University certificate
The world's largest artificial intelligence faculty”
Introduction to the Program
Gracias a esta Postgraduate diploma, aplicarás a tus proyectos los métodos de optimización más avanzados para entrenar Redes Neuronales Profundas”
El Procesamiento del Lenguaje Natural a través del Deep Learning ha revolucionado por completo la forma en que las computadoras entienden y generan lenguaje humano. Esta tecnología tiene un amplio abanico de aplicaciones, que abarcan desde la automatización de tareas basadas en texto hasta la mejora de la seguridad en línea. Uno de los campos en los que más se emplean estos recursos es en las empresas de carácter comercial. De esta forma, los negocios incluyen en sus plataformas web asistentes virtuales como chatbots para resolver las preguntas de los consumidores en tiempo real. Así pues, el Aprendizaje Profundo contribuye a ofrecer respuestas relevantes basadas en el contenido de grandes bases de datos.
En este contexto, TECH implementa una Postgraduate diploma que versará minuciosamente acerca del Procesamiento del Lenguaje con Redes Naturales Recurrentes. Diseñado por expertos en esta materia, el plan de estudios analizará las claves para la creación del conjunto de datos de entrenamiento. En este sentido, se analizarán los pasos a seguir para que los alumnos realicen una correcta limpieza y transformación de las informaciones. Asimismo, el temario profundizará en el análisis de sentimientos con algoritmos para detectar opiniones emergentes y tendencias. Por otra parte, la capacitación abordará la construcción de entornos en OpenAi para que los egresados desarrollen y evalúen algoritmos de aprendizaje por refuerzo.
La metodología del programa constituirá un reflejo de la necesidad de flexibilidad y adaptación a las demandas profesionales contemporáneas. Con un formato 100% online, permitirá a los estudiantes avanzar en su aprendizaje sin comprometer sus responsabilidades laborales. Además, la aplicación del sistema Relearning, basado en la reiteración de conceptos clave, asegura una comprensión profunda y duradera. Este enfoque pedagógico refuerza la capacidad de los profesionales para aplicar efectivamente los conocimientos adquiridos en su práctica diaria. A su vez, lo único que necesitará el alumnado para completar este itinerario académico será un dispositivo con acceso a Internet.
Dominarás la Arquitectura del Córtex Visual y serás capaz de reconstruir modelos tridimensionales de objetos en solo 6 meses con esta capacitación”
Esta Postgraduate diploma en Advanced Deep Learning contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Deep Learning Avanzado
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información tecnológica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Estarás capacitado para crear modelos de Inteligencia Artificial con un lenguaje natural de primera calidad”
El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Con los resúmenes interactivos de cada tema, consolidarás de manera más dinámica los conceptos sobre la Convulsión 2D”
La metodología del Relearning, de la cual TECH es pionera, te garantizará un aprendizaje paulatino y natural”
Syllabus
This program will immerse students in the creation of Artificial Neural Network architectures. The curriculum will delve into Deep Computer Vision, taking into account image processing models. In addition, the syllabus will delve into object tracking algorithms through different tracking and localization techniques. Moreover, students will acquire a solid understanding of natural language processing to automate activities such as translation and coherent text production. Developers will handle the OpenAi Gym platform for the development, evaluation and research of reinforcement learning algorithms.
You will maximize your skills by analyzing real cases and solving complex situations in simulated learning environments"
Module 1. Deep Computer Vision with Convolutional Neural Networks
1.1. The Visual Cortex Architecture
1.1.1. Functions of the Visual Cortex
1.1.2. Theories of Computational Vision
1.1.3. Models of Image Processing
1.2. Convolutional Layers
1.2.1. Reuse of Weights in Convolution
1.2.2. 2D Convolution
1.2.3. Activation Functions
1.3. Grouping Layers and Implementation of Grouping Layers with Keras
1.3.1. Pooling and Striding
1.3.2. Flattening
1.3.3. Types of Pooling
1.4. CNN Architecture
1.4.1. VGG Architecture
1.4.2. AlexNet architecture
1.4.3. ResNet Architecture
1.5. Implementation of a ResNet-34 CNN using Keras
1.5.1. Weight Initialization
1.5.2. Input Layer Definition
1.5.3. Output Definition
1.6. Use of Pre-trained Keras Models
1.6.1. Characteristics of Pre-trained Models
1.6.2. Uses of Pre-trained Models
1.6.3. Advantages of Pre-trained Models
1.7. Pre-trained Models for Transfer Learning
1.7.1. Transfer Learning
1.7.2. Transfer Learning Process
1.7.3. Advantages of Transfer Learning
1.8. Deep Computer Vision Classification and Localization
1.8.1. Image Classification
1.8.2. Localization of Objects in Images
1.8.3. Object Detection
1.9. Object Detection and Object Tracking
1.9.1. Object Detection Methods
1.9.2. Object Tracking Algorithms
1.9.3. Tracking and Localization Techniques
1.10. Semantic Segmentation
1.10.1. Deep Learning for Semantic Segmentation
1.10.2. Edge Detection
1.10.3. Rule-based Segmentation Methods
Module 2. Natural Language Processing (NLP) with Natural Recurrent Networks (NRN) and Attention
2.1. Text Generation Using RNN
2.1.1. Training an RNN for Text Generation
2.1.2. Natural Language Generation with RNN
2.1.3. Text Generation Applications with RNN
2.2. Training Data Set Creation
2.2.1. Preparation of the Data for Training an RNN
2.2.2. Storage of the Training Dataset
2.2.3. Data Cleaning and Transformation
