University certificate
The world's largest faculty of engineering”
Introduction to the Program
Gracias a esta Postgraduate diploma dominarás los métodos de transmisión y transformación de movimiento mecánico y todo en un cómodo formato 100% online”
La Mechatronics Engineering se ha convertido en un aspecto indispensable para las instituciones. Esto se debe a su carácter interdisciplinario: fomenta la innovación en Mecánica, Informática y Electrónica. Para ello se centra en analizar aspectos tales como los diferentes sensores, el funcionamiento de los procesos de fabricación y el empleo de las máquinas industriales. Lo cierto es que, a medida que la industria avanza hacia la era de la fabricación inteligente, este campo se consolida, permitiendo alcanzar mejores objetivos de eficiencia.
Ante esto, TECH ha ideado un programa de estudios que profundiza en los diferentes componentes que regulan el funcionamiento de una máquina o sistema mecatrónico. De modo específico, la titulación aborda sensores de diferentes tipos (de presencia, de posición, temperatura y variables físicas), así como actuadores (eléctricos, neumáticos e hidráulicos). A su vez, ahonda en aquellos rodamientos, resortes y elementos de unión indispensables, dedicando especial atención a los criterios para su selección y aplicación en equipos concretos.
A continuación, el itinerario académico describe las bases de la automatización necesarias en esta rama de la Ingeniería. A través de sus módulos académicos se enfatiza en la programación del PLC, los controles continuos mediante reguladores, ejes, entre otros. Por último, se ofrece al alumnado un análisis exhaustivo de como estas maquinarias complejas se insertan en las industrias y cómo garantizar la seguridad de su implementación.
Para afianzar el dominio de todos esos contenidos, la Postgraduate diploma aplica el innovador sistema Relearning. TECH es pionera en el uso de ese modelo de enseñanza que promueve la asimilación de conceptos complejos a través de la reiteración natural y progresiva de los mismos. También, el programa se nutre de materiales en diversos formatos como los vídeos explicativos e infografías. Todo ello en una cómoda modalidad 100% online que permite ajustar los horarios de cada persona a sus responsabilidades y disponibilidad.
La titulación universitaria cuenta con la participación de un renombrado Director Invitado Internacional, quien impartirá unas rigurosas Masterclasses.
Un prestigioso Director Invitado Internacional brindará unas exhaustivas Masterclasses sobre los últimos avances en Ingeniería Mecatrónica”
Esta Postgraduate diploma en Mechatronics Engineering contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Ingeniería Mecatrónica
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información actualizada y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Con TECH dominarás los sistemas de fabricación integrados y superarás los desafíos de la Industria 4.0”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Gracias a este temario 100% online de TECH, profundizarás en el desarrollo de procesos inteligentes que facilitan las actividades humanas”
Adquirirás competencias avanzadas de un modo cómodo y flexible, sin horarios rígidos ni cronogramas evaluativos preestablecidos”
Syllabus
This TECH Global University program has a disruptive syllabus that delves into the different particularities of mechatronic machines and systems. To delve into their operation, the syllabus describes the main sensors and actuators, among other control components. At the same time, it addresses the main industrial communication networks, automation and its practical applications. At the same time, these contents are available in a state-of-the-art Virtual Campus with theoretical contents, complementary readings, explanatory videos and various multimedia resources.
A syllabus where you will have at your disposal the innovative Relearning system in which TECH is a pioneer"
Module 1. Mechatronics Machines and Systems
1.1. Motion Transformation Systems
1.1.1. Complete Circular Transformation: Reciprocating Circular
1.1.2. Full Circular Transformation: Continuous Rectilinear
1.1.3. Intermittent Motion
1.1.4. Straight Line Mechanisms
1.1.5. Stopping Mechanisms
1.2. Machines and Mechanisms: Motion Transmission
1.2.1. Linear Motion Transmission
1.2.2. Circular Motion Transmission
1.2.3. Transmission of Flexible Elements: Belts and Chains
1.3. Machine Stresses
1.3.1. Static Stresses
1.3.2. Failure Criteria
1.3.3. Fatigue in Machines
1.4. Gears
1.4.1. Types of Gears and Manufacturing Methods
1.4.2. Geometry and Kinematics
1.4.3. Gear Trains
1.4.4. Force Analysis
1.4.5. Gear Strength
1.5. Shafts
1.5.1. Stresses in Shafts
1.5.2. Design of Shafts and Axles
1.5.3. Rotodynamics
1.6. Bearings
1.6.1. Types of Rolling Bearings
1.6.2. Bearing Calculation
1.6.3. Selection Criteria
1.6.4. Mounting, Lubrication and Maintenance Techniques
1.7. Springs
1.7.1. Types of Springs
