Elimination Filters 
1.8.6.  Other Types of Active Filters 

1.9.  Analog-to-Digital Converters (A/D) 

1.9.1.  Introduction and Functionalities 
1.9.2.  Instrumental Systems 
1.9.3.  Converter Types 
1.9.4.  Converter Features 
1.9.5.  Data Processing 

1.10.  Sensors 

1.10.1. Primary Sensors 
1.10.2.  Resistive Sensors 
1.10.3.  Capacitive Sensors 
1.10.4.  Inductive and Electromagnetic Sensors 
1.10.5.  Digital Sensors 
1.10.6.  Signal Generating Sensors 
1.10.7.  Other Types of Sensors 

Module 2. Analogue and Digital Electronics 

2.1.  Introduction: Digital Concepts and Parameters 

2.1.1.  Analog and Digital Magnitudes 
2.1.2.  Binary Digits, Logic Levels and Digital Waveforms 
2.1.3.  Basic Logical Operations 
2.1.4.  Integrated Circuits 
2.1.5.  Introduction to Programmable Logic 
2.1.6.  Measuring Instruments 
2.1.7.  Decimal, Binary, Octal, Hexadecimal, BCD Numbers 
2.1.8.  Arithmetical Operations with Numbers 
2.1.9.  Error Detection and Correction Codes 
2.1.10.  Alphanumeric Codes 

2.2.  Logic Gates 

2.2.1.  Introduction 
2.2.2.  The Invertor 
2.2.3.  The AND Gate 
2.2.4.  The OR Gate 
2.2.5.  The NAND Gate 
2.2.6.  The NOR Gate 
2.2.7.  Exclusive OR and NOR Gates 
2.2.8.  Programmable Logic 
2.2.9.  Fixed Function Logic 

2.3.  Boolean Algebra 

2.3.1. Boolean Operations and Expressions 
2.3.2.  Boolean Algebra Laws and Rules 
2.3.3.  DeMorgan's Theorems 
2.3.4.  Boolean Analysis of Logic Circuits 
2.3.5.  Simplification Using Boolean Algebra 
2.3.6.  Standard Forms of Boolean Expressions 
2.3.7.  Boolean Expressions and Truth Tables 
2.3.8.  Karnaugh Maps 
2.3.9.  Minimization of a Sum of Products and Minimization of a Product of Sums 

2.4.  Basic Combinational Circuits 

2.4.1.  Basic Circuits 
2.4.2.  Combinational Logic Implementation 
2.4.3.  The Universal Property of NAND and NOR Gates 
2.4.4.  Combinational Logic with NAND and NOR Gates 
2.4.5.  Operation of Logic Circuits with Impulse Trains 
2.4.6.  Adders Basic Adders Binary Adders in Parallel Carry Adders 

2.4.7.  Comparators 
2.4.8.  Decoders 
2.4.9.  Coders 
2.4.10.  Code Converters 
2.4.11.  Multiplexers 
2.4.12.  Demultiplexers 
2.4.13.  Applications 

2.5.  Latches, Flip-Flops and Timers 

2.5.1. Basic Concepts 
2.5.2.  Latches 
2.5.3.  Flank Fired Flip-Flops 
2.5.4.  Operating Characteristics of Flip-Flops Type D Type J-K 

2.5.5.  Monostables 
2.5.6.  Aestables 
2.5.7.  The 555 Timer 
2.5.8.  Applications 

2.6.  Counters and Shift Registers 

2.6.1. Asynchronous Counter Operation 
2.6.2.  Synchronous Counter Operation Ascending Descending 

2.6.3.  Design of Synchronous Counters 
2.6.4.  Cascade Counters 
2.6.5.  Counter Decoding 
2.6.6.  Application of Counters 
2.6.7.  Basic Functions of the Shift Registers Displacement Registers with Serial Input and Parallel Output Shift Registers with Parallel Input and Serial Output Shift Registers with Parallel Input and Output Bidirectional Shift Registers 

2.6.8.  Counters Based on Shift Registers 
2.6.9.  Applications of Counter Registers 

2.7.  Memory Introduction to SW and Programmable Logic 

2.7.1.  Principles of Semiconductor Memory 
2.7.2.  RAM Memory 
2.7.3.  ROM Memory Read Only PROM EPROM 

2.7.4.  Flash Memory 
2.7.5.  Memory Expansion 
2.7.6.  Special Types of Memory FIFO LIFO 

2.7.7.  Optical and Magnetic Memory 
2.7.8.  Programmable Logic: SPLD and CPLD 
2.7.9.  Macrocells 
2.7.10. Programmable Logic: FPGA 
2.7.11. Programmable Logic Software 
2.7.12. Applications 

