University certificate
Collaborating Centre
The world's largest faculty of engineering”
Introduction to the Program
Thanks to this Hybrid Master's Degree, you will develop specialized technical skills in machine learning, data mining, neural networks and natural language processing"
Artificial Intelligence (AI) has experienced significant advances in recent years, transforming various industries thanks to emerging technologies such as large language models and deep neural networks. Engineers are implementing these technologies to optimize processes.
This is how this Hybrid Master's Degree was created, which will address the historical evolution of AI, the principles of neural networks and genetic algorithms, as well as the importance of data structuring through thesauri and taxonomies. In addition, it will focus on the fundamental concepts of statistics, data classification and its life cycle, including planning, collection and storage in data warehouses.
Furthermore, the agenda will focus on data science and data mining, providing engineers with tools and techniques for information extraction, transformation and visualization, as well as data preparation and cleansing. Algorithm design strategies, algorithm efficiency analysis and agent theory will also be introduced, as well as knowledge representation and the semantic web.
Finally, from supervised and unsupervised learning to advanced Deep Learning techniques will be covered. Likewise, professionals will be able to personalize models with TensorFlow and apply Deep Learning in natural language processing. The degree will culminate with the study of Autoencoders, GANs and diffusion models, as well as in bio-inspired computing and AI implementation strategies in various sectors.
In this context, TECH has designed a university program that combines 100% online theory with a practical stay of 3 weeks in the most recognized companies in the sector. In this way, the first half of the program will be adapted to the graduate's work and personal schedule, who will only need an electronic device with an Internet connection. Additionally, it will be based on the revolutionary Relearning methodology, consisting of the repetition of key concepts for an optimal and organic assimilation of the contents.
You will expand your professional opportunities, positioning yourself at the forefront of technological innovation and being highly competitive in a constantly evolving labor market"
This Hybrid Master's Degree in Artificial Intelligence contains the most complete and up-to-date scientific program on the market. The most important features include:
- Development of more than 100 case studies presented by experts in Artificial Intelligence
- Its graphic, schematic and practical contents provide essential information on those disciplines that are indispensable for professional practice
- Its special emphasis on innovative methodologies
- All of this will be complemented by theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
- Content that is accessible from any fixed or portable device with an Internet connection
- Furthermore, you will be able to carry out an internship in one of the best companies
You will spend an intensive 3-week stay in a prestigious institution specialized in Artificial Intelligence, where you will obtain the skills you need to boost your career as an engineer"
In this Hybrid Master's Degree proposal, of professionalizing character and blended learning modality, the program is aimed at updating Computer Science professionals. The contents are based on the latest scientific evidence, and oriented in a didactic way to integrate theoretical knowledge into practice.
Thanks to its multimedia content elaborated with the latest educational technology, it will allow the IT professional a situated and contextual learning, that is to say, a simulated environment that will provide an immersive learning programmed to specialize in real situations. This program is designed around Problem-Based Learning, whereby the physician must try to solve the different professional practice situations that arise during the course. For this purpose, the students will be assisted by an innovative interactive video system created by renowned and experienced experts.
You will delve into data science, mining and visualization techniques, and data preparation and cleaning for data mining, thanks to an extensive library of multimedia resources"
You will delve into advanced supervised and unsupervised learning techniques, as well as the application of Deep Learning, through the best didactic materials, at the forefront of education"
Syllabus
The teaching materials that make up this Hybrid Master's Degree have been designed by a group of experts highly specialized in Artificial Intelligence. Therefore, graduates will have access to a syllabus that stands out for its excellent quality and for being in line with the requirements of the current labor market. Composed of 15 complete modules, the academic itinerary will emphasize the processes of knowledge discovery and Machine Learning. In this way, you will delve into the development of algorithms and models that allow machines to learn patterns and perform tasks.
