University certificate
The world's largest faculty of medicine”
Introduction to the Program
Gracias a este programa 100% online, obtendrás una comprensión profunda de las características de las Bacterias Multirresistentes, así como de las estrategias más innovadoras para combatirlas”
Las estrategias avanzadas frente a bacterias multirresistentes han experimentado avances significativos en los últimos años. Sin embargo, la lucha contra estas bacterias requiere un enfoque multifacético y global. Esto incluye, no solo la investigación y el desarrollo de nuevos medicamentos y vacunas, sino también una mayor concienciación sobre el uso adecuado de los antibióticos y la implementación de diagnósticos más rápidos y precisos.
En este contexto, se presenta esta Postgraduate diploma, que examinará en profundidad el mecanismo de diferentes técnicas moleculares, con un enfoque especial en la edición genética CRISPR-Cas9. De este modo, los médicos se actualizarán en el mecanismo molecular de acción de esta tecnología y sus potenciales aplicaciones en la lucha contra Bacterias Multirresistentes, explorando cómo esta herramienta revolucionaria puede editar genes de manera precisa para contrarrestar las resistencias bacterianas.
Asimismo, se analizarán los mecanismos de acción, el espectro antimicrobiano, los usos terapéuticos y los posibles efectos adversos de las nuevas moléculas antimicrobianas. También se proporcionará un análisis comparativo de las nuevas moléculas dentro de las diferentes familias de antibióticos, como Penicilinas, Cefalosporinas, Carbapenémicos, Glicopéptidos, Macrólidos, Tetraciclinas, Aminoglucósidos y Quinolonas.
Finalmente, se abarcará la historia y evolución de la Inteligencia Artificial (IA), así como las tecnologías utilizadas en Microbiología. Por ende, se profundizará en los algoritmos y modelos de IA para la predicción de estructuras proteicas, la identificación de mecanismos de resistencia y el análisis de Big Data genómico. Además, se analizarán las aplicaciones prácticas de la IA en la identificación de bacterias y su implementación en laboratorios clínicos. Igualmente, se indagará en las estrategias de sinergia entre la IA, la Microbiología y la Salud Pública.
Así, TECH ha creado un programa universitario integral, completamente en línea y adaptable, que solo precisa de un dispositivo electrónico con acceso a Internet para acceder a los materiales. Adicionalmente, se basa en la innovadora metodología Relearning, la cual emplea la repetición de conceptos fundamentales para garantizar una asimilación efectiva y natural de la información.
Adquirirás habilidades prácticas en la aplicación de medidas preventivas y terapéuticas, así como en el manejo adecuado de antimicrobianos, gracias a los mejores materiales didácticos, a la vanguardia tecnológica y educativa”
Esta Postgraduate diploma en Advanced Strategies against Multidrug-Resistant Bacteria contiene el programa científico más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos Microbiología, Medicina y Parasitología
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Profundizarás en la gestión de brotes infecciosos, la vigilancia epidemiológica y los tratamientos personalizados, demostrando cómo la Inteligencia Artificial puede mejorar la respuesta a las enfermedades infecciosas”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Te sumergirás en el mecanismo de la edición genética mediante CRISPR-Cas9, comprendiendo su acción molecular y explorando sus posibles aplicaciones terapéuticas, a través de una amplia biblioteca de recursos multimedia”
Diferenciarás las nuevas moléculas antimicrobianas, entendiendo sus aplicaciones específicas en la clínica y fortaleciendo tu capacidad para elegir el tratamiento más adecuado para infecciones complicadas”
Syllabus
The university program will include specialized modules on emerging strategies against multidrug-resistant bacteria, where advanced molecular techniques such as CRISPR-Cas9 gene editing and its potential applications will be analyzed. Also, the analysis of new antimicrobial molecules will be studied in depth, addressing their mechanisms of action, antimicrobial spectrum and therapeutic uses within different families of antibiotics. In addition, the impact of Artificial Intelligence in Clinical Microbiology and infectious diseases will be examined, covering from its history and evolution, to its application in the prediction of resistance and the management of large volumes of genomic data.