2.8.  Analog Electronics: Oscillators 

2.8.1. Oscillator Theory 
2.8.2.  Wien Bridge Oscillator 
2.8.3.  Other RC Oscillators 
2.8.4.  Colpitts Oscillator 
2.8.5.  Other LC Oscillators 
2.8.6.  Crystal Oscillator 
2.8.8.  555 Timer Aestable Operation Monostable Operation Circuits 

2.8.9.  BODE Diagrams Amplitude Phase Transference Functions 

2.9.  Power Electronics: Thyristors, Converters, Inverters 

2.9.1.  Introduction 
2.9.2.  Converter Concept 
2.9.3.  Converter Types 
2.9.4.  Parameters for Characterizing Converters Periodic Signal Time Domain Representation Frequency Domain Representation 

2.9.5.  Powered Semiconductors Ideal Element Diode Thyristor GTO (Gate Turn-off Thyristor) BJT (Bipolar Junction Transistor) MOSFET IGBT (Insulated Gate Bipolar Transistor) 

2.9.6.  AC/DC Converters Rectifiers Concept of Quadrant Uncontrolled Rectifiers Simple Half Wave Bridge Full Wave Bridge Controlled Rectifiers Simple Half Wave Bridge Full Wave Controlled Bridge DC/DC Converters DC/DC Converter Reducer Step-up DC/DC Converter DC/AC Converters Inverters Square Wave Inverter PWM Inverter AC/AC Converters Cycloconverters All/Nothing Control Phased Control 

2.10.  Electric Power Generation, Photovoltaic Installation Legislation 

2.10.1. Components of a Photovoltaic Solar Installation 
2.10.2.  Introduction to Solar Energy 
2.10.3.  Classification of Photovoltaic Solar Installations Autonomous Applications Applications Connected to the Grid 

2.10.4.  Elements of an FSI Solar Cell: Basic Characteristics The Solar Panel The Regulator Accumulators Types of Cells The Investor 

2.10.5.  Networked Applications Introduction Elements of a Grid-Connected Photovoltaic Solar Installation Design and Calculation of Grid-connected Photovoltaic Systems Design of a Solar Farm Design of Building-Integrated Installations Interaction of the Installation with the Electrical Grid Analysis of Potential Disturbances and Quality of Supply Measurement of Electrical Consumption Safety and Protection in the Installation 

Module 3. Random Signals and Linear Systems 

3.1.  Probability Theory 

3.1.1.  Concept of Probability Probability Margin 
3.1.2.  Conditional Probability and Independent Events 
3.1.3.  Theorem of Total Probability Bayes' Theorem 
3.1.4.  Compound Experiments Bernoulli Trials 

3.2.  Random Variables 

3.2.1.  Definition of a Random Variable 
3.2.2.  Probability Distributions 
3.2.3.  Main Distributions 
3.2.4.  Functions of Random Variables 
3.2.5.  Functions of Random Variables 
3.2.6.  Generator Functions 

3.3.  Random Vectors 

3.3.1.  Definition of Random Vector 
3.3.2.  Joint Distribution 
3.3.3.  Marginal Distributions 
3.3.4.  Conditional Distributions 
3.3.5.  Linear Relationship Between Two Variables 
3.3.6.  Multivariate Normal Distribution 

3.4.  Random Processes 

3.4.1.  Definition and Description of Random Process 
3.4.2.  Random Processes in Discrete Time 
3.4.3.  Random Processes in Continuous Time 
3.4.4.  Stationary Processes 
3.4.5.  Gaussianian Processes 
3.4.6.  Markovian Processes 

3.5.  Queuing Theory in Telecommunications 

3.5.1.  Introduction 
3.5.2.  Basic Concepts 
3.5.2.  Description of Models 
3.5.2.  Example of the Application of Queuing Theory in Telecommunications 

3.6.  Random Processes Temporary Characteristics 

3.6.1.  Concept of Random Process 
3.6.2.  Process Classification 
3.6.3.  Principles of Statistics 
3.6.4.  Stationarity and Independence 
3.6.5.  Temporary Averages 
3.6.6.  Ergodicity 

