Introduction to the Program

Update your knowledge and improve your healthcare practice in the approach to patients with pathologies such as Epilepsy, Neuromuscular Disorders, Neurodegenerative Diseases or Sleep Disorders” 

##IMAGE##

Neurophysiological diagnosis has undergone remarkable evolution in recent years thanks to the inclusion of new technologies and the application of multiple and varied diagnostic techniques. All of them, with a wide spectrum of indications, becoming the fundamental axis of numerous diagnostic protocols that are increasingly used by interdisciplinary teams. For this reason, the potential of this specialty is now higher than ever. 

That is why it is essential for specialists to possess up-to-date knowledge that integrates the latest scientific findings in the different standards, guidelines and national and international consensus, and that homogenize criteria, maintaining high quality standards in the different sections of this extensive specialty. 

It is in this context that this Master's Degree arises, which was created with the aim of meeting these needs. With a highly practical approach, known techniques will be reviewed and updated, while several new and promising fields of application will be explored. To achieve this, TECH provides students with a teaching staff composed of a group of experts who will contribute their knowledge, practical tips and examples to support the learning process. All of this is accompanied by complementary material that will enrich the learning experience while making it more effective. 

In addition to an exhaustive review of the latest guidelines and consensus, topics of great practical utility will be included, such as the use of different neurophysiological techniques in critical pediatric patients or intraoperative neurophysiological monitoring, which is increasingly requested by specialists during surgical interventions. Moreover, the program will not leave out the study of new technologies and mathematics used for signal analysis. 

Given the 100% online format, students will be guided through a complete and enriching path on which they will learn all the latest developments in the profession to bring to their daily practice the most pioneering techniques in neurophysiological diagnosis. All this without giving up their personal activities, in a comfortable way and with the reliability of the most reputable academic method in the online teaching market, specialists will be able to get up to date in Neurophysiology, increasing their opportunities for personal and professional growth. 

Incorporate the latest developments in Update on Neurophysiological Diagnosis and Treatment into your healthcare practice and place yourself at the forefront of your profession only by studying at TECH”

This Master's Degree in Update on Neurophysiological Diagnosis and Treatment contains the most complete and up-to-date scientific program on the market. Its most notable features are: 

  • Practical cases studies are presented by medical experts in neurophysiology 
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where the self-assessment process can be carried out to improve learning 
  • Its special emphasis on innovative methodologies 
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

Through a unique educational methodology and a 100% online format, you will be able to get up to speed in the new clinical diagnostic methods” 

The program’s teaching staff includes professionals from the sector who contribute their work experience to this training program, as well as renowned specialists from leading societies and prestigious universities. 

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive specialization programmed to learn in real situations. 

This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise throughout the program. For this purpose, the student will be assisted by an innovative interactive video system created by renowned and experienced experts. 

What is the best and most reliable way to learn and update your knowledge? Without a doubt, the answer is online learning, and you have the best method here at TECH"

##IMAGE##

Thanks to this Master's Degree, you will develop a critical spirit when assessing results, always integrated within a clinical context"

Syllabus

This Master's Degree has been structured so that professionals can update their knowledge in Neurophysiology over the course of 10 academic modules and 12 months of work, adapted to the pace and needs of practicing physicians. All this in addition to the advantage of offering a direct qualification, i.e., students will not need to do any final work to graduate as an expert in this specialty. A luxury that only TECH, the largest Online University, could offer.

##IMAGE##

What is ideal education, adapted to current times? One that allows physicians to graduate directly, at their own pace and without the need for a final paper or project” 

Module 1. Brain Electrogenesis: Recording and Analysis Techniques Electroencephalogram Development 