The contents of the program will cover a full spectrum of fundamental and applied knowledge in the fight against multidrug-resistant bacteria. With all the TECH quality guarantees!”
Module 1. Emerging Strategies for Multidrug-Resistant Bacteria
1.1. CRISPR-Cas9 Gene Editing
1.1.1. Molecular Mechanism of Action
1.1.2. Applications
1.1.2.1. CRISPR-Cas9 as a Therapeutic Tool
1.1.2.2. Engineering of Probiotic Bacteria
1.1.2.3. Rapid Detection of Resistance
1.1.2.4. Elimination of Resistance Plasmids
1.1.2.5. Development of New Antibiotics
1.1.2.6. Safety and Stability
1.1.3. Limitations and Challenges
1.2. Temporary Collateral Sensitization (SCT)
1.2.1. Molecular Mechanism
1.2.2. Advantages and Applications of SCT
1.2.3. Limitations and Challenges
1.3. Gene Silencing
1.3.1. Molecular Mechanism
1.3.2. RNA Interference
1.3.3. Antisense Oligonucleotides
1.3.4. Benefits and Applications of Gene Silencing
1.3.5. Limitations
1.4. High-Throughput Sequencing
1.4.1. Stages of High-Throughput Sequencing
1.4.2. Bioinformatics Tools for Combating Multidrug-Resistant Bacteria
1.4.3. Challenges
1.5. Nanoparticles
1.5.1. Mechanisms of Action against Bacteria
1.5.2. Clinical Applications
1.5.3. Limitations and Challenges
1.6. Engineering of Probiotic Bacteria
1.6.1. Production of Antimicrobial Molecules
1.6.2. Bacterial Antagonism
1.6.3. Modulation of the Immune System
1.6.4. Clinical Applications
1.6.4.1. Prevention of Nosocomial Infections
1.6.4.2. Reducing the Incidence of Respiratory Infections
1.6.4.3. Adjunctive Therapy in the Treatment of Urinary Tract Infections
1.6.4.4. Prevention of Resistant Skin Infections
1.6.5. Limitations and Challenges
1.7. Antibacterial Vaccines
1.7.1. Types of Vaccines against Diseases Caused by Bacteria
1.7.2. Vaccines in Development against Major Multidrug-Resistant Bacteria
1.7.3. Challenges and Considerations
1.8. Bacteriophages
1.8.1. Mechanism of Action
1.8.2. Lytic Cycle of Bacteriophages
1.8.3. Lysogenic Cycle of Bacteriophages
1.9. Phage Therapy
1.9.1. Isolation and Transport of Bacteriophages
1.9.2. Purification and Handling of Bacteriophages in the Laboratory
1.9.3. Phenotypic and Genetic Characterisation of Bacteriophages
1.9.4. Preclinical and Clinical Trials
1.9.5. Compassionate Use of Phages and Success Stories
1.10. Antibiotic Combination Therapy
1.10.1. Mechanisms of Action
1.10.2. Efficacy and Risks
1.10.3. Challenges and Constraints
1.10.4. Combined Antibiotic and Phage Therapy
Module 2. New Antimicrobial Molecules
2.1. New Antimicrobial Molecules
2.1.1. The Need for New Antimicrobial Molecules
2.1.2. Impact of New Molecules on Antimicrobial Resistance
2.1.3. Challenges and Opportunities in the Development of New Antimicrobial Molecules
2.2. Methods of Discovery of New Antimicrobial Molecules
2.2.1. Traditional Discovery Approaches
2.2.2. Advances in Screening Technology
2.2.3. Rational Drug Design Strategies
2.2.4. Biotechnology and Functional Genomics
2.2.5. Other Innovative Approaches
2.3. New Penicillins: New Drugs, their Future Role in Anti-Infective Therapeutics
2.3.1. Classification
2.3.2. Mechanism of Action
2.3.3. Antimicrobial Spectrum
2.3.4. Therapeutic Uses
2.3.5. Adverse Effects
2.3.6. Presentation and Dosage
2.4. Cephalosporins
2.4.1. Classification
2.4.2. Mechanism of Action
2.4.3. Antimicrobial Spectrum
2.4.4. Therapeutic Uses
2.4.5. Adverse Effects
2.4.6. Presentation and Dosage
2.5. Carbapenemics and Monobactams
2.5.1. Classification