3.7.  Random Processes Spectrum Characteristics 

3.7.1.  Introduction 
3.7.2.  Power Density Spectrum 
3.7.3.  Properties of the Density Spectrum of Power 
3.7.4.  Relationships Between the Power Spectrum and the Autocorrelation 

3.8.  Signals and Systems. Properties 

3.8.1.  Introduction to Signals 
3.8.2.  Introduction to Systems 
3.8.3.  Basic Properties of Systems Linearity Invariance in Time Causality Stability Memory Invertibility 

3.9.  Linear Systems with Random Inputs 

3.9.1. Fundamentals of Linear Systems 
3.9.2.  Response of Linear Systems to Random Signals 
3.9.3.  Systems with Random Noise 
3.9.4.  Spectral Characteristics of the System Response 
3.9.5.  Bandwidth and the Temperature Equivalent of Noise 
3.9.6.  Noise Source Modeling 

3.10.  LTI Systems 

3.10.1.  Introduction 
3.10.2.  Discrete Time LTI Systems 
3.10.3.  Continuous Time LTI Systems 
3.10.4.  Properties of LTI Systems 
3.10.5.  Systems Described by Differential Equations 

Module 4. Computer Networks 

4.1.  Computer Networks on the Internet 

4.1.1.  Networks and Internet 
4.1.2.  Protocol Architecture 

4.2.  The Application Layer 

4.2.1.  Model and Protocols 
4.2.2.  FTP and SMTP Services 
4.2.3.  DNS Service 
4.2.4.  HTTP Operation Model 
4.2.5.  HTTP Message Formats 
4.2.6.  Interaction with Advanced Methods 

4.3.  The Transport Layer 

4.3.1.  Communication Between Processes 
4.3.2.  Connection-oriented Transportation: TCP and SCTP 

4.4.  The Network Layer 

4.4.1.  Circuit and Packet Switching 
4.4.2.  IP Protocol (v4 and v6) 
4.4.3.  Routing Algorithms 

4.5.  The Link Layer 

4.5.1.  Link Layer, Error Detection and Correction Techniques 
4.5.2.  Multiple Access Links and Protocols 
4.5.3.  Link Level Addressing 

4.6.  LAN Networks 

4.6.1.  Network Topologies 
4.6.2.  Network and Interconnection Elements 

4.7.  IP Addressing 

4.7.1.  IP Addressing and Subnetting 
4.7.2.  Overview: An HTTP Request 

4.8.  Wireless and Mobile Networks 

4.8.1.  2G, 3G and 4G Mobile Networks and Services 
4.8.2.  5G Networks 

4.9.  Network Security 

4.9.1. Fundamentals of Communications Security 
4.9.2.  Access Control 
4.9.3.  System Security 
4.9.4.  Fundamentals of Cryptography 
4.9.5.  Digital Signature 

4.10.  Internet Security Protocols 

4.10.1. IP Security and Virtual Private Networks (VPN) 
4.10.2.  Web Security with SSL/TLS 

Module 5. Digital Systems 

5.1.  Basic Concepts and Functional Organization of the Computer 

5.1.1.  Basic Concepts 
5.1.2.  Functional Structure of Computers 
5.1.3.  Concept of Machine Language 
5.1.4.  Basic Parameters for Measuring the Performance of a Computer 
5.1.5.  Conceptual Levels of Computer Description 
5.1.6.  Conclusions 

5.2.  Representation of Machine-Level Information 

5.2.1.  Introduction 
5.2.2.  Text Representation Código ASCII (American Standard Code for Information Interchange) Coding with Unicode 

5.2.3.  Sound Representation 
5.2.4.  Image Representation Bitmaps Vector Maps 

5.2.5.  Vector Maps 
5.2.6.  Representation of Numerical Data Integer Representation Representation of Real Numbers Rounding Special Situations 

5.2.7.  Conclusions 

5.3.  Diagram of Computer Operation 

5.3.1.  Introduction 
5.3.2.  Internal Processor Elements 
5.3.3.  Sequencing the Internal Workings of a Computer 
5.3.4.  Management of Control Instructions Management of Control Instructions Handling of Subroutine Call and Return Instructions 

5.3.5.  Interruptions 
5.3.6.  Conclusions 

5.4.  Description of a Computer at the Machine and Assembly Language Level 

5.4.1.  Introduction: RISC vs CISC Processors 
5.4.2.  A RISC Processor: CODE-2 CODE-2 Features Description of CODE-2 Machine Language Methodology for the execution of CODE-2 Machine Language Programs Description of CODE-2 Assembly Language 