1.1. Biophysical Fundamentals of EEG Recording 

1.1.1. Context 
1.1.2. Brief Mathematical Revision 

1.1.2.1. Vector Analysis 
1.1.2.2. Determinants and Matrices 

1.1.3. Brief Introduction to Electromagnetism 

1.1.3.1. The Concepts of Field and Potential 
1.1.3.2. Maxwell's Equations 

1.1.4. Cerebral Electrical Fields 

1.2. Technical and Analytical Fundamentals of EEG 

1.2.1. Context 
1.2.2. Analogue-to-Digital Conversion (ADC) 
1.2.3. Filters 
1.2.4. Digital Signal Analysis

1.2.4.1. Spectral Analysis 
1.2.4.2. Wavelet Analysis 

1.2.5. Determining Interaction between Two Signals 

1.3. Protocols and Standards for EEG and Video-EEG, Triggering Maneuvers: Artifact Detection 

1.3.1. EEG and Video-EEG 

1.3.1.1. Recording Conditions 
1.3.1.2. Electrodes 
1.3.1.3. By-Passes and Assemblies 
1.3.1.4. Records 

1.3.2. Video-EEG 

1.3.2.1. Technical Aspects 
1.3.2.2. Indications 

1.3.3. Routine Stimulation Maneuvers 

1.3.3.1. Ocular Opening and Closure 
1.3.3.2. Pulmonary Hyperventilation 
1.3.3.3. Intermittent Luminous Stimulation 

1.3.4. Other Non-Standard Activation Methods

1.3.4.1. Other Visual Activation Procedures 
1.3.4.2. Activation by Sleep 
1.3.4.3. Other Activation Methods 

1.3.5. Introduction to Artefacts and Their Relevance 

1.3.5.1. General Detection Principles
1.3.5.2. Common Artifacts 
1.3.5.3. Artifact Removal 

1.3.6. Key Concepts 

1.4. Normal Adult EEG 

1.4.1. Normal Wakefulness EEG 

1.4.1.1. Alpha Rhythm
1.4.1.2. Beta Rhythm 
1.4.1.3. Mu Rhythm 
1.4.1.4. Lambda Waves 
1.4.1.5. Low-Voltage Work 
1.4.1.6. Theta Activity 

1.4.2. Normal Sleep EEG 

1.4.2.1. NREM Sleep 
1.4.2.2. REM Sleep 

1.4.3. Normality Variants/Patterns of Uncertain Significance 

1.5. Child EEG, Development and Maturation I

1.5.1. Technical Considerations 
1.5.2. Age-Specific EEG Characteristics

1.5.2.1. Continuity 
1.5.2.2. Bilateral Hemispheric Synchrony 
1.5.2.3. Voltage 
1.5.2.4. Variability 
1.5.2.5. Reactivity 
1.5.2.6. Age-Specific Waves 

1.5.2.6.1. Beta-Delta Complex 
1.5.2.6.2. Temporary Theta and Alpha Wave Bursts 
1.5.2.6.3. Frontal Sharp Waves 

1.5.3. EEG in Wakefulness and Sleep 

1.5.3.1. Wakefulness 
1.5.3.2. NREM Sleep 
1.5.3.3. REM Sleep 
1.5.3.4. Indeterminate and Transitional Sleep 
1.5.3.5. Stimuli Reactivity 

1.5.4. Special Patterns/Normality Variants 

1.5.4.1. Bifrontal Delta Activity 
1.5.4.2. Temporal Sharp Waves 

1.5.5. Key Concepts 

1.6. Child EEG, Development and Maturation II: Physiological EEG from Infancy to Adolescence 

1.6.1. Technical Considerations 
1.6.2. EEG in Infants from 2 to 12 Months Old 
1.6.3. EEG in Early Infancy from 12 to 36 Months Old 
1.6.4. EEG in Preschool Age from 3 to 5 Years Old 
1.6.5. EEG in Older Children from 6 to 12 Years Old 
1.6.6. EEG in Adolescents from 13 to 20 Years Old 
1.6.7. Key Concepts 

1.7. Slow Abnormalities: Description and Significance

1.7.1. Focal Slow Abnormalities 

1.7.1.1. Summary 
1.7.1.2. Pattern Description 
1.7.1.3. Clinical Significance of Slow Focal Waves 
1.7.1.4. Disorders Responsible for Slow Focal Waves

1.7.2. Asynchronous Generalized Slow Abnormalities

1.7.2.1. Summary 
1.7.2.2. Pattern Description 
1.7.2.3. Clinical Significance of Asynchronous Generalized Waves 
1.7.2.4. Disorders Responsible for Asynchronous Generalized Waves

1.7.3. Synchronous Generalized Slow Waves

 1.7.3.1. Summary 
1.7.3.2. Pattern Description 
1.7.3.3. Clinical Significance of Asynchronous Generalized Waves 
1.7.3.4. Disorders Responsible for Asynchronous Generalized Waves

 1.7.4. Conclusions 

1.8. Focal and Generalized Intercritical Epileptiform Abnormalities 

1.8.1. General Considerations 
1.8.2. Identification Criteria 
1.8.3. Localization Criteria 
1.8.4. Intercritical Epileptiform Abnormalities and Their Interpretation

1.8.4.1. Spikes and Sharp Waves
1.8.4.2. Benign Focal Epileptiform Discharges 
1.8.4.3. Wave-Spike 

1.8.4.3.1. Slow Wave-Spike
1.8.4.3.2. 3 Hz Wave-Spike 
1.8.4.3.3. Polyspike or Polyspike-Wave 

1.8.4.4. Hypsarrhythmia 
1.8.4.5. Focal Intercritical Abnormalities in Generalized Epilepsies 

1.8.5. Summary/Key points 

1.9.  Ictal EEG: Seizure Types and Electroclinical Correlates 

1.9.1. Generalized Onset Seizures 

1.9.1.1. Motor Onset
1.9.1.2. Non-Motor Onset 

1.9.2. Focal Onset Seizures 

1.9.2.1. State of Consciousness 
1.9.2.2. Motor/Non-Motor Onset 
1.9.2.3. Focal Presenting Progression to Bilateral Tonic-Clonic 
1.9.2.4. Hemispheric Lateralization 
1.9.2.5. Lobar Localization 