Bet on TECH! This university program includes specialized modules in emerging areas, such as autoencoders, diffusion models and bio-inspired computing"
Module 1. Fundamentals of Artificial Intelligence
1.1. History of Artificial Intelligence
1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film
1.1.3. Importance of Artificial Intelligence
1.1.4. Technologies that Enable and Support Artificial Intelligence
1.2. Artificial Intelligence in Games
1.2.1. Game Theory
1.2.2. Minimax and Alpha-Beta Pruning
1.2.3. Simulation: Monte Carlo
1.3. Neural Networks
1.3.1. Biological Fundamentals
1.3.2. Computational Model
1.3.3. Supervised and Unsupervised Neural Networks
1.3.4. Simple Perceptron
1.3.5. Multilayer Perceptron
1.4. Genetic Algorithms
1.4.1. History
1.4.2. Biological Basis
1.4.3. Problem Coding
1.4.4. Generation of the Initial Population
1.4.5. Main Algorithm and Genetic Operators
1.4.6. Evaluation of Individuals: Fitness
1.5. Thesauri, Vocabularies, Taxonomies
1.5.1. Vocabulary
1.5.2. Taxonomy
1.5.3. Thesauri
1.5.4. Ontologies
1.5.5. Knowledge Representation: Semantic Web
1.6. Semantic Web
1.6.1. Specifications RDF, RDFS and OWL
1.6.2. Inference/ Reasoning
1.6.3. Linked Data
1.7. Expert systems and DSS
1.7.1. Expert Systems
1.7.2. Decision Support Systems
1.8. Chatbots and Virtual Assistants
1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow
1.8.3. Integrations: Web, Slack, Whatsapp, Facebook
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant
1.9. AI Implementation Strategy
1.10. Future of Artificial Intelligence
1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections
Module 2. Data Types and Data Life Cycle
2.1. Statistics
2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales
2.2. Types of Data Statistics
2.2.1. According to Type
2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data
2.2.2. According to their Shape
2.2.2.1. Numeric
2.2.2.2. Text:
2.2.2.3. Logical
2.2.3. According to its Source
2.2.3.1. Primary
2.2.3.2. Secondary
2.3. Life Cycle of Data
2.3.1. Stages of the Cycle
2.3.2. Milestones of the Cycle
2.3.3. FAIR Principles
2.4. Initial Stages of the Cycle
2.4.1. Definition of Goals
2.4.2. Determination of Resource Requirements
2.4.3. Gantt Chart
2.4.4. Data Structure
2.5. Data Collection
2.5.1. Methodology of Data Collection
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels
2.6. Data Cleaning
2.6.1. Phases of Data Cleansing
2.6.2. Data Quality
2.6.3. Data Manipulation (with R)
2.7. Data Analysis, Interpretation and Evaluation of Results
2.7.1. Statistical Measures
2.7.2. Relationship Indexes
2.7.3. Data Mining
2.8. Data Warehouse
2.8.1. Elements that Comprise it
2.8.2. Design
2.8.3. Aspects to Consider
2.9. Data Availability
2.9.1. Access
2.9.2. Uses
2.9.3. Security/Safety
Module 3. Data in Artificial Intelligence
3.1. Data Science
3.1.1. Data Science
3.1.2. Advanced Tools for Data Scientists
3.2. Data, Information and Knowledge
3.2.1. Data, Information and Knowledge
3.2.2. Types of Data
3.2.3. Data Sources
3.3. From Data to Information
3.3.1. Data Analysis
3.3.2. Types of Analysis
3.3.3. Extraction of Information from a Dataset
3.4. Extraction of Information Through Visualization
3.4.1. Visualization as an Analysis Tool
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set
3.5. Data Quality
3.5.1. Quality Data
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing
3.6. Dataset
3.6.1. Dataset Enrichment
3.6.2. The Curse of Dimensionality
3.6.3. Modification of Our Data Set
3.7. Unbalance
3.7.1. Classes of Unbalance
3.7.2. Unbalance Mitigation Techniques
3.7.3. Balancing a Dataset
3.8. Unsupervised Models
3.8.1. Unsupervised Model
3.8.2. Methods
3.8.3. Classification with Unsupervised Models