5.4.3.  The CISC family: 32-bit Intel Processors (IA-32) Evolution of the Intel® Family of Processors Basic Structure of the 80×86 Processor Family Syntax, Instruction Format and Operand Types Basic Instruction Set for the 80×86 Processor Family Assembler Directives and Memory Location Reserve 

5.4.4.  Conclusions 

5.5.  Processor Organization and Design 

5.5.1.  Introduction to CODE-2 Processor Design 
5.5.2.  Control Signals for the CODE-2 Processor 
5.5.3.  Design of the Data Processing Unit 
5.5.4.  Control Unit Design Wired and Microprogrammed Control Units Cycle of the CODE-2 Control Unit Design of the CODE-2 Microprogrammed Control Unit 

5.5.5.  Conclusions 

5.6.  Inputs and Outputs: Buses 

5.6.1.  Input/Output Organization Input/Output Controllers Input/Output Port Routing I/O Transfer Techniques 

5.6.2.  Basic interfacing Structures 
5.6.3.  Buses 
5.6.4.  Internal Structure of a PC 

5.7.  Microcontrollers and PICs 

5.7.1.  Introduction 
5.7.2.  Basic Features of Microcontrollers 
5.7.3.  Basic Features of PICs 
5.7.4.  Differences Between Microcontrollers, PICs and Microprocessors 

5.8.  A/D Converters and Sensors 

5.8.1.  Signal Sampling and Reconstruction 
5.8.2.  A/D Converters 
5.8.3.  Sensors and Transducers 
5.8.4.  Basic Digital Signal Processing 
5.8.5.  Basic Circuits and Systems for A/D Conversion 

5.9.  Programming of a Microcontroller System 

5.9.1.  System Design and Electronic Configuration 
5.9.2.  Configuration of a Development Environment for Micro-Controlled Digital Systems Using Free Tools 
5.9.3.  Description of Microcontroller Language 
5.9.4.  Programming of Microcontroller Functions 
5.9.5.  Final Assembly of the System 

5.10.  Advanced Digital Systems: FPGAs and DSPs 

5.10.1.  Description of other Advanced Digital Systems 
5.10.2.  Basic Features of FPGAs 
5.10.3.  Basic Features of DSPs 
5.10.4.  Hardware Description Languages 

Module 6. Communications Theory 

6.1.  Introduction: Telecommunication Systems and Transmission Systems 

6.1.1. Introduction 
6.1.2.  Basic Concepts and History 
6.1.3.  Telecommunication Systems 
6.1.4.  Transmission Systems 

6.2.  Signal Characterization 

6.2.1.  Deterministic, Random Signal 
6.2.2.  Periodic and Non-Periodic Signal 
6.2.3.  Energy or Power Signal 
6.2.4.  Baseband and Passband Signal 
6.2.5.  Basic Parameters of a Signal Average Value Average Energy and Power Maximum Value and Efficiency Value Energy and Power Spectral Density Power Calculation in Logarithmic Units 

6.3.  Disturbances in Transmission Systems 

6.3.1.  Optimal Channel Transmission 
6.3.2.  Classification of Disturbances 
6.3.3.  Linear Distortion 
6.3.4.  Non-Linear Distortion 
6.3.5.  Dissonance and Interference 
6.3.6.  Noise Types of Noise Characterization 

6.3.7.  Narrow Passband Signals 

6.4.  Analog Communications Concepts 

6.4.1.  Introduction 
6.4.2.  General Concepts 
6.4.3.  Baseband Transmission Modulation and Demodulation Characterization Multiplexing 

6.4.4.  Mixers 
6.4.5.  Characterization 
6.4.6.  Type of Mixers 

6.5.  Analog Communications Linear Modulations 

6.5.1.  Basic Concepts 
6.5.2.  Amplitude Modulation (AM) Characterization Parameters Modulation/Demodulation 

6.5.3.  Double Band Lateral Modulation (DBL) Characterization Parameters Modulation/Demodulation 

6.5.4.  Single Side Band (SSB) Modulation Characterization Parameters Modulation/Demodulation 

6.5.5.  Vestigial Sideband Modulation (VSB) Characterization Parameters Modulation/Demodulation 

6.5.6.  Quadrature Amplitude Modulation (QAM) Characterization Parameters Modulation/Demodulation 

6.5.7.  Noise in Analog Modulations Approach Noise in DBL Noise in BLU Noise in AM 

6.6.  Analog Communications Angular Modulations 

6.6.1.  Phase and Frequency Modulation 
6.6.2.  Narrow Band Angular Modulation 
6.6.3.  Spectrum Calculation 
6.6.4.  Generation and Demodulation 
6.6.5.  Angular Demodulation with Noise 
6.6.6.  Noise in PM 
6.6.7.  Noise in FM 
6.6.8.  Comparison Between Analog Modulations 