2.3. Sentiment Analysis
2.3.1. Classification of Opinions with RNN
2.3.2. Detection of Themes in Comments
2.3.3. Sentiment Analysis with Deep Learning Algorithms
2.4. Encoder-decoder Network for Neural Machine Translation
2.4.1. Training an RNN for Machine Translation
2.4.2. Use of an Encoder-decoder Network for Machine Translation
2.4.3. Improving the Accuracy of Machine Translation with RNNs
2.5. Attention Mechanisms
2.5.1. Application of Care Mechanisms in RNN
2.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models
2.5.3. Advantages of Attention Mechanisms in Neural Networks
2.6. Transformer Models
2.6.1. Using TransformerModels for Natural Language Processing
2.6.2. Application of Transformer Models for Vision
2.6.3. Advantages of Transformer Models
2.7. Transformers for Vision
2.7.1. Use of Transformer Models for Vision
2.7.2. Image Data Preprocessing
2.7.3. Training a Transform Model for Vision
2.8. Hugging Face Transformer Library
2.8.1. Using the Hugging Face Transformers Library
2.8.2. Application of the Hugging Face Transformers Library
2.8.3. Advantages of the Hugging Face Transformers library
2.9. Other Transformers Libraries. Comparison
2.9.1. Comparison between different TransformersLibraries
2.9.2. Use of the other Transformers Libraries
2.9.3. Advantages of the other Transformers Libraries
2.10. Development of an NLP Application with RNN and Attention. Practical Application
2.10.1. Development of a Natural Language Processing Application with RNN and Attention
2.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application
2.10.3. Evaluation of the Practical Application
Module 3. Reinforcement Learning
3.1. Optimization of Rewards and Policy Search
3.1.1. Reward Optimization Algorithms
3.1.2. Policy Search Processes
3.1.3. Reinforcement Learning for Reward Optimization
3.2. OpenAI
3.2.1. OpenAI Gym Environment
3.2.2. Creation of OpenAI Environments
3.2.3. Reinforcement Learning Algorithms in OpenAI
3.3. Neural Network Policies
3.3.1. Convolutional Neural Networks for Policy Search
3.3.2. Deep Learning Policies
3.3.3. Extending Neural Network Policies
3.4. Stock Evaluation: the Credit Allocation Problem
3.4.1. Risk Analysis for Credit Allocation
3.4.2. Estimating the Profitability of Loans
3.4.3. Credit Evaluation Models based on Neural Networks
3.5. Policy Gradients
3.5.1. Reinforcement Learning with Policy Gradients
3.5.2. Optimization of Policy Gradients
3.5.3. Policy Gradient Algorithms
3.6. Markov Decision Processes
3.6.1. Optimization of Markov Decision Processes
3.6.2. Reinforcement Learning for Markov Decision ¨Processes
3.6.3. Models of Markov Decision Processes
3.7. Temporal Difference Learning and Q-Learning
3.7.1. Application of Temporal Differences in Learning
3.7.2. Application of Q-Learning in Learning
3.7.3. Optimization ofQ-LearningParameters
3.8. Implementation of Deep Q-Learning and Deep Q-Learning variants
3.8.1. Construction of Deep Neural Networks for Deep Q-Learning
3.8.2. Implementation of Deep Q-Learning
3.8.3. Variations of Deep Q-Learning
3.9. Reinforment Learning Algorithms
3.9.1. Reinforcement Learning Algorithms
3.9.2. Reward Learning Algorithms
3.9.3. Punishment Learning Algorithms
3.10. Design of a Reinforcement Learning Environment. Practical Application
3.10.1. Design of a Reinforcement Learning Environment
3.10.2. Implementation of a Reinforcement Learning Algorithm
3.10.3. Evaluation of a Reinforcement Learning Algorithm
You will have access to the most comprehensive learning materials in academia, available in a variety of multimedia formats to optimize your learning"
Postgraduate Diploma in Advanced Deep Learning
Dive into the depths of knowledge with the Postgraduate Diploma in Advanced Deep Learning, a unique program offered by TECH Global University. This program, focused on artificial intelligence, takes you beyond the boundaries of deep learning, offering you advanced and practical understanding, all from the comfort of our online classes. As a leading digital institution we recognize that advanced deep learning is the key to unlocking the most exciting opportunities in artificial intelligence. This postgraduate program has been designed for those looking to not only understand the fundamentals, but also apply advanced techniques in the development of complex models and innovative solutions. Our online classes, led by technology experts, will take you through the most advanced theoretical concepts and the most current practical applications. From algorithm optimization to advanced pattern analysis, each lesson is carefully designed to provide you with the skills you need to excel in a demanding professional environment.
Enroll in this postgraduate program and learn about Deep Learning
This program is not only focused on theory; it also gives you the opportunity to apply your knowledge in practical projects. Through case studies and practical exercises, you will develop skills that will prepare you to face real-world challenges, differentiating you as an expert in advanced deep learning. At TECH Global University, we are proud to have a faculty of experts committed to providing you with a quality education that reflects the latest trends and advances in the field. In addition, our online classes offer flexibility, allowing you to access lessons and study materials from anywhere and at any time. Upon successful completion of the postgraduate program, you will receive a certificate endorsed by the world's best online university. This not only represents an academic achievement, but also positions you as a professional prepared to lead in the dynamic field of artificial intelligence. If you are ready to explore the frontiers of knowledge and excel in advanced deep learning, join TECH Global University and transform your future today.