3.9. Supervised Models
3.9.1. Supervised Model
3.9.2. Methods
3.9.3. Classification with Supervised Models
3.10. Tools and Good Practices
3.10.1. Good Practices for Data Scientists
3.10.2. The Best Model
3.10.3. Useful Tools
Module 4. Data Mining: Selection, Pre-Processing and Transformation
4.1. Statistical Inference
4.1.1. Descriptive Statistics vs. Statistical Inference
4.1.2. Parametric Procedures
4.1.3. Non-Parametric Procedures
4.2. Exploratory Analysis
4.2.1. Descriptive Analysis
4.2.2. Visualization
4.2.3. Data Preparation
4.3. Data Preparation
4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data
4.3.3. Transforming Attributes
4.4. Missing Values
4.4.1. Treatment of Missing Values
4.4.2. Maximum Likelihood Imputation Methods
4.4.3. Missing Value Imputation Using Machine Learning
4.5. Noise in the Data
4.5.1. Noise Classes and Attributes
4.5.2. Noise Filtering
4.5.3. The Effect of Noise
4.6. The Curse of Dimensionality
4.6.1. Oversampling
4.6.2. Undersampling
4.6.3. Multidimensional Data Reduction
4.7. From Continuous to Discrete Attributes
4.7.1. Continuous Data Vs. Discreet Data
4.7.2. Discretization Process
4.8. The Data
4.8.1. Data Selection
4.8.2. Prospects and Selection Criteria
4.8.3. Selection Methods
4.9. Instance Selection
4.9.1. Methods for Instance Selection
4.9.2. Prototype Selection
4.9.3. Advanced Methods for Instance Selection
4.10. Data Pre-Processing in Big Data Environments
Module 5. Algorithm and Complexity in Artificial Intelligence
5.1. Introduction to Algorithm Design Strategies
5.1.1. Recursion
5.1.2. Divide and Conquer
5.1.3. Other Strategies
5.2. Efficiency and Analysis of Algorithms
5.2.1. Efficiency Measures
5.2.2. Measuring the Size of the Input
5.2.3. Measuring Execution Time
5.2.4. Worst, Best and Average Case
5.2.5. Asymptotic Notation
5.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms
5.2.7. Mathematical Analysis of Recursive Algorithms
5.2.8. Empirical Analysis of Algorithms
5.3. Sorting Algorithms
5.3.1. Concept of Sorting
5.3.2. Bubble Sorting
5.3.3. Sorting by Selection
5.3.4. Sorting by Insertion
5.3.5. Merge Sort
5.3.6. Quick Sort
5.4. Algorithms with Trees
5.4.1. Tree Concept
5.4.2. Binary Trees
5.4.3. Tree Paths
5.4.4. Representing Expressions
5.4.5. Ordered Binary Trees
5.4.6. Balanced Binary Trees
5.5. Algorithms Using Heaps
5.5.1. Heaps
5.5.2. The Heapsort Algorithm
5.5.3. Priority Queues
5.6. Graph Algorithms
5.6.1. Representation
5.6.2. Traversal in Width
5.6.3. Depth Travel
5.6.4. Topological Sorting
5.7. Greedy Algorithms
5.7.1. Greedy Strategy
5.7.2. Elements of the Greedy Strategy
5.7.3. Currency Exchange
5.7.4. Traveler’s Problem
5.7.5. Backpack Problem
5.8. Minimal Path Finding
5.8.1. The Minimum Path Problem
5.8.2. Negative Arcs and Cycles
5.8.3. Dijkstra's Algorithm
5.9. Greedy Algorithms on Graphs
5.9.1. The Minimum Covering Tree
5.9.2. Prim's Algorithm
5.9.3. Kruskal’s Algorithm
5.9.4. Complexity Analysis
5.10. Backtracking
5.10.1. Backtracking
5.10.2. Alternative Techniques
Module 6. Intelligent Systems
6.1. Agent Theory
6.1.1. Concept History
6.1.2. Agent Definition
6.1.3. Agents in Artificial Intelligence
6.1.4. Agents in Software Engineering
6.2. Agent Architectures
6.2.1. The Reasoning Process of an Agent
6.2.2. Reactive Agents
6.2.3. Deductive Agents
6.2.4. Hybrid Agents
6.2.5. Comparison
6.3. Information and Knowledge
6.3.1. Difference between Data, Information and Knowledge
6.3.2. Data Quality Assessment
6.3.3. Data Collection Methods
6.3.4. Information Acquisition Methods
6.3.5. Knowledge Acquisition Methods
6.4. Knowledge Representation
6.4.1. The Importance of Knowledge Representation
6.4.2. Definition of Knowledge Representation According to Roles
6.4.3. Knowledge Representation Features