6.7.  Digital Communications. Introduction. Transmission Models 

6.7.1.  Introduction 
6.7.2.  Fundamentals of Parameters 
6.7.3.  Advantages of Digital Systems 
6.7.4.  Limitations of Digital Systems 
6.7.5.  PCM Systems 
6.7.6.  Modulations in Digital Systems 
6.7.7.  Demodulations in Digital Systems 

6.8.  Digital Communications. Digital Base Band Transmission 

6.8.1.  Binary PAM Systems Characterization Signal Parameters Spectral Model 

6.8.2.  Basic Binary Sampling Receiver Bipolar NRZ Bipolar RZ Probability of Error 

6.8.3.  Optimal Binary Receiver Context Calculating the Probability of Error Filter Design for the Optimal Receiver SNR Calculation Loans Characterization 

6.8.4.  M-PAM Systems Parameters Constellations Optimum Receiver Bit Error Rate (BER) 

6.8.5.  Signal Vector Space 
6.8.6.  Constellation of a Digital Modulation 
6.8.7.  M-signal Receivers 

6.9.  Digital Communications Digital Bandpass Transmission Digital Modulations 

6.9.1.  Introduction 
6.9.2.  ASK Modulation Characterization Parameters Modulation/Demodulation 

6.9.3.  QAM Modulation Characterization Parameters Modulation/Demodulation 

6.9.4.  PSK Modulation Characterization Parameters Modulation/Demodulation 

6.9.5.  FSK Modulation Characterization Parameters Modulation/Demodulation 

6.9.6.  Other Digital Modulations 
6.9.7.  Comparison between Digital Modulations 

6.10.  Digital Communications. Comparative, IES, Eye Diagrams 

6.10.1.  Comparison of Digital Modulations Energy and Potency of Modulations Embedded Noise Protection Spectral Model Channel Coding Techniques Synchronization Signals SNR Symbol Error Probability 

6.10.2.  Limited Bandwidth Channels 
6.10.3.  Interference Between Symbols (IES) Characterization Limitations 

6.10.4.  Optimal Receiver in PAM without IES 
6.10.5.  Eye Diagrams 

Module 7. Switching Networks and Telecommunication Infrastructures 

7.1.  Introduction to Switching Networks 

7.1.1.  Switching Techniques 
7.1.2.  LAN Local Area Networks 
7.1.3.  Review of Topologies and Transmission Media 
7.1.4.  Basic Concepts of Transference 
7.1.5.  Methods of Accessing the Medium 
7.1.6.  Network Interconnection Equipment 

7.2. Switching Techniques and Switch Structure. ISDN and FR Networks 

7.2.1.  Switched Networks 
7.2.2.  Circuit-Switching Networks 
7.2.3.  RDSI 
7.2.4.  Packet-Switched Networks 
7.2.5.  FR 

7.3.  Traffic Parameters and Network Dimensioning 

7.3.1.  Fundamental Concepts of Traffic 
7.3.2.  Loss Systems 
7.3.3.  Queueing Systems 
7.3.4.  Examples of Traffic Modeling Systems 

7.4.  Quality of Service and Traffic Management Algorithms 

7.4.1.  Service Quality 
7.4.2.  Effects of Congestion 
7.4.3.  Congestion Control 
7.4.4.  Traffic Control 
7.4.5.  Traffic Management Algorithms 

7.5.  Access Networks: WAN Access Technologies 

7.5.1.  Wide Area Networks 
7.5.2.  WAN Access Technologies 
7.5.3.  xDSL Access 
7.5.4. FTTH Access 

7.6.  ATM: Asynchronous Transfer Mode 

7.6.1.  ATM Service 
7.6.2.  Protocol Architecture 
7.6.3.  Logical ATM Connections 
7.6.4.  ATM Cells 
7.6.5.  ATM Cell Transmission 
7.6.6.  Classes of ATM Services 