1.9.3. Unknown Onset Seizures 

1.9.3.1. Motor/Non-Motor 
1.9.3.2. Not Classified 

1.9.4. Key Concepts 

1.10. Quantified EEG 

1.10.1. Historical Clinical Practice Use of Quantified EEG 
1.10.2. Quantified EEG Application Methods 

1.10.2.1. Types of Quantified EEG

1.10.2.1.1. Power Spectrum 
1.10.2.1.2. Synchronization Measurements 

1.10.3. Quantified EEG in Current Clinical Practice 

1.10.3.1. Encephalopathies Classification 
1.10.3.2. Epileptic seizures Detection 
1.10.3.3. Advantages of Continuous EEG Monitoring 

1.10.4. Key Concepts 

Module 2. Electroencephalogram (EEG) in Electroclinical Syndromes and Neurocritical Patients: Neurophysiological Precision Techniques in the Diagnosis and and Treatment of Epilepsy

2.1. Electroclinical syndromes in Neonates and Infants 

2.1.1. Neonatal Period 

2.1.1.1. Ohtahara Syndrome
2.1.1.2. Early Myoclonic Encephalopathy 
2.1.1.3. Neonatal Self-Limited Seizures: Self-Limited Familial Neonatal Epilepsy 
2.1.1.4. Neonatal-Onset Structural Focal Epilepsy 

2.1.2. Infant Period 

2.1.2.1. West Syndrome 
2.1.2.2. Dravet Syndrome 
2.1.2.3. Febrile Seizures Plus and Genetic Epilepsy with Febrile Seizures Plus 
2.1.2.4. Myoclonic Epilepsy in Infants 
2.1.2.5. Familial and Non-Familial Self-Limited Infant Epilepsy 
2.1.2.6. Infant Epilepsy with Migratory Focal Seizures 
2.1.2.7. Myoclonic Status Myoclonicus in Non-Progressive Encephalopathies 
2.1.2.8. Epilepsy in Chromosomal Disorders 

2.2. Electroclinical Syndromes in Childhood 

2.2.1. Role of EEG and Video-EEG in the Diagnosis and Classification of Epileptic Syndromes with Onset between 3 and 12 Years of Age 

2.2.1.1. Background and Current Clinical Practice 
2.2.1.2. Methodological Design and Recording Protocols
2.2.1.3. Interpretation, Diagnostic Value of Findings, Reporting 
2.2.1.4. Integration of EEG in Syndrome-Ethiology Taxonomy 

2.2.2. Genetic Generalized Epilepsies (Idiopathic, GGE) 

2.2.2.1. Typical EEG Characteristics of GGE and Methodological Principles 
2.2.2.2. Infant Absence Epilepsy 
2.2.2.3. Juvenile Absence Epilepsy 
2.2.2.4. Other GGE Phenotypes (3-12 Years Old) 
2.2.2.5. Epilepsies with Reflex Seizures 

2.2.3. Genetic Focal Epilepsies (Idiopathic, GFE) 

2.2.3.1. Typical EEG Characteristics of GFE and Methodological Principles 
2.2.3.2. Idiopathic Focal Epilepsy with Centro-Temporal Spikes 
2.2.3.3. Panayiotopoulos Syndrome 
2.2.3.4. Other GFE Phenotypes (3-12 Years Old) 

2.2.4. Non-Idiopathic Focal Epilepsies (FE): Lobar Syndromes 

2.2.4.1. Typical EEG Characteristics of EF and Methodological Principles 
2.2.4.2. Frontal Lobe Epilepsy 
2.2.4.3. Temporal Lobe Epilepsy 
2.2.4.4. Posterior Cortex Epilepsy 
2.2.4.5. Other Localizations (Insula, Cingulate, Hemispheric Lesions) 

2.2.5. Epileptic Encephalopathies (EE) and Related Syndromes (3-12 Years Old) 

2.2.5.1. Typical EEG Characteristics of EE and Methodological Principles 
2.2.5.2. Lennox-Gastaut Syndrome 
2.2.5.3. Encephalopathy with Electrical Sleep Electrical Status Sickness (ESES) and Landau-Kleffner Syndrome 
2.2.5.4. Epilepsy with Myoclonus-Atonic Seizures (Doose Syndrome) 
2.2.5.5. Epilepsy with Myoclonic Absences 