6.5. Ontologies
6.5.1. Introduction to Metadata
6.5.2. Philosophical Concept of Ontology
6.5.3. Computing Concept of Ontology
6.5.4. Domain Ontologies and Higher-Level Ontologies
6.5.5. How to Build an Ontology?
6.6. Ontology Languages and Ontology Creation Software
6.6.1. Triple RDF, Turtle and N
6.6.2. RDF Schema
6.6.3. OWL
6.6.4. SPARQL
6.6.5. Introduction to Ontology Creation Tools
6.6.6. Installing and Using Protégé
6.7. Semantic Web
6.7.1. Current and Future Status of the Semantic Web
6.7.2. Semantic Web Applications
6.8. Other Knowledge Representation Models
6.8.1. Vocabulary
6.8.2. Global Vision
6.8.3. Taxonomy
6.8.4. Thesauri
6.8.5. Folksonomy
6.8.6. Comparison
6.8.7. Mind Maps
6.9. Knowledge Representation Assessment and Integration
6.9.1. Zero-Order Logic
6.9.2. First-Order Logic
6.9.3. Descriptive Logic
6.9.4. Relationship between Different Types of Logic
6.9.5. Prolog: Programming Based on First-Order Logic
6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems
6.10.1. Concept of Reasoner
6.10.2. Reasoner Applications
6.10.3. Knowledge-Based Systems
6.10.4. MYCIN: History of Expert Systems
6.10.5. Expert Systems Elements and Architecture
6.10.6. Creating Expert Systems
Module 7. Machine Learning and Data Mining
7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning
7.1.1. Key Concepts of Knowledge Discovery Processes
7.1.2. Historical Perspective of Knowledge Discovery Processes
7.1.3. Stages of the Knowledge Discovery Processes
7.1.4. Techniques Used in Knowledge Discovery Processes
7.1.5. Characteristics of Good Machine Learning Models
7.1.6. Types of Machine Learning Information
7.1.7. Basic Learning Concepts
7.1.8. Basic Concepts of Unsupervised Learning
7.2. Data Exploration and Pre-processing
7.2.1. Data Processing
7.2.2. Data Processing in the Data Analysis Flow
7.2.3. Types of Data
7.2.4. Data Transformations
7.2.5. Visualization and Exploration of Continuous Variables
7.2.6. Visualization and Exploration of Categorical Variables
7.2.7. Correlation Measures
7.2.8. Most Common Graphic Representations
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction
7.3. Decision Trees
7.3.1. ID Algorithm
7.3.2. Algorithm C
7.3.3. Overtraining and Pruning
7.3.4. Analysis of Results
7.4. Evaluation of Classifiers
7.4.1. Confusion Matrixes
7.4.2. Numerical Evaluation Matrixes
7.4.3. Kappa Statistic
7.4.4. ROC Curves
7.5. Classification Rules
7.5.1. Rule Evaluation Measures
7.5.2. Introduction to Graphic Representation
7.5.3. Sequential Overlay Algorithm
7.6. Neural Networks
7.6.1. Basic Concepts
7.6.2. Simple Neural Networks
7.6.3. Backpropagation Algorithm
7.6.4. Introduction to Recurrent Neural Networks
7.7. Bayesian Methods
7.7.1. Basic Probability Concepts
7.7.2. Bayes' Theorem
7.7.3. Naive Bayes
7.7.4. Introduction to Bayesian Networks
7.8. Regression and Continuous Response Models
7.8.1. Simple Linear Regression
7.8.2. Multiple Linear Regression
7.8.3. Logistic Regression
7.8.4. Regression Trees
7.8.5. Introduction to Support Vector Machines (SVM)
7.8.6. Goodness-of-Fit Measures
7.9. Clustering
7.9.1. Basic Concepts
7.9.2. Hierarchical Clustering
7.9.3. Probabilistic Methods
7.9.4. EM Algorithm
7.9.5. B-Cubed Method
7.9.6. Implicit Methods
7.10. Text Mining and Natural Language Processing (NLP)
7.10.1. Basic Concepts
7.10.2. Corpus Creation
7.10.3. Descriptive Analysis
7.10.4. Introduction to Feelings Analysis
Module 8. Neural Networks, the Basis of Deep Learning
8.1. Deep Learning
8.1.1. Types of Deep Learning
8.1.2. Applications of Deep Learning
8.1.3. Advantages and Disadvantages of Deep Learning
8.2. Surgery
8.2.1. Sum
8.2.2. Product
8.2.3. Transfer
8.3. Layers
8.3.1. Input Layer
8.3.2. Cloak
8.3.3. Output Layer