7.7.  MPLS: Multiprotocol Label Switching 

7.7.1.  Introduction to MPLS 
7.7.2.  MPLS Operation 
7.7.3.  Labels 
7.7.4.  VPNs 

7.8.  Project for the Implementation of a Telematic Network 

7.8.1.  Obtaining the information 
7.8.2.  Plan System Sizing Installation Site Plans and Schematics 

7.8.3.  Technical Design Specifications 
7.8.4.  Technical Design Specifications 

7.9.  Structured Cabling Case Study 

7.9.1.  Introduction 
7.9.2.  Structured Cabling Organizations and Standards 
7.9.3.  Mediums of Transmission 
7.9.4.  Structured Cabling 
7.9.5.  Physical Interface 
7.9.6.  Parts of Structured Cabling (Horizontal and Vertical) 
7.9.7.  Identification System 
7.9.8.  Case Study 

7.10.  Planning of Common Telecommunication Infrastructures 

7.10.1.  ICT Introduction 
7.10.2.  Enclosures and Conduits Outdoor Zone Common Zone Private Zone 

7.10.3.  ICT Distribution Networks 
7.10.4.  Technical Project 

Module 8. Mobile Communications Networks 

8.1.  Introduction to Mobile Communications Networks 

8.1.1.  Communications Networks 
8.1.2.  Classification of Communications Networks 
8.1.3.  The Radio Spectrum 
8.1.4.  Radio Telephone Systems 
8.1.5.  Cellular Technology 
8.1.6.  Evolution of Mobile Telephone Systems 

8.2.  Protocols and Architecture 

8.2.1.  Review of the Concept of Protocol 
8.2.2.  Review of the Concept of Communication Architecture 
8.2.3.  Review of the OSI Model 
8.2.4.  Review of the Architecture of TCP/IP Protocol 
8.2.5.  Structure of a Mobile Telephone Network 

8.3.  Principles of Mobile Communications 

8.3.1.  Radiation and Types of Antennas 
8.3.2.  Radiation and Antenna Types 
8.3.3.  Signal Propagation 
8.3.4.  Roaming and Handover 
8.3.5.  Multiple Access Techniques 
8.3.6.  Analog and Digital Systems 
8.3.7.  Portability 

8.4.  Review of GSM Networks: Technical Features, Architecture and Interfaces 

8.4.1.  GSM Systems 
8.4.2.  Technical Features of GSM 
8.4.3.  GSM Network Architecture 
8.4.4.  GSM Channel Structure 
8.4.5.  GSM Interfaces 

8.5.  Review of GSM and GPRS Protocols 

8.5.1.  Introduction 
8.5.2.  GSM Protocols 
8.5.3.  Evolution of GSM 
8.5.4.  GPRS 

8.6. UMTS System Technical Characteristics, Architecture and HSPA 

8.6.1.  Introduction 
8.6.2.  UMTS System 
8.6.3.  UMTS Technical Features 
8.6.4.  UMTS Network Architecture 
8.6.5.  HSPA 

8.7.  UMTS System Protocols, Interface and VoIP 

8.7.1. Introduction 
8.7.2.  UMTS Channel Structure 
8.7.3.  UMTS Protocols 
8.7.4.  UMTS Interfaces 
8.7.5.  VoIP and IMS 

8.8.  VoIP: Traffic Models for IP Telephony 

8.8.1.  VoIP Introduction 
8.8.2.  Protocols 
8.8.3.  VoIP Elements 
8.8.4.  Real Ttime VoIP Transport 
8.8.5.  Packaged Voice Traffic Models 

8.9.  LTE System. Technical Features and Architecture. CS Fallback 

8.9.1.  LTE System 
8.9.2.  Technical Features of LTE 
8.9.3.  LTE Network Architecture 
8.9.4.  LTE Channel Structure 
8.9.5.  LTE Calls: VoLGA, CS FB and VoLTE 

8.10.  LTE Systems: Interfaces, Protocols and Services 

8.10.1.  Introduction 
8.10.2.  LTE Interfaces 
8.10.3.  LTE Protocols 
8.10.4.  LTE Services 

Module 9. Radio Networks and Services 

9.1.  Basic Techniques for Radio Networks

9.1.1.  Introduction to Radio Networks 
9.1.2.  Basic Fundamentals 
9.1.3.  Multiple Access Communications (MAC) Techniques: Random Access (RA). MF-TDMA, CDMA, OFDMA 
9.1.4. Radio Link Optimization: Fundamentals of Logical Link Control (LLC) Techniques HARQ MIMO 