2.3. Electroclinical Syndromes in Adolescents and Adults 

2.3.1. Role of EEG in the Diagnosis of Epileptic Syndromes in Adolescents and Adults 
2.3.2. Genetic Generalized Epilepsy in Adolescents and Adults 

2.3.2.1. Juvenile Myoclonic Epilepsy 
2.3.2.2. Juvenile Absence Epilepsy 
2.3.2.3. Epilepsy with Generalized Tonic-Clonic Seizures 
2.3.2.4. Other EGI Phenotypes in Adolescents and Adults 

2.3.3. Non-Idiopathic Focal Epilepsy in Adolescents and Adults: Lobar Syndromes 

2.3.3.1. Frontal Lobe 
2.3.3.2. Temporal Lobe 
2.3.3.3. Other Locations 

2.3.4. Other Non-Age-Specific Epileptic Syndromes 
2.3.5. Epilepsy in the Elderly 

2.4. ICU EEG Nomenclature 

2.4.1.  Minimum Requirements for Reporting in Neurocritical Patients 
2.4.2. Background Tracing 
2.4.3. Sporadic Onset Epileptiform Discharges 
2.4.4. Rhythmic and/or Periodic Patterns 
2.4.5. Electrical and Electro-Clinical Seizures 
2.4.6. Brief Potentially Ictal Rhythmic Discharges (BIRDs) 
2.4.7. Ictal-Interictal Continuum 
2.4.8. Other Terminology 

2.5. EEG in Altered Level of Consciousness, Coma, and Brain Death 

2.5.1. EEG Findings in Encephalopathy 
2.5.2. EEG Findings in Coma 
2.5.3. Brain Electrical Inactivity 
2.5.4. Evoked Potentials in Conjunction with EEG in Patients with Altered Level of Consciousness 

2.6. Status Epilepticus I

2.6.1. Context 

2.6.1.1. “Time is the Brain” 
2.6.1.2. Pathophysiology 

2.6.2. Definition and Timing 
2.6.3. Classification. Diagnostic Axes 

2.6.3.1. Axis I: Semiology 
2.6.3.2. Axis II: Etiology 
2.6.3.3. Axis III: EEG Correlate 
2.6.3.4. Axis IV: Age 

2.7. Status Epilepticus II

2.7.1. Non-Convulsive Status Epilepticus: Definition 
2.7.2. Semiology 

2.7.2.1. Non-Convulsive Status in Comatose Patients 
2.7.2.2. Non-Convulsive Status in Non-Comatose Patients 

2.7.2.2.1. Dyscognitive Status: Altered Level of Consciousness (or Dialeptic) and Aphasic 
2.7.2.2.2. Continuous Aura 
2.7.2.2.3. Autonomic Status 

2.7.3. EEG Criteria to Determine Non-Convulsive Status (Salzburg Criteria) 

2.8. Continuous EEG/Video-EEG Monitoring in the ICU 

2.8.1. Usefulness and Conditions 
2.8.2. Recommended Indications and Duration 

2.8.2.1. Adult and Pediatric Population 
2.8.2.2. Neonates 

2.8.3. Clinical Tools 
2.8.4. New Devices 

2.9. Epilepsy Surgery 

2.9.1. Preoperative Video-EEG 

2.9.1.1. Superficial 
2.9.1.2. Invasive 
2.9.1.3. Semi-Invasive 

2.9.2. Intraoperative Monitoring

2.10. High-Density Electroencephalogram: Generator Localization and Source Analysis 

2.10.1. Signal Acquisition 

2.10.1.1. General Aspects 
2.10.1.2. Type, Localization and Number of Electrodes 
2.10.1.3. The Importance of References 

2.10.2. Digitalizing Electrode Localization 
2.10.3. Debugging, Artifacts and Signal Cleaning 
2.10.4. Blind Source Separation 
2.10.5. Brain Dipoles 
2.10.6. Brain Maps 

2.10.6.1. Adaptive Spatial Filters 

2.10.7. Skull and Brain Modeling 

2.10.7.1. Spherical Models 
2.10.7.2. Surface Element Model 

2.10.8. Finite Element Model 
2.10.9. Generator Localization: Inverse Problem 

2.10.9.1. Single Current Dipole Model 

2.10.10. Imaging Methods

Module 3. Evoked Potentials

3.1. Fundamentals of Evoked Potentials 

3.1.1. Fundamental Concepts 
3.1.2. Types of Evoked Potentials 
3.1.3. Techniques and Requirements 
3.1.4. Clinical Applications 