1.7.2. Helical Springs
1.7.3. Energy Storage by Means of Springs
1.8. Mechanical Connecting Elements
1.8.1. Types of Joints
1.8.2. Design of Non-Permanent Joints
1.8.3. Design of Permanent Connections
1.9. Transmissions by Means of Flexible Elements
1.9.1. Straps
1.9.2. Roller Chains
1.9.3. Wire Ropes
1.9.4. Flexible Shafts
1.10. Brakes and Clutches
1.10.1. Types of Brakes/clutches
1.10.2. Friction Materials
1.10.3. Calculation and Sizing of Clutches
1.10.4. Brake Calculation and Sizing
Module 2. Sensors and Actuators
2.1. Sensors
2.1.1. Sensor Selection
2.1.2. Sensors in Mechatronic Systems
2.1.3. Application Examples
2.2. Presence or Proximity Sensors
2.2.1. Limit Switches: Principle of Operation and Technical Characteristics
2.2.2. Inductive Detectors: Principle of Operation and Technical Characteristics
2.2.3. Capacitive Detectors: Principle of Operation and Technical Characteristics
2.2.4. Optical Detectors: Principle of Operation and Technical Characteristics
2.2.5. Ultrasonic Detectors: Principle of Operation and Technical Characteristics
2.2.6. Selection Criteria
2.2.7. Application Examples
2.3. Position Sensors
2.3.1. Incremental Encoders: Principle of Operation and Technical Characteristics
2.3.2. Absolute Encoders: Principle of Operation and Technical Characteristics
2.3.3. Laser Sensors: Principle of Operation and Technical Characteristics
2.3.4. Magnetostrictive Sensors and Linear Potentiometers
2.3.5. Selection Criteria
2.3.6. Application Examples
2.4. Temperature Sensors
2.4.1. Thermostats: Principle of Operation and Technical Characteristics
2.4.2. Resistance Thermometers: Principle of Operation and Technical Characteristics
2.4.3. Thermocouples: Principle of Operation and Technical Characteristics
2.4.4. Radiation Pyrometers: Principle of Operation and Technical Characteristics
2.4.5. Selection Criteria
2.4.6. Application Examples
2.5. Sensors for the Measurement of Physical Variables in Processes and Machines
2.5.1. Pressure Operating Principle
2.5.2. Flow rate: Operating Principle
2.5.3. Level: Operating Principle
2.5.4. Sensors for Other Physical Variables
2.5.5. Selection Criteria
2.5.6. Application Examples
2.6. Actuators
2.6.1. Actuator Selection
2.6.2. Actuators in Mechatronic Systems
2.6.3. Application Examples
2.7. Electric Actuators
2.7.1. Relays and Contactors: Principle of Operation and Technical Characteristics
2.7.2. Rotary Motors: Principle of Operation and Technical Characteristics
2.7.3. Stepper Motors: Principle of Operation and Technical Characteristics
2.7.4. Servomotors: Principle of Operation and Technical Characteristics
2.7.5. Selection Criteria
2.7.6. Application Examples
2.8. Pneumatic Actuators
2.8.1. Valves and Servovalves Principle of Operation and Technical Characteristics
2.8.2. Pneumatic Cylinders: Principle of Operation and Technical Characteristics
2.8.3. Pneumatic Motors: Principle of Operation and Technical Characteristics
2.8.4. Vacuum Clamping: Principle of Operation and Technical Characteristics
2.8.5. Selection Criteria
2.8.6. Application Examples
2.9. Hydraulic Actuators
2.9.1. Valves and Servovalves Principle of Operation and Technical Characteristics
2.9.2. Hydraulic Cylinders: Principle of Operation and Technical Characteristics
2.9.3. Hydraulic Motors: Principle of Operation and Technical Characteristics
2.9.4. Selection Criteria
2.9.5. Application Examples
2.10. Example of Application of Sensor and Actuator Selection in Machine Design
2.10.1. Description of the Machine to be Designed
2.10.2. Sensor Selection
2.10.3. Actuator Selection
Module 3. Axis Control, Mechatronic Systems and Automation
3.1. Automation of Production Processes
3.1.1. Automation of production processes
3.1.2. Classification of Control Systems
3.1.3. Technologies Used
3.1.4. Machine Automation and/or Process Automation
3.2. Mechatronic Systems: Elements
3.2.1. Mechatronic Systems
3.2.2. The Programmable Logic Controller as a Discrete Process Control Element
3.2.3. The Controller as a Control Element for Continuous Process Control
3.2.4. Axis and Robot Controllers as Position Control Elements
3.3. Discrete Control with Programmable Logic Controllers (PLC's)
3.3.1. Hardwired Logic vs. Programmed Logic
3.3.2. Control with PLC's
3.3.3. Field of Application of PLCs
3.3.4. Classification of PLCs
3.3.5. Selection Criteria
3.3.6. Application Examples
3.4. PLC Programming
3.4.1. Representation of Control Systems
3.4.2. Cycle of Operation
3.4.3. Configuration Possibilities
3.4.4. Variable Identification and Address Assignment
3.4.5. Programming Languages
3.4.6. Instruction Set and Programming Software
3.4.7. Programming Example
3.5. Methods of Describing Sequential Drives
3.5.1. Design of Sequential Drives
3.5.2. GRAFCET as a Method for Describing Sequential Drives
3.5.3. Types of GRAFCET
3.5.4. GRAFCET Elements
3.5.5. Standard Symbology
3.5.6. Application Examples
3.6. Structured GRAFCET
3.6.1. Structured Design and Programming of Control Systems