9.2.  The Radio-Electric Spectrum 

9.2.1.  Definition 
9.2.2.  Nomenclature of Frequency Bands According to ITU-R 
9.2.3.  Other Nomenclatures for Frequency Bands 
9.2.4.  Division of the Radio-electric Spectrum 
9.2.5.  Types of Electromagnetic Radiation 

9.3.  Radio Communications Systems and Services 

9.3.2.  Signal Conversion and Processing: Analog and Digital Modulations 
9.3.3.  Digital Signal Transmission 
9.3.4.  DAB, IBOC, DRM and DRM+ Digital Radio System 
9.3.5.  Radio Frequency Communication Networks 
9.3.6.  Configuration of Fixed Installations and Mobile Units 
9.3.7.  Structure of a Fixed and Mobile Radiofrequency Transmitting Center 
9.3.8.  Installation of Radio and TV Signal Transmission Systems 
9.3.9.  Verification of the Operation of Emission and Transmission Systems 
9.3.10. Maintenance of Transmission Systems 

9.4.  Multicast and End-to-End QoS 

9.4.1.  Introduction 
9.4.2.  IP Multicast in Radio Networks 
9.4.3.  Delay/Disruption Tolerant Networking (DTN). 6 
9.4.4.  E-to-E Quality of Service: Impact of Radio Networks on E-to-E QoS TCP on Radio Networks 

9.5.  Wireless Local Area Networks WLAN 

9.5.1.  Introduction to WLANs WLAN Principles How They Work Frequency Bands Security/Safety Applications Comparison between WLAN and wired LAN Health Effects of Radiation Standardization and Normalization of WLAN Technology Topology and Configurations Peer-to-Peer (Ad-Hoc) Configuration Configuration in Access Point Mode Other Configurations: Network Interconnection 

9.5.2.  The IEEE 802.11 Standard - WI-FI Architecture IEEE 802.11 Layers The Physical Layer The Link Layer (MAC) Basic WLAN Operation Assignment of the Radioelectric Spectrum IEEE 802.11 Variants 

9.5.3.  The HiperLAN Standard Reference Model HyperLAN/1 HyperLAN/2 Comparison of HiperLAN with 802.11a 

9.6.  Wireless Metropolitan Area Networks (WMAN) and Wireless Wide Area Networks (WWAN) 

9.6.1.  Introduction to WMAN. Features 
9.6.2.  WiMAX Features and Diagram 
9.6.3.  Wireless Wide Area Networks (WWAN) Introduction 
9.6.4.  Cellular Phone and Satellite Network 

9.7.  Wireless Personal Area Networks WPAN 

9.7.1. Evolution and Technologies 
9.7.2.  Bluetooth 
9.7.3.  Personal and Sensor Networks 
9.7.4.  Profiles and Applications 

9.8.  Terrestrial Radio Access Networks 

9.8.1.  Evolution of Terrestrial Radio Access: WiMAX, 3GPP 
9.8.2.  4th Generation Access Introduction 
9.8.3.  Radio Resources and Capacity 
9.8.4.  LTE Radio Carriers. MAC, RLC and RRC 

9.9.  Satellite Communications 

9.9.1.  Introduction 
9.9.2.  History of Satellite Communications 
9.9.3.  Structure of a Satellite Communication System The Special Segment The Control Center The Ground Segment 

9.9.4.  Types of Satellite By Purpose According to its Orbit 

9.9.5.  Frequency Bands 

9.10.  Planning and Regulation of Radio Systems and Services 

9.10.1. Terminology and Technical Characteristics 
9.10.2.  Frequencies 
9.10.3.  Coordination, Notification and Registration of Frequency Assignments and Plan Modifications 
9.10.4.  Interference 
9.10.5.  Administrative Provisions 
9.10.6.  Provisions Relating to Services and Stations 

Module 10. Systems Engineering and Network Services 

10.1.  Introduction to Systems and Network Services Engineering 

10.1.1. Concept of the IT System and Computer Engineering 
10.1.2.  The Software and its Features Software Features 

10.1.3.  Software Evolution The Dawn of Software Development The Software Crisis Software Engineering The Software Tragedy Software Updates 

10.1.4.  Software Myths 
10.1.5.  New Software Challenges 
10.1.6.  Software Engineering Professional Ethics 
10.1.7.  SWEBOK The Software Engineering Body of Knowledge 