8.4. Union of Layers and Operations
8.4.1. Architecture Design
8.4.2. Connection between layers
8.4.3. Forward propagation
8.5. Construction of the first neural network
8.5.1. Network Design
8.5.2. Establish the Weights
8.5.3. Network Training
8.6. Trainer and Optimizer
8.6.1. Optimizer Selection
8.6.2. Establishment of a Loss Function
8.6.3. Establishing a Metric
8.7. Application of the Principles of Neural Networks
8.7.1. Activation Functions
8.7.2. Backward Propagation
8.7.3. Parameter Adjustment
8.8. From Biological to Artificial Neurons
8.8.1. Functioning of a Biological Neuron
8.8.2. Transfer of Knowledge to Artificial Neurons
8.8.3. Establish Relations Between the Two
8.9. Implementation of MLP (Multilayer Perceptron) with Keras
8.9.1. Definition of the Network Structure
8.9.2. Model Compilation
8.9.3. Model Training
8.10. Fine Tuning Hyperparameters of Neural Networks
8.10.1. Selection of the Activation Function
8.10.2. Set the Learning Rate
8.10.3. Adjustment of Weights
Module 9. Deep Neural Networks Training
9.1. Gradient Problems
9.1.1. Gradient Optimization Techniques
9.1.2. Stochastic Gradients
9.1.3. Weight Initialization Techniques
9.2. Reuse of Pre-Trained Layers
9.2.1. Learning Transfer Training
9.2.2. Feature Extraction
9.2.3. Deep Learning
9.3. Optimizers
9.3.1. Stochastic Gradient Descent Optimizers
9.3.2. Optimizers Adam and RMSprop
9.3.3. Moment Optimizers
9.4. Learning Rate Programming
9.4.1. Automatic Learning Rate Control
9.4.2. Learning Cycles
9.4.3. Smoothing Terms
9.5. Overfitting
9.5.1. Cross Validation
9.5.2. Regularization
9.5.3. Evaluation Metrics
9.6. Practical Guidelines
9.6.1. Model Design
9.6.2. Selection of Metrics and Evaluation Parameters
9.6.3. Hypothesis Testing
9.7. Transfer Learning
9.7.1. Learning Transfer Training
9.7.2. Feature Extraction
9.7.3. Deep Learning
9.8. Data Augmentation
9.8.1. Image Transformations
9.8.2. Synthetic Data Generation
9.8.3. Text Transformation
9.9. Practical Application of Transfer Learning
9.9.1. Learning Transfer Training
9.9.2. Feature Extraction
9.9.3. Deep Learning
9.10. Regularization
9.10.1. L and L
9.10.2. Regularization by Maximum Entropy
9.10.3. Dropout
Module 10. Model Customization and Training with TensorFlow
10.1. TensorFlow
10.1.1. Use of the TensorFlow Library
10.1.2. Model Training with TensorFlow
10.1.3. Operations with Graphs in TensorFlow
10.2. TensorFlow and NumPy
10.2.1. NumPy Computing Environment for TensorFlow
10.2.2. Using NumPy Arrays with TensorFlow
10.2.3. NumPy Operations for TensorFlow Graphs
10.3. Model Customization and Training Algorithms
10.3.1. Building Custom Models with TensorFlow
10.3.2. Management of Training Parameters
10.3.3. Use of Optimization Techniques for Training
10.4. TensorFlow Features and Graphs
10.4.1. Functions with TensorFlow
10.4.2. Use of Graphs for Model Training
10.4.3. Graphic Optimization with TensorFlow Operations
10.5. Loading and Preprocessing Data with TensorFlow
10.5.1. Loading Data Sets with TensorFlo
10.5.2. Preprocessing Data with TensorFlow
10.5.3. Using TensorFlow Tools for Data Manipulation
10.6. The tf.data API
10.6.1. Using the tf.dataAPI for Data Processing
10.6.2. Construction of Data Streams with tf.data
10.6.3. Using the tf.data API for Model Training
10.7. The TFRecord Format
10.7.1. Using the TFRecord API for Data Serialization
10.7.2. TFRecord File Upload with TensorFlow
10.7.3. Using TFRecord Files for Model Training
10.8. Keras Preprocessing Layers
10.8.1. Using the Keras Preprocessing API
10.8.2. Preprocessing Pipelined Construction with Keras
10.8.3. Using the Keras Preprocessing API for Model Training
10.9. The TensorFlow Datasets Project
10.9.1. Using TensorFlow Datasets for Data Loading