2.5.2. Mechanism of Action
2.5.3. Antimicrobial Spectrum
2.5.4. Therapeutic Uses
2.5.5. Adverse Effects
2.5.6. Presentation and Dosage
2.6. Cyclic Glycopeptides and Lipopeptides
2.6.1. Classification
2.6.2. Mechanism of Action
2.6.3. Antimicrobial Spectrum
2.6.4. Therapeutic Uses
2.6.5. Adverse Effects
2.6.6. Presentation and Dosage
2.7. Macrolides, Ketolides and Tetracyclines
2.7.1. Classification
2.7.2. Mechanism of Action
2.7.3. Antimicrobial Spectrum
2.7.4. Therapeutic Uses
2.7.5. Adverse Effects
2.7.6. Presentation and Dosage
2.8. Aminoglycosides and Quinolones
2.8.1. Classification
2.8.2. Mechanism of Action
2.8.3. Antimicrobial Spectrum
2.8.4. Therapeutic Uses
2.8.5. Adverse Effects
2.8.6. Presentation and Dosage
2.9. Lincosamides, Streptogramins and Oxazolidinones
2.9.1. Classification
2.9.2. Mechanism of Action
2.9.3. Antimicrobial Spectrum
2.9.4. Therapeutic Uses
2.9.5. Adverse Effects
2.9.6. Presentation and Dosage
2.10. Rifamycins and other Developmental Antimicrobial Molecules
2.10.1. Rifamycins: Classification
2.10.1.2. Mechanism of Action
2.10.1.3. Antimicrobial Spectrum
2.10.1.4. Therapeutic Uses
2.10.1.5. Adverse Effects
2.10.1.6. Presentation and Dosage
2.10.2. Antibiotics of Natural Origin
2.10.3. Synthetic Antimicrobial Agents
2.10.4. Antimicrobial Peptides
2.10.5. Antimicrobial Nanoparticles
Module 3. Artificial Intelligence in Clinical Microbiology and Infectious Diseases
3.1. Artificial Intelligence (AI) in Clinical Microbiology and Infectious Diseases
3.1.1. Current Expectation of AI in Clinical Microbiology
3.1.2. Emerging Areas Interrelated to AI
3.1.3. Transversality of AI
3.2. Artificial Intelligence (AI) Techniques and other Complementary Technologies applied to Clinical Microbiology and Infectious Diseases
3.2.1. AI Logic and Models
3.2.2. Technologies for AI
3.2.2.1. Machine Learning
3.2.2.2. Deep Learning
3.2.2.3. Data Science and Big Data
3.3. Artificial Intelligence (AI) in Microbiology
3.3.1. AI in Microbiology: History and Evolution
3.3.2. AI Technologies that can be Used in Microbiology
3.3.3. Research Objectives of AI in Microbiology
3.3.3.1. Understanding Bacterial Diversity
3.3.3.2. Exploring Bacterial Physiology
3.3.3.3. Investigation of Bacterial Pathogenicity
3.3.3.4. Epidemiological Surveillance
3.3.3.5. Development of Antimicrobial Therapies
3.3.3.6. Microbiology in Industry and Biotechnology
3.4. Classification and Identification of Bacteria using Artificial Intelligence (AI)
3.4.1. Machine Learning Techniques for Bacterial Identification
3.4.2. Taxonomy of Multi-Resistant Bacteria using AI
3.4.3. Practical Implementation of AI in Clinical and Research Laboratories in Microbiology
3.5. Bacterial Protein Decoding
3.5.1. AI Algorithms and Models for Protein Structure Prediction
3.5.2. Applications in the Identification and Understanding of Resistance Mechanisms
3.5.3. Practical Application AlphaFold and Rosetta
3.6. Decoding the Genome of Multi-Resistant Bacteria
3.6.1. Identification of Resistance Genes
3.6.2. Genomic Big Data Analysis: AI-Assisted Sequencing of Bacterial Genomes
3.6.3. Practical Application Identification of Resistance Genes
3.7. Artificial Intelligence (AI) Strategies in Microbiology and Public Health
3.7.1. Infectious Outbreak Management
3.7.2. Epidemiological Surveillance
3.7.3. AI for Personalized Treatments
3.8. Artificial Intelligence (AI) to Combat Antibiotic Resistance in Bacteria
3.8.1. Optimizing Antibiotic Use