10.2.  The Development Process 

10.2.1.  Problem Solving Process 
10.2.2.  The Software Development Process 
10.2.3.  Software Process vs. Life Cycle 
10.2.4.  Life Cycles (Traditional) Process Models Cascade Model Models Based on Prototypes Incremental Development Model Rapid Application Development (RAD) Spiral Model Unified Development Process or Rational Unified Process (RUP) Component-based Software Development 

10.2.5.  The Agile Manifesto Agile Methods Extreme Programming (XP) Scrum Feature Driven Development (FDD) 

10.2.6.  Standards on Software Process 
10.2.7.  Definition of a Software Process 
10.2.8.  The Maturity of the Software Process 

10.3.  Agile Project Planning and Management 

10.3.1.  What is Agile? History of Agile Agile Manifesto 

10.3.2.  Agile Basics The Agile Mindset Alignment to Agile Product Development Life Cycle The "Iron Triangle” Working with Uncertainty and Volatility Defined Processes and Empirical Processes The Myths about Agile 

10.3.3.  The Agile Environment Operating Model Agile Roles Agile Techniques Agile Practices 

10.3.4.  Agile Working Frameworks eXtreme Programming (XP) Scrum Dynamic Systems Development Method (DSDM) Agile Project Management Kanban Lean Software Development Lean Start-up Scaled Agile Framework (SAFe) 

10.4.  Configuration Management and Collective Repositories 

10.4.1.  Software Configuration Management Basics What is Software Configuration Management? Software Configuration and Software Configuration Elements Baselines Versions, Revisions, Variants and Releases 

10.4.2.  Configuration Management Activities Configuration Identification Control of Changes in Configuration Generation of Status Reports Configuration Audit 

10.4.3.  The Configuration Management Plan 
10.4.4.  Configuration Management Tools 
10.4.5.  Configuration Management in the Metrics v.3 Methodology 
10.4.6.  Configuration Management in SWEBOK 

10.5.  Systems and Services Testing 

10.5.1.  General Testing Concepts Verify and Validate Definition of Testing Principles of Testing 

10.5.2.  Testing Approaches White Box Testing Black Box Testing 

10.5.3.  Static Testing or Reviews Formal Technical Reviews Walkthroughs Code Inspections 

10.5.4.  Dynamic Tests Unit or Unitary Tests Integration Tests System Tests Acceptance Tests Regression Tests 

10.5.5.  Alpha Tests and Beta Tests 
10.5.6.  The Test Process 
10.5.7.  Error, Defect and Failure 
10.5.8.  Automatic Testing Tools Junit LoadRunner 

10.6. Modeling and Design of Network Architectures 

10.6.1.  Introduction 
10.6.2.  System Features Description of Systems Description and Features of Services Operability Requirements 

10.6.3.  Requirements Analysis User Requirements Application Requirements Network Requirements 

10.6.4.  Design of Network Architectures Benchmark Architecture and Components Architectural Models System and Network Architectures 

10.7.  Modeling and Design of Distributed Systems 

10.7.1.  Introduction 
10.7.2.  Addressing and Routing Architecture Addressing Strategy Routing Strategy Design Considerations 

10.7.3.  Network Design Concepts 
10.7.4.  Design Process 

10.8.  Platforms and Roll Out Environments 

10.8.1. Introduction 
10.8.2.  Distributed Computer Systems Basic Concepts Computational Models Advantages, Disadvantages and Challenges Basic Concepts of Operating Systems 

10.8.3.  Virtualized Network Roll Outs The Need for Change Transformation of Networks: from " All-IP " to the cloud Cloud Network Roll Out 

10.8.4.  Example: Network Architecture in Azure 

10.9.  E2E Performance: Delay and Bandwidth QoS 

10.9.1.  Introduction 
10.9.2.  Performance Analysis 
10.9.3.  QoS 
10.9.4.  Traffic Prioritization and Management 
10.9.5.  Service Level Agreements 
10.9.6.  Design Considerations Performance Assessment Relationships and Interactions 

10.10.  Network Automation and Optimization 

10.10.1.  Introduction 
10.10.2.  Network Management Management and Configuration Protocols Network Management Architectures 

10.10.3.  Orchestration and Automation ONAP Architecture Controllers and Functions Politics Network Inventory 

10.10.4.  Optimization 

Take a step further in your professional career and opt for a degree that will help you achieve success in the area of Telecommunications in a proven way. You will have no limits”