10.9.2. Preprocessing Data with TensorFlow Datasets
10.9.3. Using TensorFlow Datasets for Model Training
10.10. Building a Deep Learning App with TensorFlow
10.10.1. Practical Application
10.10.2. Building a Deep Learning App with TensorFlow
10.10.3. Model Training with TensorFlow
10.10.4. Use of the Application for the Prediction of Results
Module 11. Deep Computer Vision with Convolutional Neural Networks
11.1. The Visual Cortex Architecture
11.1.1. Functions of the Visual Cortex
11.1.2. Theories of Computational Vision
11.1.3. Models of Image Processing
11.2. Convolutional Layers
11.2.1. Reuse of Weights in Convolution
11.2.2. Convolution D
11.2.3. Activation Functions
11.3. Grouping Layers and Implementation of Grouping Layers with Keras
11.3.1. Pooling and Striding
11.3.2. Flattening
11.3.3. Types of Pooling
11.4. CNN Architecture
11.4.1. VGG Architecture
11.4.2. AlexNet Architecture
11.4.3. Architecture ResNet
11.5. Implementing a CNN ResNet- using Keras
11.5.1. Weight Initialization
11.5.2. Input Layer Definition
11.5.3. Output Definition
11.6. Use of Pre-trained Keras Models
11.6.1. Characteristics of Pre-trained Models
11.6.2. Uses of Pre-trained Models
11.6.3. Advantages of Pre-trained Models
11.7. Pre-trained Models for Transfer Learning
11.7.1. Transfer Learning
11.7.2. Transfer Learning Process
11.7.3. Advantages of Transfer Learning
11.8. Deep Computer Vision Classification and Localization
11.8.1. Image Classification
11.8.2. Localization of Objects in Images
11.8.3. Object Detection
11.9. Object Detection and Object Tracking
11.9.1. Object Detection Methods
11.9.2. Object Tracking Algorithms
11.9.3. Tracking and Localization Techniques
11.10. Semantic Segmentation
11.10.1. Deep Learning for Semantic Segmentation
11.10.2. Edge Detection
11.10.3. Rule-based Segmentation Methods
Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention
12.1. Text Generation using RNN
12.1.1. Training an RNN for Text Generation
12.1.2. Natural Language Generation with RNN
12.1.3. Text Generation Applications with RNN
12.2. Training Data Set Creation
12.2.1. Preparation of the Data for Training an RNN
12.2.2. Storage of the Training Dataset
12.2.3. Data Cleaning and Transformation
12.2.4. Sentiment Analysis
12.3. Classification of Opinions with RNN
12.3.1. Detection of Themes in Comments
12.3.2. Sentiment Analysis with Deep Learning Algorithms
12.4. Encoder-Decoder Network for Neural Machine Translation
12.4.1. Training an RNN for Machine Translation
12.4.2. Use of an Encoder-Decoder Network for Machine Translation
12.4.3. Improving the Accuracy of Machine Translation with RNNs
12.5. Attention Mechanisms
12.5.1. Application of Care Mechanisms in RNN
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models
12.5.3. Advantages of Attention Mechanisms in Neural Networks
12.6. Transformer Models
12.6.1. Using Transformers Models for Natural Language Processing
12.6.2. Application of Transformers Models for Vision
12.6.3. Advantages of Transformers Models
12.7. Transformers for Vision
12.7.1. Use of Transformers Models for Vision
12.7.2. Image Data Preprocessing
12.7.3. Training a Transformers Model for Vision
12.8. Hugging Face’s Transformers Library
12.8.1. Using the Hugging Face's Transformers Library
12.8.2. Hugging Face’s Transformers Library Application
12.8.3. Advantages of Hugging Face’s Transformers Library
12.9. Other Transformers Libraries. Comparison
12.9.1. Comparison Between Different Transformers Libraries
12.9.2. Use of the Other Transformers Libraries
12.9.3. Advantages of the Other Transformers Libraries
12.10. Development of an NLP Application with RNN and Attention. Practical Application
12.10.1. Development of a Natural Language Processing Application with RNN and Attention