3.6.2. Modes of Operation
3.6.3. Security/Safety
3.6.4. Hierarchical GRAFCET Diagrams
3.6.5. Structured Design Examples
3.7. Continuous Control by Means of Controllers
3.7.1. Industrial Controllers
3.7.2. Scope of Application of the Regulators. Classification
3.7.3. Selection Criteria
3.7.4. Application Examples
3.8. Machine Automation
3.8.1. Machine Automation
3.8.2. Speed and Position Control
3.8.3. Safety Systems
3.8.4. Application Examples
3.9. Position Control by Axis Control
3.9.1. Position Control
3.9.2. Field of Application of Axis Controllers. Classification
3.9.3. Selection Criteria
3.9.4. Application Examples
3.10. Example of Application of Equipment Selection in Machine Design
3.10.1. Description of the Machine to be Designed
3.10.2. Equipment Selection
3.10.3. Resolved Application
Module 4. Mechatronic Systems Integration
4.1. Integrated Manufacturing Systems
4.1.1. Integrated Manufacturing Systems
4.1.2. Industrial Communications in Systems Integration
4.1.3. Integration of Control Equipment in the Production Processes
4.1.4. New Production Paradigm: Industry 4.0
4.2. Industrial Communication Networks
4.2.1. Industrial Communications. Evolution
4.2.2. Structure of Industrial Networks
4.2.3. Current Situation of Industrial Communications
4.3. Communication Networks at the Process Interface Level
4.3.1. AS-i: Elements
4.3.2. IO-Link: Elements
4.3.3. Integration of Equipment
4.3.4. Selection Criteria
4.3.5. Application Examples
4.4. Communication Networks at the Control and Regulation Level
4.4.1. Communication Networks at the Command and Control Level
4.4.2. Profibus: Elements
4.4.3. Canbus: Elements
4.4.4. Equipment Integration
4.4.5. Selection Criteria
4.4.6. Application Examples
4.5. Communication Networks at Centralized Supervisory and Command Level
4.5.1. Centralized Supervisory and Command Level Networks
4.5.2. Profinet: Elements
4.5.3. Ethercat: Elements
4.5.4. Equipment Integration
4.5.5. Application Examples
4.6. Process Monitoring and Control Systems
4.6.1. Process Monitoring and Control Systems
4.6.2. Human Machine Interfaces (HMIs)
4.6.3. Examples of Use
4.7. Operator Panels
4.7.1. The Operator Panel as a Human-Machine Interface
4.7.2. Membrane Panels
4.7.3. Touch Panels
4.7.4. Communication Possibilities of the Operator Panels
4.7.5. Selection Criteria
4.7.6. Application Examples
4.8. SCADA Packages
4.8.1. SCADA Packages as Man-machine Interface
4.8.2. Selection Criteria
4.8.3. Application Examples
4.9. Industry 4.0. Intelligent Manufacturing
4.9.1. Industry 4.0
4.9.2. Architecture of the New Factories
4.9.3. Industry 4.0 Technologies
4.9.4. Examples of Manufacturing based on Industry 4.0
4.10. Example of Application of Equipment Integration in an Automated Process
4.10.1. Description of the Process to be Automated
4.10.2. Selection of Control Equipment
4.10.3. Integration of Equipment
Through this program you will have access to the most updated contents in the mechatronics sector. Don't miss this opportunity and enroll now!”
Postgraduate Diploma in Mechatronics Engineering
In a constantly evolving world, mechatronics engineering has become an essential field for technological development and innovation. TECH Global University presents you with the Postgraduate Diploma in Mechatronics Engineering, a program designed to propel your career into the future of technology and automation. Our program is taught online, which gives you the opportunity to access a quality education from anywhere in the world. The flexibility of the online mode allows you to study at your own pace and adapt your study schedule to your personal and professional commitments, without giving up your training.
Specialize and achieve your dreams and professional goals
At TECH Global University, we are committed to providing you with an enriching educational experience that will prepare you to meet the challenges of the mechatronics world. Our expert faculty will guide you through the fundamental concepts of mechatronics engineering, including robotics, control systems, electronics and industrial automation. One of the advantages of studying online is the ability to interact with peers from around the world. In our program, you will engage in collaborative discussions with students from diverse cultures and backgrounds, which will enrich your perspective and allow you to learn from different approaches and experiences. TECH Global University's Postgraduate Diploma in Mechatronics Engineering will prepare you to be a leader in the growing mechatronics industry. You will gain specialized knowledge and practical skills that will open doors to exciting career opportunities in the field of automation and technology. Don't miss your chance to advance your career and be part of the mechatronics revolution. Join TECH Global University and discover a world of possibilities in mechatronics engineering. Your path to a successful career in the technology field starts here - enroll today!