3.2. Neurophysiological Study of the Eye and the Visual Pathway I

3.2.1.  Electroretinogram 

3.2.1.1. Flash ERG
3.2.1.2. Pattern ERG (Checkerboard) 
3.2.1.3. Ganzfeld ERG 
3.2.1.4. Multifocal ERG 

3.2.2. Electrooculogram 

3.3. Neurophysiological Study of the Eye and the Visual Pathway II

3.3.1. Visual Evoked Potentials 

3.3.1.1. Pattern Stimulation 

3.3.1.1.1. Complete Field Study 
3.3.1.1.2. Hemifield Studies: Quadrants 

3.3.1.2. LED-Glasses Stimulation 
3.3.1.3. Other techniques: Multifocal PEV 

3.4. Auditory Pathway 

3.4.1. Anatomophysiology of the Auditory Pathways 
3.4.2. Brainstem Auditory Evoked Potentials

3.4.2.1. Short Latency 
3.4.2.2. Medium Latency 
3.4.2.3. Long Latency 

3.4.3. Other techniques 

3.4.3.1. Otoacoustic Emissions 

3.4.3.1.1. Transient Evoked 
3.4.3.1.2. Distortion Products 

3.4.3.2. Electrocochleography 
3.4.3.3. Steady State Auditory Evoked Potentials 

3.4.3.3.1. PEAee 
3.4.3.3.2. PEAee-MF 

3.4.3.4. Audiometry 

3.4.3.4.1. Pure Tone Audiometry: Liminal Tonal Audiometry 
3.4.3.4.2. Bone Conduction Audiometry 

3.5. Vestibular System 

3.5.1. Vestibular System and the Visual and Proprioceptive Systems 
3.5.2. Nystagmus 

3.5.2.1. Vestibular Tests 

3.5.2.1.1. Videonystagmography (VNG) 

3.5.2.1.1.1. Oculomotor System Tests 
3.5.2.1.1.2. Postural and Positional Tests 
3.5.2.1.1.3. Caloric Tests 
3.5.2.1.1.4. Additional VNG Tests 

3.5.3. Peripheral and Central Vertigo 

3.5.3.1. Diagnostic tests 

3.5.3.1.1. Electronystagmography 
3.5.3.1.2. vHIT 
3.5.3.1.3. Posturography 
3.5.3.1.4. Vestibular Myogenic Evoked Potentials

3.5.3.2. HINTS Protocol 
3.5.3.3. Benign Paroxysmal Positional Vertigo (BPPV) 

3.6. Somatosensory Potentials 

3.6.1. Anatomophysiological Recall 
3.6.2. Technique: Practical Procedures 
3.6.3. Interpretation 
3.6.4. Clinical Applications 
3.6.5. Dermatomal Somatosensory Evoked Potentials 

3.7. Motor Evoked Potentials 

3.7.1. Electric Stimulation 
3.7.2. Transcranial Magnetic Stimulation 
3.7.3. Diagnostic Applications 

3.8. Evoked Potentials in the ICU 

3.8.1. Introduction
3.8.2. Most Used Potentials in the ICU

3.8.2.1. Somatosensory Evoked Potentials (SSEP)
3.8.2.2. Truncal Auditory Evoked Potentials (TAEP)
3.8.2.3. Visual Evoked Potentials (VEP)
3.8.2.4. Long-Latency Evoked Potentials-Mismatch Negativity

3.8.3. Assessing the Use of EPs in Coma Patients or Suffering Altered Consciousness in the ICU
3.8.4. Evoked Potentials in the ICU

3.8.4.1. Olfactory Evoked Potentials
3.8.4.2. Cardiac Beat Evoked Potentials
3.8.4.3. Others

3.9. Cognitive Potentials

3.9.1. Definition of Cognitive Potentials 
3.9.2. Types of Cognitive Potentials: General Overview 
3.9.3. Measurement Parameters for Cognitive Potentials 
3.9.4. Mismatch Negativity: Introduction Recording and Evaluation First Clinical Uses 
3.9.5. P300. Introduction Recording and Evaluation Generators Clinical Applications 
3.9.6. N400. Introduction Recording and Evaluation Generators Clinical Applications 
3.9.7. Other Cognitive Potentials in Research 
3.9.8. Conclusions 

3.10. Evoked Potentials in Pediatric Patients

Module 4. Neurophysiological Techniques in the Diagnosis of Neuromuscular Diseases 

4.1. Anatomy and Physiology of the Peripheral Nervous System 
4.2. Sensory and Motor Nerve Conduction Studies 
4.3. Reflexology and Late Responses 

4.3.1. F Wave 
4.3.2. A Wave 
4.3.3. H Reflex 
4.3.4. T Reflex 

4.4. Technical and Quality Considerations in Neuromuscular Electrodiagnosis: Procedural Errors Precautions 
4.5. Neurophysiological Assessment of Neuromuscular Junction Function 

4.5.1. Repetitive Nerve Stimulation 
4.5.2. Jitter Study Using Single-Fiber Needles and Concentric Needles 

4.5.2.1. Voluntary Contraction 
4.5.2.2. Axonal Stimulation 

4.6. Principles of Electromyography: Electromyographic Response in Normal Motor Units Insertion Activity Motor Plate Activity Motor Unit Potential Pathological Muscle Activity 
4.7. Techniques for Quantitative Estimation of Motor Units 