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application
12.10.3. Evaluation of the Practical Application
Module 13. Autoencoders, GANs, and Diffusion Models
13.1. Representation of Efficient Data
13.1.1. Dimensionality Reduction
13.1.2. Deep Learning
13.1.3. Compact Representations
13.2. PCA Realization with an Incomplete Linear Automatic Encoder
13.2.1. Training Process
13.2.2. Implementation in Python
13.2.3. Use of Test Data
13.3. Stacked Automatic Encoders
13.3.1. Deep Neural Networks
13.3.2. Construction of Coding Architectures
13.3.3. Use of Regularization
13.4. Convolutional Autoencoders
13.4.1. Design of Convolutional Models
13.4.2. Convolutional Model Training
13.4.3. Results Evaluation
13.5. Automatic Encoder Denoising
13.5.1. Filter Application
13.5.2. Design of Coding Models
13.5.3. Use of Regularization Techniques
13.6. Sparse Automatic Encoders
13.6.1. Increasing Coding Efficiency
13.6.2. Minimizing the Number of Parameters
13.6.3. Using Regularization Techniques
13.7. Variational Automatic Encoders
13.7.1. Use of Variational Optimization
13.7.2. Unsupervised Deep Learning
13.7.3. Deep Latent Representations
13.8. Generation of Fashion MNIST Images
13.8.1. Pattern Recognition
13.8.2. Image Generation
13.8.3. Deep Neural Networks Training
13.9. Generative Adversarial Networks and Diffusion Models
13.9.1. Content Generation from Images
13.9.2. Modeling of Data Distributions
13.9.3. Use of Adversarial Networks
13.10. Implementation of the Models
13.10.1. Practical Application
13.10.2. Implementation of the Models
13.10.3. Use of Real Data
13.10.4. Results Evaluation
Module 14. Bio-Inspired Computing
14.1. Introduction to Bio-Inspired Computing
14.1.1. Introduction to Bio-Inspired Computing
14.2. Social Adaptation Algorithms
14.2.1. Bio-Inspired Computation Based on Ant Colonies
14.2.2. Variants of Ant Colony Algorithms
14.2.3. Particle Cloud Computing
14.3. Genetic Algorithms
14.3.1. General Structure
14.3.2. Implementations of the Major Operators
14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms
14.4.1. CHC Algorithm
14.4.2. Multimodal Problems
14.5. Evolutionary Computing Models (I)
14.5.1. Evolutionary Strategies
14.5.2. Evolutionary Programming
14.5.3. Algorithms Based on Differential Evolution
14.6. Evolutionary Computation Models (II)
14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA)
14.6.2. Genetic Programming
14.7. Evolutionary Programming Applied to Learning Problems
14.7.1. Rules-Based Learning
14.7.2. Evolutionary Methods in Instance Selection Problems
14.8. Multi-Objective Problems
14.8.1. Concept of Dominance
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems
14.9. Neural Networks (I)
14.9.1. Introduction to Neural Networks
14.9.2. Practical Example with Neural Networks
14.10. Neural Networks (II)
14.10.1. Use Cases of Neural Networks in Medical Research
14.10.2. Use Cases of Neural Networks in Economics
14.10.3. Use Cases of Neural Networks in Artificial Vision
Module 15. Artificial Intelligence: Strategies and Applications
15.1. Financial Services
15.1.1. The implications of Artificial Intelligence (AI) in financial services. Opportunities and challenges
15.1.2. Case Uses
15.1.3. Potential Risks Related to the Use of AI
15.1.4. Potential Future Developments/Uses of AI
15.2. Implications of Artificial Intelligence in the Healthcare Service
15.2.1. Implications of AI in the Healthcare Sector. Opportunities and Challenges
15.2.2. Case Uses
15.3. Risks Related to the Use of AI in the Health Service
15.3.1. Potential Risks Related to the Use of AI
15.3.2. Potential Future Developments/Uses of AI
15.4. Retail
15.4.1. Implications of AI in Retail. Opportunities and Challenges