3.8.2. Predictive Models for the Evolution of Antimicrobial Resistance
3.8.3. Targeted Therapy Based on Development of New Antibiotics by IA
3.9. Future of Artificial Intelligence in Microbiology
3.9.1. Synergies between Microbiology and IA
3.9.2. Lines of AI Implementation in Microbiology
3.9.3. Long-Term Vision of the Impact of AI in the Fight against Multi-Drug Resistant Bacteria
3.10. Technical and Ethical Challenges in the Implementation of Artificial Intelligence (AI) in Microbiology
3.10.1. Legal Considerations
3.10.2. Ethical and Liability Considerations
3.10.3. Barriers to AI Implementation
3.10.3.1. Technical Barriers
3.10.3.2. Social Barriers
3.10.3.3. Economic Barriers
3.10.3.4. Cybersecurity
The comprehensive approach of this program will prepare you to effectively face current and future challenges related to Multidrug-Resistant Bacteria, with the support of the Relearning methodology”
Postgraduate Diploma in Advanced Strategies against Multidrug-Resistant Bacteria
The Postgraduate Diploma in Advanced Strategies against Multidrug-Resistant Bacteria created by TECH Global University is a high-level educational program aimed at healthcare professionals who wish to specialize in the effective management of infections caused by bacteria that have developed resistance to multiple antibiotics. This program, delivered in 100% online, provides in-depth understanding and practical skills essential to address the ever-increasing challenge of multidrug-resistant bacteria. During the program, you will thoroughly explore the epidemiology of multidrug-resistant bacteria, mechanisms of bacterial resistance, advanced diagnostic strategies and optimal treatment options. In addition, major resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE) and multidrug-resistant Pseudomonas aeruginosa (MDR-PA), among others, will be analyzed with the goal of developing effective strategies for their clinical management. One of the strengths of this program is its practical and evidence-based approach. You will have the opportunity to apply your knowledge in real clinical situations through case studies, simulations and analysis of complex clinical scenarios. This will allow you to develop critical skills in clinical decision making and the design of personalized treatment plans.
Master advanced strategies against multidrug-resistant bacteria
The online modality of the course offers flexibility and accessibility, allowing you to access the content from any location and at flexible times. Through an advanced educational platform, you will have access to interactive resources and state-of-the-art study materials, which significantly enriches your learning experience. The program is led by a team of professionals with extensive experience in the management of multidrug-resistant bacteria, who provide expert guidance and ongoing support throughout the program. Their clinical experience and up-to-date knowledge ensure that you receive high-quality, relevant education to meet the emerging challenges in the field of bacterial resistance. Enrolling in this Postgraduate Diploma is a strategic decision to excel in the clinical management of complex bacterial infections. This advanced qualification provides the necessary tools to develop effective strategies for the control and prevention of multidrug-resistant bacteria, thereby contributing to improve the quality of medical care and patient safety.