4.7.1. MUNE 
4.7.2. MUNIX 
4.7.3. MUSIX 

4.8. Neurophysiological Study of the Facial and Trigeminal Nerves 
4.9. Neurophysiological Evaluation of the Respiratory System 

4.9.1. Laryngeal Nerves and Muscles 
4.9.2. Phrenic Nerve and Diaphragm Muscle 

4.10. Neuromuscular Ultrasound 

4.10.1. Basic Neural Semiology and Physical Basis Adapted to Ultrasound Study 
4.10.2. Normal Anatomy and Ultrasound Correlation 

4.10.2.1. Upper Limbs 
4.10.2.2. Lower Extremities 

4.10.3. Ultrasound Scanning: Peripheral Nerves 

4.10.3.1. Upper Limbs 
4.10.3.2. Lower Extremities 

4.10.4. Ultrasound Diagnosis: Focal Neuropathies 

4.10.4.1. Upper Limbs 
4.10.4.2. Lower Extremities 

4.10.5. Advanced Imaging 
4.10.6. Percutaneous Interventional Techniques 

Module 5. Electroneuromyography (ENMG) Protocols in the Diagnosis ofNeuromuscular Diseases 

5.1. Neurophysiological Study in Pathology of the Cervical Roots and Brachial Plexus 
5.2.  Neurophysiological Study in Pathology of Roots and Lumbosacral Plexus 
5.3. Neurophysiological Examination of Upper Limb Nerve Pathology Mononeuropathies and Focal Lesions 

5.3.1. Median Nerve 
5.3.2. Ulnar Nerve 
5.3.3. Radial Nerve 
5.3.4. Shoulder Girdle Nerves 
5.3.5. Others 

5.4. Neurophysiological Examination of Lower Limb Nerve Pathology Mononeuropathies and Focal Lesions 

5.4.1. Sciatic (Ischiatic) Nerve 
5.4.2. Femoral Nerve 
5.4.3. Obturator Nerve 
5.4.4. Others 

5.5. Neurophysiological Examination of Polyneuropathies 
5.6. Neurophysiological Examination of Myopathies Muscular Dystrophies, Myotonias and Channelopathies 
5.7. Neurophysiological Assessment of Motor Neuron Diseases 
5.8. Clinical-Neurophysiological Correlation of Neuromuscular Transmission Disorders 

5.8.1. Myasthenia Gravis 
5.8.2. Lamber-Eaton Syndrome 
5.8.3. Botulism 
5.8.4. Others 

5.9. Neurophysiological Study of Tremor and Other Movement Disorders 
5.10. Neurophysiological Assessment of Neuromuscular Pathology in Pediatrics 

Module 6. Intraoperative Neurophysiological Monitoring 

6.1. Neurophysiological Techniques Applied to MIO: Monitoring and Mapping 

6.1.1. Monitoring Techniques 

6.1.1.1. Motor Evoked Potentials 

6.1.1.1.1. Transcranial 

6.1.1.1.1.1. Muscular Recording 
6.1.1.1.1.2. Epidural Recording: D Wave 

6.1.1.1.2. Direct Cortical Stimulation

6.1.1.2. Somatosensory Evoked Potentials
6.1.1.3. Brainstem Auditory Evoked Potentials 
6.1.1.4. Reflexes 
6.1.1.5. Peripheral Nerve, Plexus and Nerve Roots: Electromyography 

6.1.2.  Mapping Techniques 

6.1.2.1. Phase Reversal 

6.1.2.1.1. Central Cortex/Sulcus 
6.1.2.1.2. Medullary/Posterior Cords 

6.1.2.2. Cortical 
6.1.2.3. Sub-Cortical 
6.1.2.4. Nerve, Plexus and Nerve Roots: EMG

6.2. Electrodes. Influence of Anesthetics Filters and Artifacts 

6.2.1. Types of Stimulation and Recording Electrodes: Characteristics and Indications 
6.2.2. Anesthesia and Monitoring 
6.2.3. Filters 
6.2.4. Artefacts 
6.2.5. Risks. Contraindications 

6.3. Intraoperative Neurophysiologic Monitoring in Supratentorial Process Surgery 

6.3.1. Monitoring and Mapping Indications 
6.3.2. Techniques Used 
6.3.3. Alarm Criteria 

6.4. Intraoperative Neurophysiologic Monitoring in Infratentorial Process Surgery 

6.4.1. Monitoring and Mapping Indications 
6.4.2. Techniques Used 
6.4.3. Alarm Criteria 

6.5. Intraoperative Functional Speech Exploration during Brain Lesionectomies 
6.6. Intraoperative Neurophysiologic Monitoring in Spinal Cord Surgery 