15.4.2. Case Uses
15.4.3. Potential Risks Related to the Use of AI
15.4.4. Potential Future Developments/Uses of AI
15.5. Industry
15.5.1. Implications of AI in Industry. Opportunities and Challenges
15.5.2. Case Uses
15.6. Potential risks related to the use of AI in industry
15.6.1. Case Uses
15.6.2. Potential Risks Related to the Use of AI
15.6.3. Potential Future Developments/Uses of AI
15.7. Public Administration.
15.7.1. AI implications for public administration. Opportunities and Challenges
15.7.2. Case Uses
15.7.3. Potential Risks Related to the Use of AI
15.7.4. Potential Future Developments/Uses of AI
15.8. Education
15.8.1. AI implications for education. Opportunities and Challenges
15.8.2. Case Uses
15.8.3. Potential Risks Related to the Use of AI
15.8.4. Potential Future Developments/Uses of AI
15.9. Forestry and Agriculture
15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges
15.9.2. Case Uses
15.9.3. Potential Risks Related to the Use of AI
15.9.4. Potential Future Developments/Uses of AI
15.10. Human Resources
15.10.1. Implications of AI for Human Resources Opportunities and Challenges
15.10.2. Case Uses
15.10.3. Potential Risks Related to the Use of AI
15.10.4. Potential Future Developments/Uses of AI
You will delve into topics such as generative AI models, applied quantum computing, and ethics and governance strategies, hand in hand with the world's best digital university, according to Forbes"
Hybrid Master's Degree in Artificial Intelligence
Welcome to TECH Global University's Hybrid Master's Degree in Artificial Intelligence, where educational innovation is fused with the flexibility of online learning and hands-on experience in our specialized facilities. This program is designed to prepare you as a versatile professional in the field of Artificial Intelligence, offering you a comprehensive approach that combines advanced theory with practical applications. During the blended classes, you will have access to cutting-edge theoretical content through our digital platform, making it easy for you to study at your own pace and from anywhere. In addition, on-site internships at our center will allow you to apply your knowledge in controlled environments, under the guidance of subject matter experts. Throughout the program, you will explore fundamental topics such as machine learning, big data processing, computer vision and intelligent robotics. You'll learn how to develop advanced algorithms that are transforming entire industries, from healthcare to automotive to banking.
Get trained in AI with online theory and on-site internships.
Do you know why TECH is considered one of the best universities in the world? Because we have a catalog of more than ten thousand academic programs, presence in multiple countries, innovative methodologies, unique academic technology and a highly qualified teaching team, so you can not miss the opportunity to study with this postgraduate online theory and classroom practices. Our faculty is made up of professionals with real-world experience in global AI projects, ensuring that you acquire the practical skills and up-to-date knowledge demanded by today's job market. In addition, you will have the opportunity to collaborate on real projects, fostering the development of teamwork and leadership skills that are crucial in the working world. Upon completion of the Professional Master's Degree, you will be prepared to face the most demanding challenges of Artificial Intelligence, contributing to innovation and technological progress in any industry you choose. Earn your degree from TECH Global University and become a leader in digital transformation with our high-quality tools, knowledge and content.