6.6.1. Monitoring and Mapping Indications 
6.6.2. Techniques Used 
6.6.3. Alarm Criteria 

6.7. Intraoperative Neurophysiologic Monitoring in Cervical and Dorsal Spine Surgery 

6.7.1. Monitoring and Mapping Indications 
6.7.2. Techniques Used 
6.7.3. Alarm Criteria 

6.8. Intraoperative Neurophysiologic Monitoring in Lumbar and Sacro Spine Surgery 

6.8.1. Monitoring and Mapping Indications 
6.8.2. Techniques Used 
6.8.3. Alarm Criteria 

6.9. Intraoperative Neurophysiologic Monitoring in Peripheral Nerve and Plexus Surgery 

6.9.1. Monitoring and Mapping Indications 
6.9.2. Techniques Used 
6.9.3. Alarm Criteria 

6.10. Intraoperative Neurophysiologic Monitoring in Vascular Surgery 

6.10.1. Monitoring and Mapping Indications 
6.10.2. Techniques Used 
6.10.3. Alarm Criteria 

Module 7. Autonomic Nervous System: Pain Other Complex Techniques or Other Specialty Partnerships 

7.1. Autonomic Nervous System 

7.1.1. Anatomy 
7.1.2. Physiology 
7.1.3. Neurotransmission 

7.2.  Autonomic Dysfunction 

7.2.1. Semiology 
7.2.2. Pathology 

7.2.2.1. Cardiovascular Disorders 
7.2.2.2. Thermoregulation Disorders 
7.2.2.3. Others 

7.2.2.3.1. Autonomic Dysfunction in Neurodegenerative Diseases 
7.2.2.3.2. Urological Dysfunction 

7.3. Neurophysiological Tests for the Study and Assessment of Autonomic Disorders 
7.4. Pain 

7.4.1. Pain Physiopathogenesis 
7.4.2. Complex Regional Pain: Neuropathic Pain 
7.4.3. Central Sensitization 

7.5. Neurophysiological Techniques for the Evaluation of Painful Processes: Neurophysiological Implications in Diagnosis 

7.5.1. Thermotest 
7.5.2. CHEPs 
7.5.3. Laser Evoked Potentials 

7.6. Monitoring Techniques for Special Conditions 

7.6.1. Bispectral Index (BIS) 
7.6.2. ANI/NIPE 
7.6.3. Others 

7.7. Neurophysiological Techniques in Dentistry 

7.7.1. Pathology 
7.7.2. Techniques and Practical Applications 

7.8. Neurophysiological Studies of the Pelvic Floor 

7.8.1. Combined Techniques in Assessing the Neuromuscular Function of the Pelvic Floor 

7.9. Clinical Neurophysiology and Biomechanics I: Gait Biomechanics 

7.9.1. Instrumental Analysis of Kinetic, Kinematic and Electromyographic Patterns 
7.9.2. Muscle Activation Sequence in Gait Phases: Muscle Activation Maps 

7.10. Clinical Neurophysiology and Biomechanics II

7.10.1. Neurophysiological Evaluation of the Foot and Ankle 
7.10.2. Combined Neurophysiological and Ultrasound Studies

Module 8. Neurobiology and Physiology of Sleep: Methodological Aspects 

8.1. Normal Sleep 

8.1.1. Features 
8.1.2. Changes with Age 
8.1.3. Function 

8.2. Neurobiology and Physiological Changes during the Sleep-Wake Cycle 
8.3. Chronobiology of the sleep-wake cycle 
8.4. Polysomnography I: Technical Aspects and Methodology 
8.5. Polysomnography II: Recording Sensors and Use 
8.6. Polysomnography III: Sleep Structure Quantification and Cardiorespiratory Events 
8.7. Polysomnography IV: Motor Event Quantification 
8.8. Advanced Automatic Signal Analysis 
8.9. Other Polysomnographic Techniques in Sleep-Wakefulness 

8.9.1. Breathing Polygraphy during Sleep 
8.9.2. Multiple Sleep Latency Test 
8.9.3. Maintenance of Wakefulness Test 
8.9.4. Suggested Immobilization Test 

8.10. Actigraphy, Circadian Monitoring and Other Ambulatory Measurements

Module 9. Clinical-Instrumental Diagnosis of Sleep Disorders 

9.1. Insomnia and Excessive Daytime Sleepiness Evaluation 
9.2. Sleep-Wake Circadian Rhythm Disorder Evaluation 
9.3. Breathing Disorder Evaluation during Sleep I
9.4. Sleep-Disordered Breathing Evaluation during Sleep II 
9.5. NREM and Mixed REM-NREM Parasomnias Evaluation 
9.6. REM Parasomnias Evaluation 
9.7. Wake-Sleep Dissociative States: Status Dissociatus Evaluation 
9.8. Movement Disorder Evaluation during Sleep I 

9.8.1. Restless Leg Syndrome or Willis-Ekbom Disease 
9.8.2. Periodic Limb Movement Syndrome during Sleep 

9.9. Movement Disorder Evaluation during Sleep II 
9.10. Epilepsy Evaluation during Sleep: Sleep in Neurodegenerative Diseases 

Module 10. Neurophysiological Techniques for Therapeutic Purposes: Invasive and Non-Invasive Neuromodulation Botulinum toxin 

10.1. Invasive Brain Stimulation: Physiological Basis 

10.1.1. Definition and Physiological Basis of Invasive Brain Stimulation (ICS) 
10.1.2. Main Indications at the Present Time 

10.2. Direct Cortical and Medullary Stimulation 

10.2.1. Neurophysiological Basis of Direct Cortical Stimulation in the Treatment of Pain. Indications and Practical Examples 
10.2.2. Neurophysiological Basis of Spinal Cord Electrical Stimulation in the Treatment of Pain. Indications and Practical Examples 

10.3. Neuromodulation in Epilepsy. Brain Stimulation for Diagnosis and Treatment 

10.3.1. Basis and Rationale of Neuromodulation for the Diagnosis of Epilepsy 
10.3.2. Neuromodulation Applied to the Treatment of Epilepsy. Indications and Practical Examples 

10.4. Deep Brain Stimulation (DBS) 

10.4.1. Use of DBS in Parkinson's Disease (PD) 
10.4.2. How Does DBS Work? 
10.4.3. Clinical Indications for DBS in PD and Other Movement Disorders 

10.5. Vagus Nerve Stimulation (VNS) and Hypoglossal Nerve Stimulation (VNS). Stimulating Other Peripheral Nerves (Trigeminal, Tibial, Occipital, Sacral) 

10.5.1. VNS in Treating Epilepsy and Other Indications 
10.5.2. Stimulation of the Hypoglossal Nerve for the Treatment of OSAHS 
10.5.3. Stimulation of Other Peripheral Nerves (Trigeminal, Occipital, Tibial and Sacral) 

10.6. Hearing Implants 

10.6.1. Definition and Fundamentals of Hearing Implants 
10.6.2. Types of Hearing Implants: Cochlear and Brain Stem Implants 

10.7. Non-Invasive Brain Stimulation (NIBS): Physiological Basis 

10.7.1. Physiological Basis of ECNI 
10.7.2. Types of NCTS: Transcranial Electrical Stimulation (TENS) and Transcranial Magnetic Stimulation (TMS)

10.8. Non-Invasive Brain Stimulation: Indications and Therapeutic Protocols 

10.8.1.  Indications for NCDI 
10.8.2. Scientific Evidence and Therapeutic Protocols 

10.9. TENS 

10.9.1. Definition, Mechanism of Action and Modalities 
10.9.2. Indications, Contraindications and Effects 
10.10. Botulinum Toxin Infi

##IMAGE##

A unique, key and decisive training experience to boost your professional development"

Master's Degree in Update on Neurophysiological Diagnosis and Treatment

Immerse yourself in the forefront of medicine with the Master's Degree in Neurophysiological Diagnosis and Treatment Updates offered by TECH Global University. Designed for professionals seeking to enhance their skills and stay up to date with the latest advancements in neurophysiology, this program provides an unparalleled educational experience. Our commitment to academic excellence is reflected in the rigorous curriculum, developed by experts in the field who are recognized leaders in research and clinical practice. By choosing our Master’s program, you will benefit from comprehensive training covering the most advanced aspects of neurophysiological diagnosis and treatment. The courses are delivered online, offering the flexibility you need to balance your professional and personal commitments while delving into the fascinating world of neurophysiology. Our innovative pedagogical approach utilizes cutting-edge technologies to provide an interactive and dynamic learning experience.

Study an online Postgraduate Program in Neurophysiology and advance your career

Do you know why TECH is considered one of the best universities in the world? Because we offer a catalog of over 10,000 academic programs, have a presence in multiple countries, utilize innovative methodologies, employ unique academic technology, and have a highly qualified teaching team. That’s why you can’t miss the opportunity to study with us. At TECH Global University, we understand that continuous update is essential in medicine. Therefore, our program will provide you with the necessary tools to integrate the latest advancements in neurophysiology into your daily clinical practice. The combination of advanced theory and practical applications will prepare you to face the most challenging issues in neurophysiological diagnosis and treatment. Become a leader in this field with our virtual Master's Degree. Join the prestigious TECH Faculty of Medicine and advance your career without compromising your lifestyle. We are here to propel you toward success in the digital age, equipping you with the knowledge and skills you need to excel in neurophysiological treatment.